曼尼希改性三乙烯四胺固化剂的合成及性能研究

合集下载

T31固化剂制备的新工艺

T31固化剂制备的新工艺

T31固化剂制备的新工艺(1)T-31固化剂是由苯酚、甲苯、乙二胺反应而得的改性胺类曼尼希型固化剂。

我国曼尼希型固化剂的合成及应用研究始于上世纪80年代初,1983年华东理工大学率先推出曼尼希型T31固化剂。

在所有该类固化剂中,T31固化剂的生产能力和产量均居首位。

我国曼尼希型固化剂的生产采用一步法滴加液体甲醛的工艺路线。

国外合成曼尼希型环氧树脂固化剂趋于一步法中的固体甲醛法,而我国这方面的研究基本上还是空白。

固体甲醛法与液体甲醛法相比的突出优点如下:①采用固体甲醛,引入的水量少,所产生的废水也少。

②反应时间和脱水时间缩短,大幅度降低能耗。

③产品透明度好,质量高,成本较低。

④反应条件温和,易于工业化生产。

⑤甲醛逸散大大减少,基本对环境无污染。

本文对固体甲醛法制备T31固化剂的加料方式、反应温度、原料配比、反应时间等重要影响因素进行了深入研究,得出了较优的工艺条件,产品性能与液体甲醛法制得的T31固化剂相近。

实验部分实验仪器和原料三口烧瓶,250mL;球型回流冷凝管;温度计,0~100℃;101-A型数显电热鼓风干燥箱;2X-0.5旋片式真空泵;NDJ-79型旋转粘度计。

固体甲醛,工业品;苯酚,化学纯;乙二胺,化学纯;无水乙醇,分析纯。

2反应原理本实验所发生的反应为曼希反应(DieMannichreaction),又称胺甲基化反应,是胺、醛、酚3种组分不对称缩合过程,最后成为多种成分的混合物。

采用苯酚、固体甲醛、乙二胺为原料的反应,胺过量,产物链端以—NH2为主,产品为多种成分的混合物。

制备工艺在带有回流冷凝管和搅拌器的反应瓶中,于室温下投入定量的苯酚、乙二胺和无水乙醇,加热使其溶解,升高到一定温度后,一次投入固体甲醛,停止加热,利用自身反应热使体系自动升温。

