深圳市中考数学二模复习试题(二)(解析卷)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【2019年深圳数学中考】
二模复习卷(二)(解析卷)
(全卷满分100分限时90分钟)
一.选择题:(每小题3分共36分)
1.下列图形中,主视图为①的是()
A. B.C. D.
【分析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.【解答】解:A、主视图是等腰梯形,故此选项错误;
B、主视图是长方形,故此选项正确;
C、主视图是等腰梯形,故此选项错误;
D、主视图是三角形,故此选项错误;
故选:B.
2.下列计算正确的是()
A. =2 B. =±2 C. =2 D. =±2
【分析】根据=|a|进行计算即可.
【解答】解:A、=2,故原题计算正确;
B、=2,故原题计算错误;
C、=4,故原题计算错误;
D、=4,故原题计算错误;
故选:A.
3.如图,直线AB∥CD,则下列结论正确的是()
A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°
【分析】依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.
【解答】解:如图,∵AB∥CD,
∴∠3+∠5=180°,
又∵∠5=∠4,
∴∠3+∠4=180°,
故选:D.
4.如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()
A. B. C.2π D.
【分析】先计算圆心角为120°,根据弧长公式=,可得结果.
【解答】解:连接OD,
∵∠ABD=30°,
∴∠AOD=2∠ABD=60°,
∴∠BOD=120°,
∴的长==,
故选:D.
5.某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是()
A.4﹣6小时B.6﹣8小时C.8﹣10小时 D.不能确定
【分析】100个数据的中间的两个数为第50个数和第51个数,利用统计图得到第50个数和第51个数都落在第三组,于是根据中位数的定义可对各选项进行判断.
【解答】解:100个数据,中间的两个数为第50个数和第51个数,
而第50个数和第51个数都落在第三组,
所以参加社团活动时间的中位数所在的范围为6﹣8(小时).
故选B.
6.分式方程=1的解是()
A.x=1 B.x=﹣1 C.x=3 D.x=﹣3
【分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
【解答】解:=1,
去分母,方程两边同时乘以x(x﹣2)得:
(x+1)(x﹣2)+x=x(x﹣2),
x2﹣x﹣2+x=x2﹣2x,
x=1,
经检验,x=1是原分式方程的解,
故选:A.
7.已知下列命题:
①若a3>b3,则a2>b2;
②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2;
③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;
④周长相等的所有等腰直角三角形全等.
其中真命题的个数是()
A.4个 B.3个 C.2个 D.1个
【分析】依据a,b的符号以及绝对值,即可得到a2>b2不一定成立;依据二次函数y=x2﹣2x﹣1图象的顶点坐标以及对称轴的位置,即可得y1>y2>﹣2;依据a∥b,b⊥c,即可得到a∥c;依据周长相等的所有等腰直角三角形的边长对应相等,即可得到它们全等.
【解答】解:①若a3>b3,则a2>b2不一定成立,故错误;
②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2,故正确;
③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a⊥c,故错误;
④周长相等的所有等腰直角三角形全等,故正确.
故选:C.
8.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()
A. B.1 C. D.
【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.
【解答】解:连接BC,
由网格可得AB=BC=,AC=,即AB2+BC2=AC2,
∴△ABC为等腰直角三角形,
∴∠BAC=45°,
则tan∠BAC=1,
故选:B.
9.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()
A.2 B.3 C. D.
【分析】由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E ∽△DAB知()2=,据此求解可得.
【解答】解:如图,
∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,
∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,
∵将△ABC沿BC边上的中线AD平移得到△A'B'C',
∴A′E∥AB,
∴△DA′E∽△DAB,
则()2=,即()2=,
解得A′D=2或A′D=﹣(舍),
故选:A.
10.在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()
A.B.C.D.
【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.
【解答】解:A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a、b异号,即b<0.所以反比例函数y=的图象位于第二、四象限,故本选项错误;
B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a、b同号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;
C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;
D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项正确;
故选:D.
