dsp实验四
DSP系统实验04New-COFF文件格式
![DSP系统实验04New-COFF文件格式](https://img.taocdn.com/s3/m/ab3acf2a0722192e4536f63e.png)
COFF文件格式
COFF——Common Object File Format ELF——Executable and Linkable Format
COFF文件格式 链接器对段的处理
4 链接器对段的处理
功能
链接器用可重定位COFF目标文件中的段作 为输入段,当链接多于一个文件时,它组合 输入段,从而在可执行COFF目标文件中创 建输出段 链接器为输出段选择存储器地址,定位到目 标系统的存储器中
2014-8-12
15:43:48
-12-
包含7个字的目标 代码
.data
包含5个字的数据
.bss
在存储器中保留11 个字
newvars
用.usect伪指令定 义的段,在存储器 中保留8个字
2014-8-12 15:43:48 -10-
COFF文件格式 C编译器建立的段
3 C编译器建立的段
例:TMS320C2x/C2xx/C5x的C编译器建立的段
COFF文件格式 链接器对段的处理
链接器伪指令
MEMORY:定义目标系统的存储器,可以为 存储器命名,并指定其起始地址和长度 SECTIONS:告诉链接器如何将输入段组合 到输出段,以及将这些输出段存放在存储器 的什么地方
链接器的默认分配算法
如果不给链接器提供MEMORY和SECTIONS 命令,则链接器就采用缺省的分配算法
段名称 已初始化段 .text .cinit .const .switch 未初始化段 .bss .stack 段内容 可执行代码和浮点常数 已初始化的全局变量和静态变量的列表 已被初始化的字符串、全局常量和静态常量 用于多开关语句的跳转列表 全局和静态变量 软件堆栈
dsp原理与应用实验报告总结
![dsp原理与应用实验报告总结](https://img.taocdn.com/s3/m/c52fc1bbc9d376eeaeaad1f34693daef5ef71331.png)
dsp原理与应用实验报告总结DSP(Digital Signal Processing)数字信号处理是利用数字技术对信号进行处理和分析的一种方法。
在本次实验中,我们探索了DSP的原理和应用,并进行了一系列实验以验证其在实际应用中的效果。
以下是对实验结果的总结与分析。
实验一:数字滤波器设计与性能测试在本实验中,我们设计了数字滤波器,并通过性能测试来评估其滤波效果。
通过对不同类型的滤波器进行设计和实现,我们了解到数字滤波器在信号处理中的重要性和应用。
实验二:数字信号调制与解调本实验旨在通过数字信号调制与解调的过程,了解数字信号的传输原理与方法。
通过模拟调制与解调过程,我们成功实现了数字信号的传输与还原,验证了调制与解调的可行性。
实验三:数字信号的傅里叶变换与频谱分析傅里叶变换是一种重要的信号分析方法,可以将信号从时域转换到频域,揭示信号的频谱特性。
本实验中,我们学习了傅里叶变换的原理,并通过实验掌握了频谱分析的方法与技巧。
实验四:数字信号的陷波滤波与去噪处理陷波滤波是一种常用的去除特定频率噪声的方法,本实验中我们学习了数字信号的陷波滤波原理,并通过实验验证了其在去噪处理中的有效性。
实验五:DSP在音频处理中的应用音频处理是DSP的一个重要应用领域,本实验中我们探索了DSP在音频处理中的应用。
通过实验,我们成功实现了音频信号的降噪、均衡和混响处理,并对其效果进行了评估。
实验六:DSP在图像处理中的应用图像处理是另一个重要的DSP应用领域,本实验中我们了解了DSP在图像处理中的一些基本原理和方法。
通过实验,我们实现了图像的滤波、边缘检测和图像增强等处理,并观察到了不同算法对图像质量的影响。
通过以上一系列实验,我们深入了解了DSP的原理与应用,并对不同领域下的信号处理方法有了更深刻的认识。
本次实验不仅加深了我们对数字信号处理的理解,也为日后在相关领域的研究与实践提供了基础。
通过实验的结果和总结,我们可以得出结论:DSP作为一种数字信号处理的方法,具有广泛的应用前景和重要的实际意义。
实验四IIR数字滤波器的设计数字信号处理DSP
![实验四IIR数字滤波器的设计数字信号处理DSP](https://img.taocdn.com/s3/m/b5db430d82c4bb4cf7ec4afe04a1b0717fd5b3e5.png)
实验四IIR数字滤波器的设计数字信号处理DSP
IIR数字滤波器是一种基于无限脉冲响应(Infinite Impulse Response)的数字滤波器。
相比于FIR(有限脉冲响应)滤波器,IIR滤
波器具有更低的复杂度和更快的响应速度,但可能会引入一定的稳定性问题。
设计IIR数字滤波器的一般步骤如下:
1.确定滤波器的规格:包括截止频率、通带增益、阻带衰减等参数。
这些参数将直接影响到滤波器的设计和性能。
2.选择滤波器结构:常见的IIR滤波器结构包括直接型I和II结构、级联型结构、并行型结构等。
选择适当的结构取决于滤波器的性能要求和
计算复杂度。
3. 选择滤波器的类型:根据滤波器的设计规格,可以选择巴特沃斯(Butterworth)、切比雪夫(Chebyshev)、椭圆(Elliptic)等不同类
型的IIR滤波器。
4.滤波器设计:根据所选择的滤波器类型和规格,设计滤波器的传递
函数。
可以借助MATLAB等工具进行数值计算和优化。
5.模拟滤波器转为数字滤波器:将设计好的IIR滤波器转换为数字滤
波器。
可以使用双线性变换等方法来实现。
6.实现滤波器:根据转换后的数字滤波器的差分方程,编写相应的代
码来实现滤波器功能。
7.评估滤波器性能:对设计好的IIR数字滤波器进行性能评估,包括
幅频响应、相频响应、群延迟等指标。
8.优化滤波器性能:根据实际情况,对滤波器的设计参数进行优化,以获得更好的性能。
以上是设计IIR数字滤波器的一般步骤,具体的设计方法和过程还需要根据实际情况进行调整。
DSP实验报告最终版
![DSP实验报告最终版](https://img.taocdn.com/s3/m/e217052e4b73f242336c5f75.png)
SDRAM_init();
InitCTR();
PLL_Init(20);
SDRAM_init();
InitCTR();
