无人船自动舵控制系统设计及优化

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- II -
大连理工大学硕士学位论文
Key Words:unmanned surface vessels; Autopilot; MMG model; PID control; fuzzy control
- III -
无人船自动舵控制系统设计及优化
目录
摘 要............................................................................................................................. I Abstract.............................................................................................................................. II 1 绪论............................................................................................................................ - 1 -
大连理工大学硕士学位论文
摘要
随着自动控制、人工智能的飞速发展,无人机、无人车等不断走进人们的生活,而 作为新型智能船舶的无人船,也逐步走进人们的视野。由于其能够广泛应用于海洋活动 的各个方面,众多学者纷纷把目光投入到了这一研究领域。
自动舵作为船舶操纵运动的组成部分,也是无人船航行控制的基础,它对操纵指令 响应的快速性和准确性,在无人船的运动过程中,起到了极其重要的作用。自动舵的工 作状态可以分为两种:航向控制和航迹控制。航向控制是指船舶在运动过程中,由于受 到外界干扰而驶离了设定航向,通过控制系统令船舶驶回设定的航向;航迹控制是指在 设定好航线后,无论船舶处于何种位置,都能够快速回到设定航线,并沿着该航线达到 期望的目标位置。
(3)Based on the traditional PID control algorithm, the idea of integral separation is introduced. Combined with the advantages of fuzzy control, a fuzzy PID controller is designed. And the performance of the controller is verified by simulation.
Abstract
With the rapid development of automatic control and artificial intelligence, drones and unmanned vehicles have gradually entered people's lives. As a new type of intelligent ship, unmanned surface vessels appears in people's vision. Because it can be widely used in all aspects of marine activities, many scholars have focused their attention on this field of research.
1.2.1 国外研究现状.................................................................................... - 1 1.2.2 国内研究现状.................................................................................... - 6 1.3 论文研究内容及成果................................................................................. - 10 2 无人船操纵数学模型.............................................................................................. - 11 2.1 前言............................................................................................................. - 11 2.2 MMG 数学模型的发展历程...................................................................... - 11 2.3 无人船操纵运动方程................................................................................. - 11 2.3.1 坐标系.............................................................................................. - 11 2.3.2 坐标系转换...................................................................................... - 12 2.3.3 操纵运动方程.................................................................................. - 13 2.4 水动力导数的近似估算............................................................................. - 14 2.4.1 附加质量与附加惯性矩.................................................................. - 14 2.4.2 流体动力和力矩.............................................................................. - 15 2.5 螺旋桨水动力仿真模型............................................................................. - 18 2.5.1 桨推力系数的计算.......................................................................... - 19 2.5.2 桨伴流系数 wp 的计算.....................................................................- 19 2.5.3 推力减额系数 t p 的计算.................................................................. - 20 2.5.4 螺旋桨流体动力计算模型.............................................................. - 22 2.6 舵力仿真数学模型..................................................................................... - 22 2.7 舵机计算模型............................................................................................. - 24 2.8 本章小结..................................................................................................... - 25 3 模糊 PID 控制理论研究..........................................................................................- 26 3.1 前言............................................................................................................. - 26 3.2 PID 控制原理..............................................................................................- 27 3.2.1 位置式 PID 控制算法......................................................................- 28 -
As an important part of the ship's maneuvering motion, the autopilot is the basis of unmanned surface vessels’ navigation control. It plays an extremely important role in the speed and accuracy of the response to the maneuvering commands during the movement of the unmanned surface vessels.The working state of the autopilot can be divided into two types: heading control and track control. Heading control means that the ship moves away from the set course due to external interference during the movement, and then driven back to the set course by the control system;Track control means that after setting the route, no matter where the ship is, it can quickly return to the set route and reach the desired target position along the route.
Since the track control is essentially the continuous adjustment of the unmanned surface vessels’ heading control, this article mainly focuses on the research of autopilot for the heading control:
(1)By reading the literature, the research status of domestic and foreign unmanned surface vessels and related achievements in autopilot control are summarized;
(4)建立无人船在风浪影响下的数学模型。通过对无人船在风浪影响下的运动情 况进行模拟,验证控制器的抗干扰性能,并对结果进行分析总结。
关键词:无人船;自动舵;MMG 模型;PID 控制;模糊控制
-I-无人船自动舵控制来自统设计及优化Design and Optimization of Unmanned Surface Vessels’ Autopilot Control System
1.1 选题背景与研究目的................................................................................... - 1 1.2 国内外研究现状........................................................................................... - 1 -
由于航迹控制实质上就是航向的不断调整,因此本文主要针对无人船的航向控制进 行自动舵方面的研究:
(1)通过阅读文献资料,对国内外无人船的研究现状、自动舵控制方面的相关成 果进行了总结;
(2)根据本文研究的实际情况,基于分离型船舶运动数学模型,建立无人船的相 关模型,为计算机模拟奠定基础;
(3)基于传统的 PID 控制算法,在其基础上引入积分分离的思想,再结合模糊控 制的优点,设计了一种模糊 PID 控制器,通过仿真实验验证控制器性能。
(4)The mathematical model of unmanned surface vessels under the influence of wind and waves is established.By simulating the movement of unmanned surface vessels under the influence of wind and waves, the anti-jamming performance of the controller is verified.Finally, analyze and summarize the results.
(2)According to the actual situation studied in this article, based on the separated ship motion mathematical model, the mathematical model of the unmanned surface vessels is established to lay the foundation for computer simulation;
相关文档
最新文档