保温一定时间后,待体系温度下降至不再变化时,得澄清液体,然后升温,真空脱水至120℃,即得产品。

结果与讨论影响产品质量的主要因素有反应温度、保温时间及原料配比等。

微波制备改性的三乙烯四胺氧化石墨烯

微波制备改性的三乙烯四胺氧化石墨烯

Carbohydrate Polymers 131(2015)280–287Contents lists available at ScienceDirectCarbohydratePolymersj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c a r b p olMicrowave preparation of triethylenetetramine modified graphene oxide/chitosan composite for adsorption of Cr(VI)Huacai Ge ∗,Ziwei MaCollege of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510640,Chinaa r t i c l ei n f oArticle history:Received 13February 2015Received in revised form 4June 2015Accepted 6June 2015Available online 16June 2015Keywords:Graphene oxide Modified chitosan Microwave Adsorption Cr(VI)a b s t r a c tA novel triethylenetetramine modified graphene oxide/chitosan composite (TGOCS)was successfully synthesized by microwave irradiation (MW)method and compared with one prepared by conventional heating.This composite was characterized by FTIR,XRD,SEM,BET and elemental analysis.Adsorption of Cr(VI)on the composite was studied.The experimental results indicated that the product obtained by MW had higher yield and uptake than one obtained by the conventional and uptake of TGOCS for Cr(VI)was higher than that of the recently reported adsorbents.The effects of various variables on adsorption of Cr(VI)by TGOCS were further researched.The highest adsorption capacity of 219.5mg g −1was obtained at pH 2.Adsorption followed pseudo-second-order kinetic model and Langmuir isotherm.The capacity increased as increasing temperature.The adsorbent could be recyclable.These results have important implications for the application expansion of microwave preparation and the design of new effective composites for Cr(VI)removal in effluents.©2015Elsevier Ltd.All rights reserved.1.IntroductionChromium (VI)(Cr(VI))has been commonly used in a number of industrial processes,such as leather tanning,electroplating,metal polishing,paint manufacturing,and textile coloring (Bhattacharya,Naiya,Mandal,&Das,2008;Li et al.,2013;Ouaissa,Chabani,Amrane,&Bensmaili,2013).Due to its high toxicity and bioac-cumulation,the Cr(VI)from effluents must be removed.Various methods of removing Cr(VI)have been developed,such as chem-ical precipitation (Carlos,Violeta,&Bryan,2012),adsorption (Hu et al.,2011;Huang,Yang,&Liu,2013),electrodeposition (Golder,Samanta,&Ray,2011),membrane systems (Gherasim &Bourceanu,2013),and ion exchange process (Rengaraj,Joo,Kim,&Yi,2003).Among these methods,adsorption is one of the most economically favorable and a technically easy method (Hu et al.,2011).Chitosan (CS),a bio-adsorber,is a biocompatible polysaccha-ride obtained from deacetylation of chitin (Ge &Wang,2014).It can chemically or physically entrap various metal ions due to the presence of amine and hydroxyl groups that can serve as the chelating and reaction sites (Aydın &Aksoy,2009;Ge &Fan,2011;Repo,Koivula,Harjula,&Sillanpää,2013;Wang &Ge,2015).Therefore,chitosan presents as a very promising starting mate-rial for chelating resins (Kandile &Nasr,2009).Several metals are∗Corresponding author.Tel.:+862087112900;fax:+862022236337.E-mail address:chhcge@ (H.Ge).preferentially adsorbed in acidic media while chitosan can dis-solve in acid condition.To overcome this problem,chitosan must be chemically modified with different crosslinking reagents,such as epichlorohydrin and glutaraldehyde (Ge &Huang,2010;Ngah,Endud,&Mayanar,2002).However,the adsorption capacity of crosslinked chitosan would be largely reduced due to the con-sumption of amine groups and hydroxyl groups after chemical modification.Hence,the crosslinked chitosan must be further mod-ified to improve the adsorption performance (Ge,Chen,&Huang,2012;Wu,Li,Wan,&Wang,2012;Zhang,Xia,Liu,&Zhang,2015).Graphene,which can be prepared from the low cost material graphite,is intensively investigated as adsorbents for heavy metal ions (Chowdhury &Balasubramanian,2014;Jabeen et al.,2011).Graphene oxide (GO)obtained by the oxidation of graphene con-tains a wide range of oxygen functional groups both on the basal planes and at the edges of GO sheets,such as –COOH,and –OH.These functional groups are essential for the high sorption of heavy metal ions,and allows GO to participate in a wide range of bond-ing interactions (Guo et al.,2014;Zhang et al.,2014).However,GO is a nano-material with high dispersibility in aqueous solution (Cheng et al.,2013)and has the potential toxicity in environment (Sanchez,Jachak,Hurt,&Kane,2011).These problems may restrict the practical applications of GO as an adsorbent.To overcome these problems,various methods have been investigated,such as for-mation of ethylenediamine modified GO and magnetic graphene nanocomposites (Wang et al.,2014;Zhu et al.,2011).However,these methods revealed low adsorption capacity due to the reduced/10.1016/j.carbpol.2015.06.0250144-8617/©2015Elsevier Ltd.All rights reserved.H.Ge,Z.Ma /Carbohydrate Polymers 131(2015)280–287281adsorption area and oxygen-containing functional groups.Hence,the GO functionalized with magnetic cyclodextrin–chitosan was studied (Li et al.,2013).Recently,microwave irradiation (MW)as a means of chem-ical reaction has been widely applied in polymer synthesis due to higher conversion and shorter reaction times under MW than those of conventional heating (Ge &Luo,2005;Ge,Pang,&Luo,2006;Ge et al.,2012).In this work,microwave technology has been used to prepare a new chitosan-based composite.This work is to serve as not only an expansion of microwave irradiation in applica-tion of polymer synthesis,but also an expansion of chitosan-based nanocomposites as a high-efficient adsorbent for Cr(VI)removal.Considering that amine groups in triethylenetetramine could sig-nificantly enhance the adsorption ability,the triethylenetetramine modified graphene oxide/chitosan composite (TGOCS)was pre-pared by MW and compared with one prepared by conventional heating.The adsorption of TGOCS for Cr(VI)was systematically studied.2.Materials and methods2.1.MaterialsBiochemical reagent grade chitosan (degree of deacetyla-tion:90%,viscosity average molecular weight:400,000),standard reagent potassium dichromate,analytical grade triethylenete-tramine and graphite were purchased from China National Medicine Corporation Ltd.