//直流电机
//unsigned char dbScanCode,dbOld;
//unsigned char dbOld;
dbScanCode=dbOld=0;
在PWM调速时,占空比a是一个重要参数。以下三种方法都可以改变占空比的值:
(1)定宽调频法:这种方法是保持t1不变,只改变t2,这样使周期T(或频率)也随之改变。
(2)调宽调频法:这种方法是保持t2不变,只改变t1,这样使周期T(或频率)也随之改变。
(3)定频调宽法:这种方法是使周期T(或频率)保持不变。而改变t1和变t2。
2)设置CCS软件,点击debug—connect将试验箱和CCS软件连接。
3)右键单击project添加本实验程序,编译,将对应文件夹的*.out文件下载,点击debug-run运行程序。
·按键盘“1”键,进入直流电机程序,按键盘“3-6”键可以改变直流电机转速,按“7”或“8”键改变电机旋转方向。
键盘的扫描码由DSP得CTRKEY给出,当有键盘输入时,读此端口得到扫描码,当无键按下时,读此端口的结果为0。CTRCLKEY。读取的方法如下:
nScanCode=CTRKEY;nnn=CTRCLKEY;//nScanCode中为扫描码
对于高速运行的DSP,在两次读键盘之间可能需要增加延时语句。键盘连接原理如下:
ioport unsigned int *prsc0;
int nCursorCount;
void InitInterrupt();
void InitMcBSP();
matlab dsp实验报告
![matlab dsp实验报告](https://img.taocdn.com/s3/m/e9ffbee3f424ccbff121dd36a32d7375a517c67c.png)
MATLAB DSP实验报告介绍本实验报告将详细介绍在MATLAB环境下进行数字信号处理(DSP)的实验步骤和相关方法。
我们将通过逐步思考的方式,帮助读者理解和学习DSP的基本概念和技术。
实验环境和工具在进行DSP实验之前,我们需要准备以下环境和工具:1.MATLAB软件:确保已安装并配置好MATLAB软件,可以在MATLAB Command窗口中输入命令。
2.信号处理工具包:在MATLAB中,我们可以使用信号处理工具箱(Signal Processing Toolbox)来进行DSP实验和分析。
确保该工具箱已被安装并加载。
实验步骤下面是进行DSP实验的一般步骤:步骤一:加载信号首先,我们需要加载待处理的信号。
这可以通过在MATLAB中使用load命令加载一个音频文件或生成一个模拟信号实现。
例如,我们可以加载一个名为signal.wav的音频文件:load signal.wav步骤二:信号预处理在进行DSP之前,通常需要对信号进行预处理。
这可能包括去噪、滤波、均衡等操作。
例如,我们可以使用滤波器对信号进行降噪:filtered_signal = filter(filter_coefficients, signal);步骤三:信号分析一旦信号经过预处理,我们可以开始进行信号分析。
这可能涉及频域分析、时域分析、谱分析等。
例如,我们可以通过计算信号的快速傅里叶变换(FFT)获得其频谱:spectrum = fft(filtered_signal);步骤四:特征提取在信号分析之后,我们可以根据需要提取信号的特征。
这些特征可能包括幅度、频率、相位等。
例如,我们可以计算信号的能量:energy = sum(abs(filtered_signal).^2);步骤五:信号重构在完成信号分析和特征提取后,我们可以根据需要对信号进行重构。
这可能包括滤波、修复损坏的信号等。
例如,我们可以使用滤波器对信号进行重构:reconstructed_signal = filter(filter_coefficients, filtered_signal);步骤六:结果评估最后,我们需要评估重构后的信号和原始信号之间的差异。
DSP数字信号处理实验
![DSP数字信号处理实验](https://img.taocdn.com/s3/m/6de53bef551810a6f52486f5.png)
题 姓 学 专 目:数字信号处理习题及上机实验 名: *** 号: *** 业:精密仪器与机械 系:仪器系 研 究 所:医学精密工程及智能系统研究所 学 院:电子信息与电气工程学院
指导老师:*** 完成时间:2011年12月4日
1
数字信号处理习题作业及上机实验(三、四)
实验 1 抽样定理的实验体会
3
%幅值 %信号频率 Hz %采样频率=0.5*f0 %采样频率=f0 %采样频率=2*f0 %采样频率=5*f0 %采样点数
(3) 谐波信号: x2 (t ) Ai sin(2 f 0it ) , A1 1 , A2 0.5 , A3 0.2 , f 0 5Hz
i 1
4
(4) Hamming(哈明)窗: x4 (t ) 0.54 0.46cos(2 f0t ) , f 0 由同学自选给定。 f0=1; fs1=0.5*f0; fs2=f0; fs3=2*f0; fs4=5*f0; N=32; t=0:N-1; x1=0.54-0.46*cos(2*pi*f0*t/fs1); x2=0.54-0.46*cos(2*pi*f0*t/fs2); x3=0.54-0.46*cos(2*pi*f0*t/fs3); x4=0.54-0.46*cos(2*pi*f0*t/fs4); subplot(2,2,1); plot(t/fs1,x1); xlabel('t(s)');ylabel('x3(t)'); title('采样频率为信号频率的 0.5 倍');axis([0,N/fs1,0,1.1]); subplot(2,2,2); plot(t/fs2,x2); xlabel('t(s)');ylabel('x3(t)'); title('采样频率为信号频率的 1 倍');axis([0,N/fs2,0,1.1]); subplot(2,2,3); plot(t/fs3,x3); xlabel('t(s)');ylabel('x3(t)'); title('采样频率为信号频率的 2 倍');axis([0,N/fs3,0,1.1]); subplot(2,2,4); plot(t/fs4,x4); xlabel('t(s)');ylabel('x3(t)'); title('采样频率为信号频率的 5 倍');axis([0,N/fs4,0,1.1]); %选定信号频率 1Hz %采样频率=0.5*f0 %采样频率=f0 %采样频率=2*f0 %采样频率=5*f0 %采样点数
