中考数学几何模型专题24函数与菱形存在性问题(学生版)知识点+例题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【压轴必刷】2023年中考数学压轴大题之经典模型培优案
专题24函数与菱形存在性问题
我们已经知道菱形是特殊的平行四边形,它的判定方法一共有五种,分别是
①四边都相等的四边形是菱形;②两条对角线互相垂直的平行四边形是菱形;③邻边相等的平行四边形是菱形;④对角线互相垂直平分的四边形是菱形;⑤一条对角线平分一个顶角的平行四边形是菱形.
在做几何证明题的时候我们常用的判定方法主要是前三种.
二次函数和菱形存在性问题作为压轴题目,结合了“分类讨论思想”,“方程思想”“菱形的判定方法”,势必要比单纯的菱形判定思考难度要大的多,纵观历年中考真题,菱形存在性问题主要是以“两定两动”为设问方式,其中两定指的是四边形四个顶点其中有两个顶点的坐标是确定的或者是可求解的;两动指的是其中一个动点在一条直线或者抛物线上,另外一个动点是平面内任意一点或者该动点也在一条直线或者抛物线上.
【例1】(2022春•锡山区校级期中)如图,在矩形ABCD中,BD是对角线,AB=6cm,BC=8cm,点E从点D出发,沿DA方向匀速运动,速度是2cm/s;点F从点B出发,沿BD方向匀速运动,速度是1cm/s,MN是过点F的直线,分别交AB、BC于点M、N,且在运动过程中始终保持MN⊥BD.连接EM、EN、EF,两点同时出发,设运动时间为t(s)(0<t<3.6),请回答下列问题:
(1)求当t为何值时,△EFD∽△ABD?
(2)求当t为何值时,△EFD为等腰三角形;
(3)将△EMN沿直线MN进行翻折,形成的四边形能否是菱形?若存在,求出t的值;若不存在,请说明理由.
【例2】(2022秋•南岸区校级期中)如图,点A、B分别在x轴和y轴的正半轴上,以线段AB为边在第一
象限作等边△ABC,S△ABC=,且CA⊥x轴.
(1)若点C在反比例函数y=(k≠0)的图象上,求该反比例函数的解析式;
(2)在(1)中的反比例函数图象上是否存在点N,使四边形ABCN是菱形,若存在请求出点N坐标,若不存在,请说明理由;
(3)在(2)的条件下,取OB的中点M,将线段OM沿着y轴上下移动,线段OM的对应线段是O1M1,直接写出四边形CM1O1N周长的最小值.
【例3】(2022秋•龙华区期中)已知:在平面直角坐标系中,直线l1:y=﹣x+2与x轴,y轴分别交于A、B两点,直线l2经过点A,与y轴交于点C(0,﹣4).
(1)求直线l2的解析式;
(2)如图1,点P为直线l1一个动点,若△P AC的面积为10时,请求出点P的坐标.
(3)如图2,将△ABC沿着x轴平移,平移过程中的△ABC记为△A1B1C1,请问在平面内是否存在点D,使得以A1、C1、C、D为顶点的四边形是菱形?若存在,直接写出点D的坐标.
【例4】(2022秋•博罗县期中)如图,抛物线y=﹣x2+x+1与y轴交于点A,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).
(1)求直线AB的函数解析式.
(2)动点P在线段OC上,从原点O出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长为s个单位,求s与t的函数解析式,并写出t的取值范围.
(3)在(2)的条件下(不考虑点P与点O,C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?对于所求的t的值,平行四边形BCMN是否为菱形?若存在,请直接写出四边形BCMN为菱形时t的值,若不能存在请说明理由.
一.解答题
1.(2022秋•思明区校级期中)如图,正方形OABC的边OA、OC分别在x轴和y轴上,顶点B在第一象限,AB=6,点E、F分别在边AB和射线OB上运动(E、F不与正方形的顶点重合),OF=2BE,设BE=t.
(1)当t=2时,则AE=,BF=;
(2)当点F在线段OB上运动时,若△BEF的面积为,求t的值;
(3)在整个运动过程中,平面上是否存在一点P,使得以P、O、E、F为顶点,且以OF为边的四边形是菱形?若存在,求出t的值;若不存在,请说明理由.
2.(2022•城西区开学)如图,在平面直角坐标系中,直线y=2x+4与x轴,y轴分别交于A,B两点,直线y=﹣x+1与x轴,y轴分别交于C,D两点,这两条直线相交于点P.
(1)求点P的坐标;
(2)求四边形AODP的面积;
(3)在坐标平面内是否存在一点Q,使以A,P,D,Q为顶点的四边形是菱形?若存在,请求出点Q 的坐标,若不存在,请说明理由.
3.(2022春•大足区期末)已知:在平面直角坐标系中,直线l1:y=﹣x+2与x轴,y轴分别交于A、B两点,直线l2经过点A,与y轴交于点C(0,﹣4).
(1)求直线l2的解析式;
(2)如图1,点P为直线l1一个动点,若△P AC的面积等于10时,请求出点P的坐标;
(3)如图2,将△ABC沿着x轴平移,平移过程中的△ABC记为△A1B1C1,请问在平面内是否存在点D,使得以A1、C1、C、D为顶点的四边形是菱形?若存在,直接写出点D的坐标.。