11.若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程
+=1有整数解,则满足条件的所有a的值之和是()
A.﹣10 B.﹣12 C.﹣16 D.﹣18
【分析】根据不等式的解集,可得a的范围,根据方程的解,可得a的值,根据有理数的加法,可得答案.
【解答】解:,
解①得x≥﹣3,
解②得x≤,
不等式组的解集是﹣3≤x≤.
∵仅有三个整数解,
∴﹣1≤<0
∴﹣8≤a<﹣3,
+=1
3y﹣a﹣12=y﹣2.
∴y=
∵y≠﹣2,
∴a≠﹣6,
又y=有整数解,
∴a=﹣8或﹣4,
所有满足条件的整数a的值之和是﹣8﹣4=﹣12,
故选:B.
12.如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()
A.1 B.2 C.3 D.4
解:∵在y=(x+2)(x﹣8)中,当y=0时,x=﹣2或x=8,
∴点A(﹣2,0)、B(8,0),
∴抛物线的对称轴为x==3,故①正确;
∵⊙D的直径为8﹣(﹣2)=10,即半径为5,
∴⊙D的面积为25π,故②错误;
在y=(x+2)(x﹣8)=x2﹣x﹣4中,当x=0时y=﹣4,
∴点C(0,﹣4),
当y=﹣4时, x2﹣x﹣4=﹣4,
解得:x1=0、x2=6,
所以点E(6,﹣4),
则CE=6,
∵AD=3﹣(﹣2)=5,
∴AD≠CE,
∴四边形ACED不是平行四边形,故③错误;
∵y=x2﹣x﹣4=(x﹣3)2﹣,
∴点M(3,﹣),
设直线CM解析式为y=kx+b,
将点C(0,﹣4)、M(3,﹣)代入,得:,
解得:,
所以直线CM解析式为y=﹣x﹣4;
设直线CD解析式为y=mx+n,
将点C(0,﹣4)、D(3,0)代入,得:,
解得:,
所以直线CD解析式为y=x﹣4,
由﹣×=﹣1知CM⊥CD于点C,
∴直线CM与⊙D相切,故④正确;
故选:B.
二.填空题:(每小题3分共12分)
13.单项式5mn2的次数 3 .
【分析】根据单项式次数的定义来求解.单项式中所有字母的指数和叫做这个单项式的次数.
【解答】解:单项式5mn2的次数是:1+2=3.
故答案是:3.
14.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.
【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.
【解答】解:
∵AB=AC,∠A=36°,
∴∠B=∠ACB==72°,
∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,
∴AE=CE,∠A=∠ECA=36°,
∴∠CEB=72°,
∴BC=CE=AE=,
故答案为:.
15.如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是y=x﹣3 .
【分析】首先利用图象上点的坐标特征得出A点坐标,进而得出正比例函数解析式,再利用平移的性质得出答案.
【解答】解:∵正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),
∴2m=6,
解得:m=3,
故A(2,3),
则3=2k,
解得:k=,
故正比例函数解析式为:y=x,
∵AB⊥x轴于点B,平移直线y=kx,使其经过点B,
∴B(2,0),
∴设平移后的解析式为:y=x+b,
则0=3+b,
解得:b=﹣3,
故直线l对应的函数表达式是:y=x﹣3.
故答案为:y=x﹣3.
16.如图,在Rt△ABC中,∠C=90°,BC=2,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为3或.
【分析】利用三角函数的定义得到∠B=30°,AB=4,再利用折叠的性质得DB=DC=,EB′=EB,∠DB′E=∠B=30°,设AE=x,则BE=4﹣x,EB′=4﹣x,讨论:当∠AFB′=90°时,则∴BF=cos30°=,则EF=﹣(4﹣x)=x﹣,于是在Rt△B′EF中利用EB′=2EF得到4﹣x=2(x﹣),解方程求出x得到此时AE的长;当∠FB′A=90°时,作EH⊥AB′于H,连接AD,如图,证明Rt△ADB′≌Rt△ADC得到AB′=AC=2,再计算出∠EB′H=60°,则B′H=(4﹣x),EH=(4﹣x),接着利用勾股定理得到(4﹣x)2+[(4﹣x)+2]2=x2,方程求出x得到此时AE的长.