DSP实验四TMS320F28335 定时器 中断 IO中断 控制LED亮灭
![DSP实验四TMS320F28335 定时器 中断 IO中断 控制LED亮灭](https://img.taocdn.com/s3/m/a4a8d1d577a20029bd64783e0912a21614797f60.png)
DSP实验四TMS320F28335 定时器中断 IO中断控制LED亮灭dsp实验四、tms320f28335定时器中断io中断控制led亮灭继续我的第四个实验;实现定时器中断功能处理ld4翻转,按键IO中断控制ld3翻转;学习目的:中断寄存器的设置,io中断、定时器中断的使用,F28335有三个定时器:定时器0、定时器1和定时器2(定时器2也可用于DSP/BIOS);功能描述:开机时Ld3和ld4默认关闭;初始化完成后,ld4以1hz(1s)频率做状态翻转;ld3接受按键控制,每触发一次按键,状态翻转一次。
电路连接说明:Ld4和ld3设置为通用GPIO上拉输出。
初始化后,输出LED默认熄灭;Ld4和ld3控制LED灯的负极,如下图所示;本次实验选用定时器0,程序时刻读取计数器的值,当值为0时,产生定时器0中断,ld4状态翻转;IO键SW12中断控制ld3状态反转。
定时器0中断程序设计说明:第一步。
定时器0的预设寄存器和计数器设置:定时器输入时钟为sysclkout(=135mhz),1、如果定时1s(即1hz)中断一次(即计数结束),1hz=135mhz/1350/100000预分频器寄存器(即分频器)设置为1350,计数器设置为100000;2、如果定时1ms(即1000hz)中断一次,计算公式为:1000hz=135mhz/1350/100预设寄存器也设置为1350,计数器设置为100;转让声明如下://定时器0设为1hz=135mhz/(1350*100000)cputimer0regs。
珠三角。
全部=100000;//计数周期寄存器。
10万次循环后,计数器降至0putimer0regs tpr。
一点tddr=1350&0xff;//0x546预分频器寄存器(预分频器)cputimer0regs.tprh.bit.tddrh=(1350>>8)&0x00ff;//0x546预定标寄存器(预分频器)第二步a)设置定时器0相关中断寄存器使能定时器0中断,即cputimer0regs.tcr.bit.tie=1;//启用计时器0中断b)设置饼图级别相关中断寄存器,以启用计时器0中断所在的饼图组,即pieierx寄存器设置C)设置CPU级别中断相关寄存器,CPU级别启用与上述饼图对应的通道,即ier寄存器设置步骤3中断向量入口映射位置设置,如下:eallow;//thisisneededtowritetoeallowprotectedregisters皮埃维克塔。
dsp实验报告
![dsp实验报告](https://img.taocdn.com/s3/m/ab745f9d0129bd64783e0912a216147917117eb4.png)
dsp实验报告实验一:CCS入门实验实验目的:1. 熟悉CCS集成开发环境,掌握工程的生成方法;熟悉SEED-DEC643实验环境; 掌握CCS集成开发环境的调试方法。
2.学习用标准C 语言编写程序;了解TI CCS开发平台下的C 语言程序设计方法和步骤; 熟悉使用软件仿真方式调试程序。
3. 学习用汇编语言编写程序; 了解汇编语言与 C 语言程序的区别和在设置上的不同;了解TMS320C6000 汇编语言程序结果和一些简单的汇编语句用法学习在CCS 环境中调试汇编代码。
4. 在了解纯C 语言程序工程和汇编语言程序工程结构的基础上,学习在C 工程中加入汇编编程的混合编程方法; 了解混合编程的注意事项;理解混合编程的必要性和在什么情况下要采用混合编程5. 熟悉CCS集成开发环境,掌握工程的生成方法; 熟悉SEED-DEC643实验环境;掌握CCS集成开发环境的调试方法。
实验原理:CCS 提供了配置、建立、调试、跟踪和分析程序的工具,它便于实时、嵌入式信号处理程序的编制和测试,它能够加速开发进程,提高工作效率。
CCS 提供了基本的代码生成工具,它们具有一系列的调试、分析能力序。
使用此命令后,要重新装载.out 文件后,再执行程序。
使用 CCS常遇见文件简介1. program.c: C 程序源文件;2. program.asm: 汇编程序源文件;3. filename.h: C 程序的头文件,包含DSP/BIOS API模块的头文件;4. filename.lib: 库文件;5. project.cmd: 连接命令文件;6. program.obj: 由源文件编译或汇编而得的目标文件;7. program.out: 经完整的编译、汇编以及连接后生成可执行文件; 8. program.map: 经完整的编译、汇编以及连接后生成空间分配文件; 9.project.wks: 存储环境设置信息的工作区文件。
P.S(CMD文件中常用的程序段名与含义1. .cinit 存放C程序中的变量初值和常量;2. .const 存放C程序中的字符常量、浮点常量和用const声明的常量;3. .text 存放C程序的代码;4. .bss 为C 程序中的全局和静态变量保留存储空间;5. .far 为C 程序中用far声明的全局和静态变量保留空间;6. .stack 为 C 程序系统堆栈保留存储空间,用于保存返回地址、函数间的参数传递、存储局部变量和保存中间结果;7. .sysmem 用于 C 程序中malloc、calloc 和 realloc 函数动态分配存储空间。
dsp实验指导书
![dsp实验指导书](https://img.taocdn.com/s3/m/2e2e48db81eb6294dd88d0d233d4b14e85243e15.png)
