(word完整版)一元一次方程练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程练习题
基本题型: 一、选择题:
1、下列各式中是一元一次方程的是( )
A. y x -=-5
4
121 B. 835-=--
C. 3+x
D.
1465
34+=-+x x
x 2、方程x x 231
=+-的解是( )
A 。

31-
B 。

3
1
C 。

1 D. -1
3、若关于x 的方程m x 342=-的解满足方程m x =+2,则m 的值为( ) A 。

10 B. 8 C 。

10- D 。

8-
4、下列根据等式的性质正确的是( )
A. 由y x 3
2
31=-,得y x 2= B 。

由2223+=-x x ,得4=x
C 。

由x x 332=-,得3=x D. 由753=-x ,得573-=x
5、解方程16
1
10312=+-+x x 时,去分母后,正确结果是( ) A 。

111014=+-+x x B 。

111024=--+x x C 。

611024=--+x x C 。

611024=+-+x x
6、电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( )
A 。

0.81a 元 B. 1。

21a 元 C 。

21.1a 元 D. 81
.0a

8、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( )
A 。

不赚不亏 B.赚8元 C 。

亏8元 D 。

赚8元 9、下列方程中,是一元一次方程的是( )
(A);342=-x x (B );0=x (C );12=+y x (D).1
1x
x =-
10、方程21
2=-x 的解是( )
(A );41-=x (B );4-=x (C );4
1
=x (D ).4-=x
11、已知等式523+=b a ,则下列等式中不一定...成立的是( ) (A );253b a =- (B );6213+=+b a
(C );523+=bc ac (D ).3
5
32+=
b a 12、方程042=-+a x 的解是2-=x ,则a 等于( ) (A );8- (B );0 (C );2 (D ).8
13、解方程2
631x
x =+-
,去分母,得( ) (A );331x x =-- (B);336x x =-- (C);336x x =+- (D ).331x x =+- 14、下列方程变形中,正确的是( )
(A)方程1223+=-x x ,移项,得;2123+-=-x x
(B )方程()1523--=-x x ,去括号,得;1523--=-x x
(C)方程23
32=t ,未知数系数化为1,得;1=x
(D )方程
15
.02.01=--x
x 化成.63=x 15、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍. (A )3年后; (B )3年前; (C )9年后; (D )不可能。

16、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为x ,则列出的方程正确的是( )
(A );323x x -= (B )();3253x x -= (C )();3235x x -= (D ).326x x -=
17、珊瑚中学修建综合楼后,剩有一块长比宽多5m 、周长为50m 的长方形空地。

为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植成本最低是a 元,那么种植草皮至少需用( ) (A )a 25元; (B)a 50元; (C )a 150元; (D )a 250元. 18、银行教育储蓄的年利率如右下表:
小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用。

要使3年后的收益最大,则小明的父母应该采用( ) (A )直接存一个3年期;
(B )先存一个1年期的,1年后将利息和自动转存一个2年期; (C )先存一个1年期的,1年后将利息和自动转存两个1年期; (D )先存一个2年期的,2年后将利息和自动转存一个1年期.
二. 填空题:
1、4|2|=x ,则=x ________.
2、已知0)3(|4|2=-++-y y x ,则=+y x 2__________。

3、关于x 的方程0)1(2=--a x 的解是3,则a 的值为________________.
4、现有一个三位数,其个位数为a ,十位上的数字为b ,百位数上的数字为c ,则这个三位数表示为__________________.
5、甲、乙两班共有学生96名,甲班比乙班多2人,则乙班有____________人。

6、某数的3倍比它的一半大2,若设某数为y ,则列方程为____.
7、当=x ___时,代数式24+x 与93-x 的值互为相反数.
8、在公式()h b a s +=2
1
中,已知4,3,16===h a s ,则=b ___.
9、如右图是2003年12月份的日历,现用一长方形在日历中任意框出4个
,请用一个等式表示d c b a ,,,之间的关系___________
___。

10、一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入
一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试管中的水的高度下降了____㎝.
11、国庆期间,“新世纪百货”搞换季打折。

简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了___元.
12、成渝铁路全长504千米。

一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/。

13、我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔. 如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,
以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要___分钟就能追上乌龟.
14、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库。

假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是____元
15、52辆车排成两队,每辆车长a 米,前后两车间隔3a/2米,车队平均每分钟行50米,这列车队通过长为546米的广场需要的时间是16分钟,则a =__________.
三、解方程:
1、4)1(2=-x
2、11)12
1
(21=--x
3、()()x x 2152831--=--
4、23
4
21=-++x x 5、1)23(2151=--x x 6、15
2
+-=-x x
7、1835+=-x x 8、0262
921=---
x x 9、已知21=
x 是方程32142m x m x -=--的根,求代数式()
⎪⎭

⎝⎛---+-121824412m m m 的值.
四、列方程解应用题:
1、敌军在离我军8千米的驻地逃跑,时间是早晨4点,我军于5点出发以每小时10千米的速度追击,结果
在7点追上.求敌军逃跑时的速度是多少?
2、期中考查,信息技术课老师限时40分钟要求每位七年级学生打完一篇文章。

已知独立打完同样大小文章,小宝需要50分钟,小贝只需要30分钟. 为了完成任务,小宝打了30分钟后,请求小贝帮助合作,他能在要求的时间打完吗?
3、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,⑴ 如果㈡班代表队最后得分142分,那么㈡班代表队回答对了多少道题?⑵ ㈠班代表队的最后得分能为145分吗?请简要说明理由.
4、某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生。

(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?
(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离。

假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么?
5、黑熊妈妈想检测小熊学习“列方程解应用题”的效果,给了小熊19个苹果,要小熊把它们分成4堆。

要求分后,如果再把第一堆增加一倍,第二堆增加一个,第三堆减少两个,第四堆减少一倍后,这4堆苹果的个数又要相同. 小熊捎捎脑袋,该如何分这19个苹果为4堆呢?
6、学校准备拿出2000元资金给22名“希望杯”竞赛获奖学生买奖品,一等奖每人200元奖品,二等奖每人50元奖品,求得到一等奖和二等奖的学生分别是多少人?
7、一家商店将某种商品按成本价提高40%后标价,元旦期间,欲打八折销售,以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?
8、甲乙两人从学校到1000米远的展览馆去参观,甲走了5分钟后乙才出发,甲的速度是80米/分,乙的速度是180米/分,问乙多长时间能追上甲?追上甲时离展览馆还有多远?
较高要求:
1、已知
431)119991(441=++x ,那么代数式1999
1999481872+⋅+x x 的值。

2、(2001年江苏省无锡市中考题)某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,
其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( ).
(A )既不获利也不亏本 (B )可获利1% (C )要亏本2% (D )要亏本1%
3、某开发商按照分期付款的形式售房,小明家购买了一套现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款的利息之和.已知剩余款的年利率为0.4%,问第几年小明家需交房款5200元?
4、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,若制成酸奶销售,每吨可获利润1200元;若制成奶片销售,每吨可获利润2000元.
方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成; (1)你认为选择哪种方案获利最多,为什么?
(2)本题解出之后,你还能提出哪些问题?若没解出,写出你存在的问题?
5、两辆汽车从同一地点同时出发,沿着同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油。

为了使其中一车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里地方返回?离出发地点最远的那辆车一共行驶了多少公里?。

相关文档
最新文档