PWM信号发生电路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.PWM信号概述
脉冲宽度调制(PWM)信号广泛使用在电力变流技术中,以其作为控制信号可完成DC-DC变换(开关电源)、DC-AC变换(逆变电源)、AC-AC变换(斩控调压)与AC-DC变换(功率因数校正)。
产生PWM信号的方法有多种,现分别论述如下:
1)普通电子元件构成PWM发生器电路
基本原理就是由三角波或锯齿波发生器产生高频调制波,经比较器产生PWM信号。
三角波或锯齿波与可调直流电压比较,产生可调占空比PWM信号;与正弦基波比较,产生占空比按正弦规律变化的SPWM信号。
此方法优点就是成本低、各环节波形与电压值可观测、易于扩展应用电路等。
缺点就是电路集成度低,不利于产品化。
2)单片机自动生成PWM信号
基本原理就是由单片机内部集成PWM发生器模块在程序控制下产生PWM 信号。
优点就是电路简单、便于程序控制。
缺点就是不利于学生观测PWM产生过程,闭环控制复杂与使用时受单片机性能制约。
3)可编程逻辑器件编程产生PWM信号
基本原理就是以复杂可编程逻辑器件(CPLD)或现场可编程门阵列器件(FPGA)为硬件基础,设计专用程序产生PWM信号。
优点就是电路简单、PWM频率与占空比定量准确。
缺点就是闭环控制复杂,产生SPWM信号难度大。
4)专用芯片产生PWM信号
就是生产厂家设计、生产的特定功能芯片。
优点就是使用方便、安全,便于应用到产品设计中。
缺点就是不利于学生观测PWM产生过程与灵活调节各项参数。
2.电子元件构成PWM发生器电路
图1电子元件构成PWM发生器电路
3.集成芯片SG3525构成PWM发生器电路
一、PWM信号发生电路说明
实验电路中,驱动开关管的PWM信号由专用PWM控制集成芯片SG3525产生(美国Silicon General公司生产),PWM信号发生器电路如图2所示。
图2 PWM信号发生器电路图
SG3525采用恒频脉宽调制控制方案,内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器与保护电路等。
调节Ur的大小,在OUTA、OUTB
两端可输出两个幅度相等、频率相等、相位相差一个周期、占空比可调的矩形波(即PWM信号)。
它适用于各开关电源、斩波器的控制。
占空比控制端Ur与输出端OUTA、OUTB两端波形图如图3所示。
图3 Ur与OUTA、OUTB波形图
SG3525就是电流控制型PWM控制器,所谓电流控制型脉宽调制器就是按照所接反馈电流来调节脉宽的。
在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。
由于结构上有电压环与电流环双环系统,因此,无论开关电源的电压调整率、负载调整率与瞬态响应特性都有提高,就是目前比较理想的新型控制器。
SG3525芯片内部功能框图如图4所示。
图4 SG3525芯片内部功能框图
各引脚功能如下所述:
1.Inv、input(引脚1):误差放大器反向输入端。
在闭环系统中,该引脚接反馈信号。
在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。
2.Noninv、input(引脚2):误差放大器同向输入端。
在闭环系统与开环系统中,该端接给定信号。
根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分与积分等类型的调节器。
3.Sync(引脚3):振荡器外接同步信号输入端。
该端接外部同步脉冲信号可实现与外电路同步。
4.OSC、Output(引脚4):振荡器输出端。
5.CT(引脚5):振荡器定时电容接入端。
6.RT(引脚6):振荡器定时电阻接入端。
7.Discharge(引脚7):振荡器放电端。
该端与引脚5之间外接一只放电电阻,构成放电回路。
8.Soft-Start(引脚8):软启动电容接入端。
该端通常接一只软启动电容。
pensation(引脚9):PWM比较器补偿信号输入端。
在该端与引脚2之间接入不同类型的反馈网络,可以构成比例、比例积分与积分等类型调节器。
10.Shutdown(引脚10):外部关断信号输入端。
该端接高电平时控制器输出被禁止。
该端可与保护电路相连,以实现故障保护。
11.Output A(引脚11):输出端A。
引脚11与引脚14就是两路互补输出端。
12.Ground(引脚12):信号地。
13.Vc(引脚13):输出级偏置电压接入端。
14.Output B(引脚14):输出端B。
引脚14与引脚11就是两路互补输出端。
15.Vcc(引脚15):偏置电源接入端。
16.Vref(引脚16):基准电源输出端。
该端可输出一个温度稳定性极好的基准电压。
SG3525芯片特点如下所述:
1.工作电压范围宽:8—35V。
2.5、1(1 1、0%)V微调基准电源。
3.振荡器工作频率范围宽:100Hz—400KHz。
4.具有振荡器外部同步功能。
5.死区时间可调。
6.内置软启动电路。
7.具有输入欠电压锁定功能。
8.具有PWM琐存功能,禁止多脉冲。
9.逐个脉冲关断。
10.双路输出(灌电流/拉电流): 200mA(峰值)。
二、SG3525的工作原理
图6单端变换器中的应用
当输出晶体管开通时,R1上会有电流流过,R1上的压降将使VT1导通。
因此VT1就是在SG3525内部的输出晶体管导通时间内导通的,因此其开关频率等于SG3525内部振荡器的频率。
当采用推挽式输出时,应采用如下结构,如图6所示。
VT1与VT2分别由SG3525的输出端A与输出端B输出的正向驱动电流驱动。
电阻R2与R3就是限流电阻,就是为了防止注入VT1与VT2的正向基极电流超出控制器所允许的输出电流。
C1与C2就是加速电容,起到加速VT1与VT2导通的作用。
图6采用推挽式输出时电路结构图
由于SG3525的输出驱动电路就是低阻抗的,而功率MOSFET的输入阻抗很高,因此输出端A与输出端B与VT1与VT2栅极之间无须串接限流电阻与加速电容,就可以直接推动功率MOSFET,如图7所示。
图7 直接推动功率MOSFET电路图
另外,SG3525还能够直接驱动半桥变换器中的小功率变压器。
如果变压器一次绕组的两端分别直接接到SG3525的两个输出端上,则在死区时间内可以实现变压器的自动复位,如图8所示。
图8 直接驱动半桥变换器中的小功率变压器电路图。