dsp实验指导书实验一I/O实验实验目的:熟悉SZ—DSPII实验平台的使用了解DSP对I/O口的访问方式熟悉简单的程序设计及指令运用实验设备:计算机;DSP硬件仿真器;DSP实验开发平台实验硬件设置:在做实验以前,需要接通该实验的硬件电路,本实验为:先将实验箱右侧的船型开关往“I”方向打开电源,然后将系统主板的开关S33往下拨接通+/-5V电源,然后将CPLD/FPGA模块上的电源开关S9往下(ON)拨,开关S10往下拨来选通主板上发光二极管等输出指示设备;将系统主板中“MCU/DSP选择档”选中MCU(往下拨),将“功能键7”拨上去,电击键盘中的RST键,MCU将对所有发光二极管进行检测,如果所有的发光二极管正常,则将“MCU/DSP选择挡”选中DSP,将功能键1到7都拨下来。
然后开始做实验,注意在做实验时开始按了RST硬件复位后,实验不要再按RST键,以免由于DSP复位而失败。
如果实验中硬件工作不正常,可按RST对整个系统硬件进行复位。
实验原理:本程序主要是实现将数据往一个I/O端口送,从而显示一种状态,来验证DSP对I/O口的访问。
该实验是由DSP直接编程,往发光二极管送数,运用PORTW指令,观察发光二极管的变化,从而完成基本的I/O实验。
D8-D15高八位数据DSPCPLD锁存8个指示灯指示灯的片选1002H硬件框图实验程序框图DSP送出不同的数据DSP初始化开始输出到1002H实验程序FG_ADDR.et1002HDATADELAY.macroec_tenthloop1STM#09h,AR6loop0STM#19999,AR7BANZ$,某AR7-BANZloop0,某AR6-BANZloop1,某AR5-.endm ;延时ec_tenth/10秒STMec_tenth-1,AR5reet:.et60h;doubleramdata.ect\B_c_int00NOPNOP.pace31某4某16.title\.global_c_int00.mmreg.te某tLD#0h,DPSTM#3000h,SPRSB某INTMSTM#07FFFh,SWWSR;工作在20MHz_c_int00:SSB某某F;某F=1ST#1007h,CLKMDRPT#0FFhNOPSTM#0ffffh,IFRORM#000h,IMRRSB某S某MST#8100H,DATA#10WRDENG:PORTWDATA,FG_ADDRDELAYNOPST#4200H,DATADATA,FG_ADDR#10PORTWDELAYST#2400H,DATAPORTWDELAYST#1800H,DATAPORTWDELAY#10ST#1800H,DATAPORTWDELAYDATA,FG_ADDR#10DATA,FG_ADDRDATA,FG_ADDR#10RPT#10NOPST#2400H,DATAPORTWDELAYRPT#10NOPST#4200H,DATAPORTWDELAYRPT#10NOPST#8100H,DATAPORTWDELAYRPT#10NOPSTM#00H,DATA;;;PORTWDELAYNOPST#100H,DATADATA,FG_ADDR#10PORTWDELAYST#200H,DATAPORTWDELAYST#400H,DATAPORTWDELAY#10DATA,FG_ADDRDATA,FG_ADDR#10DATA,FG_ADDR#10DATA,FG_ADDR#10DATA,FG_ADDR#10DATA,FG_ADDR#10ST#800H,DATAPORTWDELAYRPT#10NOPST#1000H,DATAPORTWDELAY#10RPT#10NOPST#2000H,DATAPORTWDELAYRPT#10NOPST#4000H,DATAPORTWDELAYRPT#10NOPSTM#8000H,DATAPORTWDELAYRPT#10NOP;;;ST#8000H,DATAPORTWDELAYST#4000H,DATADATA,FG_ADDR#10DATA,FG_ADDR#10DATA,FG_ADDR#10DATA,FG_ADDR#10DATA,FG_ADDRDATA,FG_ADDR#10PORTWDELAYDATA,FG_ADDR#10ST#2000H,DATAPORTWDELAY#10ST#1000H,DATAPORTWDELAYRPT#10NOPST#800H,DATAPORTWDELAY#10RPT#10NOPST#400H,DATAPORTWDELAYRPT#10NOPST#200H,DATAPORTWDELAYRPT#10NOPSTM#100H,DATAPORTWDELAYRPT#10NOPST#8100H,DATADATA,FG_ADDR#10DATA,FG_ADDR#10DATA,FG_ADDR#10DATA,FG_ADDRDATA,FG_ADDR#10DATA,FG_ADDRBWRDENGaaanopbaaa.end思考题:有哪三种以上的寻址方式可以完成上述实验?并描述其原理。
dsp实验报告
![dsp实验报告](https://img.taocdn.com/s3/m/d1880d6db5daa58da0116c175f0e7cd1842518bc.png)
dsp实验报告DSP实验报告一、引言数字信号处理(Digital Signal Processing,DSP)是一种对数字信号进行处理和分析的技术。
它在许多领域中被广泛应用,如通信、音频处理、图像处理等。
本实验旨在通过实际操作,探索和理解DSP的基本原理和应用。
二、实验目的1. 理解数字信号处理的基本概念和原理;2. 掌握DSP实验平台的使用方法;3. 进行一系列DSP实验,加深对DSP技术的理解。
三、实验器材和软件1. DSP开发板;2. 电脑;3. DSP开发软件。
四、实验内容1. 实验一:信号采集与重构在此实验中,我们将通过DSP开发板采集模拟信号,并将其转换为数字信号进行处理。
首先,我们需要连接信号源和开发板,然后设置采样频率和采样时间。
接下来,我们将对采集到的信号进行重构,还原出原始模拟信号,并进行观察和分析。
2. 实验二:滤波器设计与实现滤波器是DSP中常用的模块,用于去除或增强信号中的特定频率成分。
在此实验中,我们将学习滤波器的设计和实现方法。
首先,我们将选择合适的滤波器类型和参数,然后使用DSP开发软件进行滤波器设计。
最后,我们将将设计好的滤波器加载到DSP开发板上,并进行实时滤波处理。
3. 实验三:频谱分析与频域处理频谱分析是DSP中常用的方法,用于分析信号的频率成分和能量分布。
在此实验中,我们将学习频谱分析的基本原理和方法,并进行实际操作。