【解答】解:∵∠C=90°,BC=2,AC=2,
∴tanB===,
∴∠B=30°,
∴AB=2AC=4,
∵点D是BC的中点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F
∴DB=DC=,EB′=EB,∠DB′E=∠B=30°,
设AE=x,则BE=4﹣x,EB′=4﹣x,
当∠AFB′=90°时,
在Rt△BDF中,cosB=,
∴BF=cos30°=,
∴EF=﹣(4﹣x)=x﹣,
在Rt△B′EF中,∵∠EB′F=30°,
∴EB′=2EF,
即4﹣x=2(x﹣),解得x=3,此时AE为3;
当∠FB′A=90°时,作EH⊥AB′于H,连接AD,如图,
∵DC=DB′,AD=AD,
∴Rt△ADB′≌Rt△ADC,
∴AB′=AC=2,
∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,
∴∠EB′H=60°,
在Rt△EHB′中,B′H=B′E=(4﹣x),EH=B′H=(4﹣x),
在Rt△AEH中,∵EH2+AH2=AE2,
∴(4﹣x)2+[(4﹣x)+2]2=x2,解得x=,此时AE为.
综上所述,AE的长为3或.
故答案为3或.
三.解答题:(共52分)
17.计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣1
【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣1+﹣1+2
=1+.
18.先化简,再求值:,其中x=+1.
【分析】根据分式的运算法则即可求出答案.
【解答】解:当x=+1时
原式=•
=x﹣1
=
19.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.
(1)求证:△ABE≌△ADF;
(2)试判断四边形AECF的形状,并说明理由.
【分析】(1)根据正方形的性质和全等三角形的判定证明即可;
(2)四边形AECF是菱形,根据对角线垂直的平行四边形是菱形即可判断;
【解答】证明:(1)∵正方形ABCD,
∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,
在△ABE与△ADF中

∴△ABE≌△ADF(SAS);
(2)连接AC,
四边形AECF是菱形.
理由:∵正方形ABCD,
∴OA=OC,OB=OD,AC⊥EF,
∴OB+BE=OD+DF,
即OE=OF,
∵OA=OC,OE=OF,
∴四边形AECF是平行四边形,
∵AC⊥EF,
∴四边形AECF是菱形.
20.为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)
节目类型新闻体育动画娱乐戏曲
人数36 90 a b 27
根据表、图提供的信息,解决以下问题:
(1)计算出表中a、b的值;
(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;
(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?
【分析】(1)先求出抽取的总人数,再求出b的值,进而可得出a的值;
(2)求出a的值与总人数的比可得出结论;
(3)求出喜爱新闻类人数的百分比,进而可得出结论.
【解答】解:(1)∵喜欢体育的人数是90人,占总人数的20%,
∴总人数==450(人).
∵娱乐人数占36%,
∴a=450×36%=162(人),
∴b=450﹣162﹣36﹣90﹣27=135(人);
(2)∵喜欢动画的人数是135人,
∴×360°=108°;
(3)∵喜爱新闻类人数的百分比=×100%=8%,
∴47500×8%=3800(人).
答:该地区七年级学生中喜爱“新闻”类电视节目的学生有3800人.
21.某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
(1)求甲、乙两种商品的每件进价;
(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
【分析】(1)设甲种商品的每件进价为x元,乙种商品的每件进价为y元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程;
(2)设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式.
【解答】解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.
根据题意,得, =,
解得 x=40.
经检验,x=40是原方程的解.
答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;
(2)甲乙两种商品的销售量为=50.
设甲种商品按原销售单价销售a件,则
(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,
解得 a≥20.
答:甲种商品按原销售单价至少销售20件.
22.如图,AB是⊙O的直径,点D在⊙O上(点D不与A,B重合),直线AD交过点B的切线于点C,过点D作⊙O的切线DE交BC于点E.
(1)求证:BE=CE;
(2)若DE∥AB,求sin∠ACO的值.