我们将采集一个包含多个频率成分的信号,并使用FFT算法进行频谱分析。
然后,我们将对频谱进行处理,如频率选择、频率域滤波等,并观察处理后的效果。
4. 实验四:音频处理与效果实现音频处理是DSP中的重要应用之一。
在此实验中,我们将学习音频信号的处理方法,并实现一些常见的音频效果。
例如,均衡器、混响、合唱等。
我们将使用DSP开发软件进行算法设计,并将设计好的算法加载到DSP开发板上进行实时处理。
五、实验结果与分析通过以上实验,我们成功完成了信号采集与重构、滤波器设计与实现、频谱分析与频域处理以及音频处理与效果实现等一系列实验。
河海大学-通信工程-DSP实验4
![河海大学-通信工程-DSP实验4](https://img.taocdn.com/s3/m/f7e67e4cbe1e650e52ea99f4.png)
实验四无限长单位脉冲响应滤波器设计班级:姓名:学号:一、实验目的1、掌握双线形变换法及脉冲响应不变法设计IIR数字滤波器的具体设计方法及其原理,熟悉用双线形变换法及脉冲响应不变法设计低通,高通和带通IIR数字滤波器的计算机编程。
2、观察双线形变换法及脉冲响应不变法设计的滤波器的频域特性,了解双线形变换法及脉冲响应不变法的特点。
3、熟悉巴特沃思滤波器,切比雪夫滤波器和椭圆滤波器的频率特性。
;二、实验原理1、将模拟滤波器的参数指标通过频率变换转换为原型模拟低通滤波器的参数指标,设计满足指标要求的原型模拟低通滤波器,通过频率变换将原型模拟低通滤波器的系统函数变换为其他类型的模拟滤波器2、脉冲响应不变法是使数字滤波器的单位脉冲响应序列h(n)逼近模拟滤波器的冲激响应hs(t),让h(n)正好等于hs(t)的采样值。
3、双线性变换法使得s平面与z平面是一一映射关系,消除了多值变换性,克服了脉冲响应不变法产生的频响的混叠失真。
4、巴特沃思滤波器通带内有最大平坦的幅度特性且随着频率的升高而单调的下降和切比雪夫滤波器逼近误差峰值在一个规定的频段上位最小。
三、实验内容1、fc=0.3kHz,δ=0.8dB,fr=0.2kHz,At=20dB,T=1ms;设计一切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。
2、fc=0.2kHz, δ=1dB,fr=0.3kHz,At=25dB,T=1ms;分别用脉冲响应不变法及双线形变换法设计一巴特沃思数字低通滤波器,观察所设计数字滤波器的幅频特性曲线,记录带宽和衰减量,检查是否满足要求。
比较这两种方法的优缺点。
3、利用双线性变换法分别设计满足下列指标的巴特沃思滤波器,切比雪夫滤波器和椭圆滤波器,并作图验证设计结果:fc=1.2kHz, δ<=0.5dB,fr=2kHz,At>=40dB,fs=8kHz。
4、分别用脉冲响应不变法及双线形变换法设计一巴特沃思数字带通滤波器,已知fs=3kHz,其等效的模拟滤波器指标为δ<3kHz, 2kHz<f<=3kHz, At>=5dB, f>=6kHz, At>=20dB,f<=1.5kHz。
DSP实验报告
![DSP实验报告](https://img.taocdn.com/s3/m/61c8a8345901020207409c27.png)
实验一:CPU 定时器实验一:实验目的1、熟悉F2812 的CPU 定时器;2、掌握F2812 的CPU 定时器的控制方法;3、学会使用CPU 定时器中断方式控制程序流程。
二:实验设备计算机,CCS 3.1 版软件,DSP 硬件仿真器,E300 实验箱,2812CPU 板。
三:实验原理样例实验是采用CPU 定时器来定时使LED 亮灭的。
F2812 的CPU 定时器不同于事件管理器模块(EVA、EVB)中的通用定时器(GP)。
F2812 的CPU共有三个定时器,其中,CPU 定时器 1 和 2 被保留用作实时操作系统OS(例如DSPBIOS),CPU 定时器0 可以供用户使用。
定时器的一般操作如下:将周期寄存器PRDH:PRD 中的值装入32 为计数器寄存器TIMH:TIM。
然后计数器寄存器以F281x 的SYSCLKOUT 速率递减。
当计数器减到0 时,就会产生一个定时器中断输出信号(一个中断脉冲)。
下图为CPU 定时器的内部结构:四:实验步骤1 、F2812CPU 板的JUMP1 的1 和2 脚短接,拨码开关SW1 的第二位置ON;其余置OFF。
2 、E300 底板的开关SW4 的第2 位置ON,其余位置OFF。
其余开关设置为OFF。
3 、运行CCS 软件,调入样例程序,装载并运行;(进入CCS 界面后需要点“Debug--Connect”)4 、加载“..\ e300_03_cpu_timer\Debug\Example_281x_cpu_timer.out”;5 、单击“Debug \ Animate”运行,可观察到灯LED1~LED8 的变化规律:6 、单击“Debug \ Halt”,暂停程序运行,LED 灯停止闪烁;单击“Debug \ Run”,运行程序,LED 灯又开始按上述规律变化;五:实验程序及结果修改后程序如下:/*;**************************************************************;* 北京达盛科技有限公司;* 研发部;*;* ;*************************************************************//*----------------------- 文件信息----------------------------;*;* 文件名称: Example_DSP281x_e300_switch.c;* 适用平台: DSP E300 实验箱;;* CPU类型: DSP TMS320F2812;* 软件环境: CCS3.1;* 试验接线: 1、F2812CPU板上:JUMP1的1和2脚短接,拨码开关SW1的第二位置ON;;* 2、E300底板的开关SW4的第2位置ON,其余置OFF。
DSP实验
![DSP实验](https://img.taocdn.com/s3/m/46874deafab069dc502201fc.png)
脉宽调制(PWM)基本原理:控制方式就是对逆变电路开关器件 的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些 脉冲来代替所需要的方波。 DSP开发板的晶振是30MHz,系统会先进行5倍的倍频,产生 150MHz的系统时钟。由于后面需要进行A/D采样,所以在这 里我们首先要降低系统时钟频率。
Ap=1; As=40; [n,wc]=buttord(wp,ws,ap,as); [b,a]=butter(N,WC); 计算出的N为滤波器阶数 在CCS工程中 #define IIRNUMBER N+1 与 fAn[IIRNUMBER]
计算出的b,a为滤波器分子分母 代入CCS工程的 数组fBn[IIRNU、确定基波和高次谐波 对周期信号进行傅立叶分析,第一项是直流,第二项就是基波了。以 后那些称为谐波。 AD采样可得到,输入信号为1KHz方波,基波为1KHz,高次谐波为 2KHz
2、设计一个4阶Butterworth低通滤波器 使用MATLAB软件,
Wp=0.125;
Ws=0.25;
第一次实验结果(实验条件:N=4) AD采样后得到时域波形
滤波后的时域图
频域
滤波后
第二次实验(实验条件N=10) 时域
频域
第三次实验 (实验条件N=11) 时域
频域
PWM—脉冲宽度调制(Pulse Width Modulation),是一种周期 一定而高低电平可调的方波信号。当输出脉冲的频率一定时,输 出脉冲的占空比越大,相对应的输出有效电压越大。
实验3:AD采样
A/D转换器是用来通过一定的电路将模拟量转变为数字量。 采用逐次逼近法的A/D转换器是由一个比较器、D/A转换器、缓冲寄存器及控 制逻辑电路组成,如图所示。基本原理是从高位到低位逐位试探比较。逐次逼 近法转换过程是:初始化时将逐次逼近寄寄存器各位清零;转换开始时,先将 逐次逼近寄存器最高位置1,送入D/A转换器,经D/A转换后生成的模拟量送入 比较器,称为 Vo,与送入比较器的待转换的模拟量Vi进行比较,若Vo<Vi,该 位1被保留,否则被清除。然后再 置逐次逼近寄存器次高位为1,将 寄存器中新的数字量送D/A转换器, 输出的 Vo再与Vi比较,若Vo<Vi, 该位1被保留,否则被清除。重复 此过程,直至逼近寄存器最低位。 转换结束后,将逐次逼近寄存器中 的数字量送入缓冲寄存器,得到数 字量的输出。逐次逼近的操作过程 是在一个控制电路的控制下进行的。
DSP实验报告_百度文库(精)
![DSP实验报告_百度文库(精)](https://img.taocdn.com/s3/m/0c28356df242336c1eb95e1b.png)
实验0 实验设备安装才CCS调试环境实验目的:按照实验讲义操作步骤,打开CCS软件,熟悉软件工作环境,了解整个工作环境内容,有助于提高以后实验的操作性和正确性。
实验步骤:以演示实验一为例:1.使用配送的并口电缆线连接好计算机并口与实验箱并口,打开实验箱电源;2.启动CCS,点击主菜单“Project->Open”在目录“C5000QuickStart\sinewave\”下打开工程文件sinewave.pjt,然后点击主菜单“Project->Build”编译,然后点击主菜单“File->Load Program”装载debug目录下的程序sinewave.out;3.打开源文件exer3.asm,在注释行“set breakpoint in CCS !!!”语句的NOP处单击右键弹出菜单,选择“Toggle breakpoint”加入红色的断点,如下图所示;4.点击主菜单“View->Graph->Time/Frequency…”,屏幕会出现图形窗口设置对话框5.双击Start Address,将其改为y0;双击Acquisition Buffer Size,将其改为1;DSP Data Type设置成16-bit signed integer,如下图所示;6.点击主菜单“Windows->Tile Horizontally”,排列好窗口,便于观察7.点击主菜单“Debug->Animate”或按F12键动画运行程序,即可观察到实验结果:心得体会:通过对演示实验的练习,让自己更进一步对CCS软件的运行环境、编译过程、装载过程、属性设置、动画演示、实验结果的观察有一个醒目的了解和熟悉的操作方法。
熟悉了DSP实验箱基本模块。
让我对DSP课程产生了浓厚的学习兴趣,课程学习和实验操作结合为一体的学习体系,使我更好的领悟到DSP课程的实用性和趣味性。
实验二基本算数运算2.1 实验目的和要求加、减、乘、除是数字信号处理中最基本的算术运算。
DSP实验报告
![DSP实验报告](https://img.taocdn.com/s3/m/ec81b0254b35eefdc8d33355.png)
DSP实验报告02071445张渊实验一—VISUALDSP++的使用入门实验目的熟悉VISUAL DSP++的开发环境。
针对ADSP-Blackfin533 DSP,利用几个用C、C++和汇编语言写成的简单例子来描述VISUAL DSP+十编程环境和调试器(debugger)的主要特征和功能。
对于运行在其它类型Blackfin处理器的程序只需对其链接描述文件(.LDF)做一些修改,就可用于其它芯片或者ADSP-Blackfin533的硬件仿真。
实验内容一、练习一1. 实验步骤l) 进入Visual DSP+十并打开一个工程(Project)进入Visual DSP++,显示Visual DSP++的集成开发和调试环境窗口(Integrated Development and Debugger Environment,简称IDDE)。
装载dotprodc工程,并列出相应的源文件。
在输出窗口(Output Window)中显示简要信息。
2) 编译dotprodc工程在菜单Project中选择Build Project来对工程进行编译。
在本例子中,编译器检测到一个未定义的错误,显示为:“.\dotprod_main.c”,line 115:error #20:identifier“itn”is undefined itn i;在输出窗口中对该行文字用鼠标双击,环境会自动打开dotprod_main.c文件,并将光标定位在出错行。
你可以看见单词“int”被错写成“itn”。
将该错误改正后,保存并重新编译。
如果再没有错误出现,这时工程已被成功编译,就可以用VisualDSP++的debugger来调试程序。