【分析】(1)证明:连接OD,如图,利用切线长定理得到EB=ED,利用切线的性质得OD⊥DE,AB⊥CB,再根据等角的余角相等得到∠CDE=∠ACB,则EC=ED,从而得到BE=CE;
(2)作OH⊥AD于H,如图,设⊙O的半径为r,先证明四边形OBED为正方形得DE=CE=r,再利用△AOD和△CDE都为等腰直角三角形得到OH=DH=r,CD=r,
接着根据勾股定理计算出OC=r,然后根据正弦的定义求解.
【解答】(1)证明:连接OD,如图,
∵EB、ED为⊙O的切线,
∴EB=ED,OD⊥DE,AB⊥CB,
∴∠ADO+∠CDE=90°,∠A+∠ACB=90°,
∵OA=OD,
∴∠A=∠ADO,
∴∠CDE=∠ACB,
∴EC=ED,
∴BE=CE;
(2)解:作OH⊥AD于H,如图,设⊙O的半径为r,
∵DE∥AB,
∴∠DOB=∠DEB=90°,
∴四边形OBED为矩形,
而OB=OD,
∴四边形OBED为正方形,
∴DE=CE=r,
易得△AOD和△CDE都为等腰直角三角形,
∴OH=DH=r,CD=r,
在Rt△OCB中,OC==r,
在Rt△OCH中,sin∠OCH===,
即sin∠ACO的值为.
23.如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).
(1)求抛物线的表达式;
(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标;如果不存在,请说明理由.
(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.
【分析】(1)根据顶点式可求得抛物线的表达式;
(2)根据轴对称的最短路径问题,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG 的值最小,先求E'F的解析式,它与对称轴的交点就是所求的点G;
(3)如图2,先利用待定系数法求AB的解析式为:y=﹣2x+6,设N(m,﹣m2+2m+3),则Q(m,﹣2m+6),(0≤m≤3),表示NQ=﹣m2+4m﹣3,证明△QMN∽△ADB,列比例式可得MN的表达式,根据配方法可得当m=2时,MN有最大值,证明△NGP∽△ADB,同理得PG的长,从而得OP的长,根据三角形的面积公式可得结论,并将m=2代入计算即可.
【解】:(1)设抛物线的表达式为:y=a(x﹣1)2+4,
把(0,3)代入得:3=a(0﹣1)2+4,
a=﹣1,
∴抛物线的表达式为:y=﹣(x﹣1)2+4=﹣x2+2x+3;
(2)存在,
如图1,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG的值最小,∵E(0,3),
∴E'(2,3),
易得E'F的解析式为:y=3x﹣3,
当x=1时,y=3×1﹣3=0,
∴G(1,0)
(3)如图2,∵A(1,4),B(3,0),
易得AB的解析式为:y=﹣2x+6,
过N作NH⊥x轴于H,交AB于Q,
设N(m,﹣m2+2m+3),则Q(m,﹣2m+6),(1<m<3),
∴NQ=(﹣m2+2m+3)﹣(﹣2m+6)=﹣m2+4m﹣3,
∵AD∥NH,
∴∠DAB=∠NQM,
∵∠ADB=∠QMN=90°,
∴△QMN∽△ADB,
∴,∴,
∴MN=﹣(m﹣2)2+,
∵﹣<0,∴当m=2时,MN有最大值;
过N作NG⊥y轴于G,
∵∠GPN=∠ABD,∠NGP=∠ADB=90°,
∴△NGP∽△ADB,
∴=2
4
=
1
2

∴PG=1
2
NG=
1
2
m,
∴OP=OG﹣PG=﹣m2+2m+3﹣1
2
m=﹣m2+
3
2
m+3,
∴S△PON=1
2
OP•GN=
1
2
(﹣m2+
3
2
m+3)•m,
当m=2时,S△PON=1
2
×2(﹣4+3+3)=2.
(方法2:根据m的值计算N的坐标为(2,3),与E是对称点,连接EN,同理得:EP=1
2
EN=1,则
OP=2,根据面积公式可得结论).。

相关文档
最新文档