3) 运行VsualDSP++调试器在调试过程中需定义不同的对象和处理器类型,选取菜单Sessions中NeW Session项来重新定义。
NeW Session 对话框图7.2所示:4) 运行dotprod.c从Debug菜单中选择Run项,程序将被执行,其输出结果在Output window中显示。
dsp实验报告-有限脉冲响应滤波器(FIR)实验
![dsp实验报告-有限脉冲响应滤波器(FIR)实验](https://img.taocdn.com/s3/m/891348760b1c59eef8c7b451.png)
实验四.数字信号处理算法实验实验4.1 :有限脉冲响应滤波器(FIR )算法实验一.实验目的1.掌握窗函数法设计FIR 滤波器的Matlab 实现,为CCS 提供滤波系数。
2.掌握采用C 语言在VC5509开发板上实现混频信号的FIR 滤波。
二.实验设备计算机,ICETEK-VC5509-A 实验箱及电源。
三.实验原理1. 窗函数法设计FIR 滤波器(详细理论请看《数字信号处理》原理书籍) 本实验要求:设计一个低通滤波器,通带截止频率fp=10kHz ,阻带截止频率fs1=22kHz ,阻带衰减ap=75dB ,采样频率fs=50kHz,计算出滤波系数fHn,并对混频信号(高频+低频正弦波)fIn 进行滤波,得输出波形fOut 。
解:过渡带宽度=fs1-fp=12kHz ;截止频率:f1=fp+(过渡带宽度)/2=16kHz f1对应的数字频率:Ω1=2πf1/fs=0.64π(rad) -理想低通滤波器单位脉冲响应:hd[n]=sin(0.64π(n-a))/(π(n-a)) 其中a=(N-1)/2 (n=0~N-1)-根据阻带衰减要求选择布莱克曼窗,窗函数长度N 为: N=5.98fs/过渡带宽度≈25则窗函数为:w[n]=0.42-0.5cos(2πn/24)+0.08cos(4πn/24) 滤波器脉冲响应为:h[n]=hd[n]w[n] (n=0~N-1) <1>-根据上面各式计算出h[n]。
2. FIR 滤波FIR 滤波器的差分方程为:1()()N i i y n h x n i -==-∑ <2>其中,h i ----滤波器系数;x(n)---滤波器的输入;y(n)--- 滤波输出。
根据公式<1><2>,得本例对应FIR 滤波器的差分方程为: y[n]=-0.001x[n-2]-0.002x[n-3]-0.002x[n-4]+0.01x[n-5]-0.009x[n-6]-0.018x[n-7]-0.049x[n-8]-0.02x[n-9] +0.11x[n-10]+0.28x[n-11]+0.64x[n-12] +0.28x[n-13]-0.11x[n-14]-0.02x[n-15]+0.049x[n-16]-0.018x[n-17]-0.009x[n-18]+0.01x[n-19] -0.002x[n-20]-0.002x[n-21]+0.001x[n-22] (n=0,1,2,...)采用线性缓冲区法(原理见备课笔记)解此差分方程,得FIR 滤波结果y(n)。
DSP实验报告
![DSP实验报告](https://img.taocdn.com/s3/m/f4caea49cf84b9d528ea7ad1.png)
实验一 离散系统的时域分析一、实验目的1、掌握离散时间信号的MATLAB 表示;2、信号运算;3、差分方程的求解;4、离散时间信号的卷积运算。
二、实验原理1、离散时间信号离散时间信号只在某些离散的瞬时给出函数值,而在其他时刻无定义。
它是时间上不连续按一定先后次序排列的一组数的集合,称为时间序列,用x(n)表示,n 取整数代表时间的离散时刻。
在matlab 中用向量来表示一个有限长度的序列。
2、序列的类型为了分析的方便,在数字信号处理中规定了一些基本的序列。
a) 单位采样序列function [x,n]=impseq(n1,n2,n0) n=[n1:n2]; x=[(n-n0)==0];调用该函数[x,n]=impseq(-2,8,2); stem(n,x)0010()001()0n n n n n n n n n δδ =⎧=⎨ ≠⎩ =⎧-⎨≠⎩单位采样序列的另一种生成方法n0=-2; n=[-10:10]; nc=length(n); x=zeros(1,nc); for i=1:nc if n(i)==n0 x(i)=1 end endstem(n,x)b) 单位阶跃序列function [x,n]=stepseq(n1,n2,n0) n=[n1:n2]; x=[(n-n0)>=0];调用该函数[x,n]=stepseq(-2,8,2); stem(n,x)00010()001()0n n n n n n n n nεε >=⎧=⎨<⎩ >=⎧-⎨ <⎩c) 实数指数序列x(n)=an (运算符“.^”)n=[0:10]; x=0.9.^n; stem(n,x)d) 复数指数序列n=[-10:10]; alpha=-0.1+0.3*j; x=exp(alpha*n);real_x=real(x); image_x=imag(x); mag_x=abs(x); phase_x=angle(x); subplot(2,2,1); stem(n,real_x) subplot(2,2,2); stem(n,image_x) subplot(2,2,3); stem(n,mag_x) subplot(2,2,4); stem(n,phase_x)()()j nx n e αω+=(0.1j0.3)n x(n)e (10n 10)-+= -<<e) 正弦和余弦序列 n=[0:10]; x=3*cos(0.1*pi*n+pi/3);stem(n,x)f)随机序列rand(1,N)产生其元素在[0,1]之间均匀分布长度为N 的随机序列。
实验4基于DSP Builderd的硬件环仿真
![实验4基于DSP Builderd的硬件环仿真](https://img.taocdn.com/s3/m/199281dfaeaad1f346933f76.png)
实验4 基于DSP Builderd的硬件环仿真[实验目的]
1.掌握DSP Builderd的硬件环仿真的方法。
2.熟悉DSP Builderd的硬件环仿真的流程。
[实验原理]
参考上课内容,DSP Builder 用户手册。
[实验内容]
1.运行Matlab,打开DSP Builder中HIL的例子。
2.按照例子中提示的步骤实现HIL仿真。
3.打开DSP Builder中Getting Start的例子,构建HIL的模型进行硬件仿真。
[实验要求]
1.实现Getting Start例子硬件环模型。
2.观测并记录HIL仿真与Simlink 中使用DSP Builder 模块仿真的差别。
a)波形的异同
b) 速度的差异
[实验结果]
1.运行Matlab,打开DSP Builder中HIL的例子。
图1 打开设计例子
图2 对滤波器进行simulink仿真结果
图3 打开硬件环仿真例子
2.下载到DE2板子上进行验证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、实验程序 #include "include/DSP281x_Device.h" // DSP281x Headerfile Include File #include "include/DSP281x_Examples.h" // DSP281x Examples Include File void delay_loop(void); void Gpio_select(void); short codetab[17]= {0x0001,0x0002,0x0004,0x0008,0x0008,0x0004,0x0002,0x0001, 0x0001,0x0002,0x0004,0x0008,0x0001,0x0002,0x0004,0x0008,0x0000}; main() { short i,j; InitSysCtrl(); EALLOW; EDIS; Gpio_select(); DINT; InitPieCtrl(); IER = 0x0000; IFR = 0x0000; InitPieVectTable(); InitXintf(); GpioDataRegs.GPADAT.all=0; Reg06=0x00; while(1) { for(j=0;j<400;j++)
物理与机电工程学院实验报告
龙岩学院物理与机电工程学院
对于 I/O 口有二类寄存器: 1. 控制寄存器和数据方向寄存器,使用方法如下:首先确定引脚的功能,即 IO 控制器寄
存器,为 1 表示引脚功能是原模块的功能,否则为 IO 功能。
实
班 级 学 室 号 温 实验日期
验
报
姓 名 大气压
告
同组人 成 绩
物理与机电工程Leabharlann 院实验报告GpioMuxRegs.GPADIR.all=var2; GpioMuxRegs.GPBDIR.all=var2; GpioMuxRegs.GPDDIR.all=var2; GpioMuxRegs.GPEDIR.all=var2; GpioMuxRegs.GPFDIR.all=var2; GpioMuxRegs.GPGDIR.all=var2; GpioMuxRegs.GPAQUAL.all=var3; GpioMuxRegs.GPBQUAL.all=var3; GpioMuxRegs.GPDQUAL.all=var3; GpioMuxRegs.GPEQUAL.all=var3; EDIS; } 六、实验结果 // GPIO PORTs as output // GPIO DIR select GPIOs as output
=codetab[i];
// Set GPIO input qualifier values
=codetab[i];
七、实验心得体会
实验项目:实验四:步进电机控制实验
一、实验目的: 1. 2. 掌握 2812 通用 IO 口的使用方法; 掌握 2812 对步进电机的控制。
二、实验仪器: 1. 一台装有 CCS 软件的计算机; 2. DSP 实验箱(插上电机模块) ; 3. DSP 硬件仿真器; 三、实验原理: 步进电机工作原理,给步进脉冲电机就转,不给脉冲电机就不转,步进脉冲的频率越高,步进控 制电机就转的越快;改变各相的通电方式可以改变电机的运行方式;改变通电顺序可以控制步进电机 的运行方式;改变通电顺序可以控制步进电机的正反转。 步进电机的控制问题可以总结为两点: 1. 2. 产生工作方式需要的时序脉冲; 控制步进电机的速度使它始终遵循加速-匀速-减速的规律工作。
-1-2-
物理与机电工程学院实验报告
{ for(i=0;i<4;i++) { GpioDataRegs.GPADAT.all Reg06=0x00; delay_loop(); } } for(j=0;j<400;j++) { for(i=4;i<8;i++) { GpioDataRegs.GPADAT.all Reg06=0x00; delay_loop(); } } } } void delay_loop() { short i,j; for (i = 0; i < 1000; i++) {for (j = 0; j < 10; j++);} } void Gpio_select(void) { Uint16 var1; Uint16 var2; Uint16 var3; var1= 0x0000; // sets GPIO Muxs as I/Os var2= 0xFFFF; // sets GPIO DIR as outputs var3= 0x0000; // sets the Input qualifier values EALLOW; GpioMuxRegs.GPAMUX.all=var1; GpioMuxRegs.GPBMUX.all=var1; GpioMuxRegs.GPDMUX.all=var1; GpioMuxRegs.GPFMUX.all=var1; GpioMuxRegs.GPEMUX.all=var1; GpioMuxRegs.GPGMUX.all=var1; -3-
2.
如果引脚被配置为 IO 功能,就需要确定它的方向:输入还是输出, 。为 1 表示是输出引
脚,否则是输入引脚。对于 IO 功能的输入或输出是通过读写相应的数据方向寄存器来实现。输 入引脚对应读操作;输出引脚对应写操作。 四、实验步骤 1. 连接好 DSP 开发系统; 2. 本实验工程文件(Example_stepmotor.pjt) ,编译,下载程序到 DSP; 3. 运行程序,用观察步进电机运行方向和速度的变化 ,运行结果如下图所示