(Shanghai,China).All other agents were used on analytical grade and all solutions were prepared with dis-tilled water.2.2.PreparationGO was prepared from graphite powder by modified Hum-mers method (Chen,Chen,Bai,&Li,2013;Hummers &Offeman,1958).Graphite (1g),NaNO 3(0.5g)and KMnO 4(3g)were sequen-tially added into the stirred concentrated H 2SO 4solution (23mL)at 277K.After kept at below 293K for 1h,the mixture was vigorously stirred at 308K for 30min and slowly diluted with distilled water (46mL).The reaction temperature was rapidly increased to 371K and kept for 30min.Then,an additional 140mL of water was added,followed by a slow addition of 30%H 2O 2(15mL),turning the color of the solution from brown to yellow.The mixture was purified by centrifuging with 5%HCl and distilled water.The resulting solid (GO)was dispersed in distilled water by ultrasonic treatment for 3h.4g L −1GO aqueous dispersion was prepared by diluting with water and stored for the following preparation.Microwave preparation of TGOCS was done in a modified microwave oven equipped with a stirrer and constant-temperaturecirculating water (Ge &Huang,2010).Triethylenetetramine (5mL)was added to 4g L −1GO aqueous dispersion (50mL)under stirring at room temperature and the pH of the solution was adjusted to 8by adding dilute NaOH solution.The mixture was transferred to the microwave reaction system and was radiated for 15min at 343K under stirring.Then,epichlorohydrin (5mL)and CS (1g)were suc-cessively added and the mixture was radiated for 45min at 343K under stirring.After reaction,the mixture was cooled and filtered.The filter residue was successively washed with 5%HCl,ethanol and distilled water,and dried in vacuum at 333K.(1.37±0.04)g of com-posite was obtained and named as TGOCS.The probable prepared routes were given in Fig.1.As comparison (1.21±0.04)g of composite was prepared by conventional heating and named as C TGOCS.Except for using oil-bath heating instead microwave radiation,all the conditions and processes of the preparation were same as the above microwave preparation.2.3.CharacterizationFourier-transform infrared (FTIR)spectra were recorded on a Bruker FTIR spectrometer (Tensor 27,Germany)using KBr pellets.The morphology was examined by scanning electron microscope (SEM)(LEO 1530VP,Germany).The surface of the sample was coated with gold to be observed and photographed.X-ray diffrac-tion (XRD)patterns were determined with a Rigaku diffractometer (D/max-IIIA,Japan).The specific surface area was measured by N 2adsorption at 77.15K using a Micromeritics surface analyzer (Tri-star 3000,USA).Elemental analysis was done on a Bruker element analyzer (Vario ELCube,Germany).2.4.Adsorption experimentsThe adsorption of Cr(VI)was done using batch method.Batch adsorption experiments were conducted by placing 20mg of adsor-bent with 50mL of Cr(VI)aqueous solutions (200mg L −1)at pH 2in 250mL conical flasks.The flasks were agitated at 180rpm using a mechanical rotary shaker at 303K for 2h to reach adsorption equilibrium.The concentration of Cr(VI)in the solution was deter-mined spectrophotometrically at 540nm using diphenyl carbazide as the complex agent.The adsorption capacities were calculated as follows:q e =(c 0−c e )Vm(1)where q e is the equilibrium adsorption capacity (mg g −1),c 0and c e are the initial and equilibrium concentration of Cr(VI)in the liquid phase (mg L −1),respectively.V is the volume of the solution (L)and m is the mass of adsorbent(g).Fig.1.The probable prepared routes of TGOCS.282H.Ge,Z.Ma/Carbohydrate Polymers131(2015)280–287The initial pH of the solution was adjusted by adding either 0.1mol L−1NaOH or0.1mol L−1HCl.To determine sorption kinet-ics,the initial test solution with pH2was sampled at various time intervals.The adsorption thermodynamics was determined at different temperatures(303K,313K,323K and333K).In order to obtain the adsorption isotherms,solutions with various initial Cr(VI)concentrations(16–206mg g−1)at pH2were treated at 303K.2.5.Regeneration and reuseThe adsorption was done in50mL of200mg L−1Cr(VI)solu-tion at pH2with20mg of TGOCS at303K for2h.Afterfiltration, the TGOCS was immersed in50mL of1mol L−1KOH or HCl aque-ous solution and agitated at303K for2h.Then,the TGOCS was removed from the solution and washed with water.The adsorbent was reused in the next cycle.The adsorption-regeneration cycles were repeated forfive times with the Cr(VI)uptake analysis.3.Results and discussion3.1.CharacterizationThe FTIR spectra of CS,GO,C TGOCS and TGOCS were shown in Fig.2(a).The major bands of CS could be assigned as fol-lows:3419cm−1(–OH and–NH2stretch),2876cm−1(–CH stretch), 1644cm−1(amide band),1617cm−1(–NH2bend),1382cm−1(–CH bend),1105cm−1(C–O stretch),and897cm−1(pyranoid ring stretch)(Ge&Wang,2014).The major bands of GO could be assigned as follows:3431cm−1(–OH stretch),1724cm−1(C O of COOH),1624cm−1(COOH asymmetry stretch)and1401cm−1 (COOH symmetry stretch)(Kumar,Kakan,&Rajesh,2013).For TGOCS and C TGOCS,their spectra were similar and showed the major bands of GO and CS.However,the COOH peak of GO at 1724cm−1and the–NH2group peak of CS at1617cm−1disap-peared and new amide peak at1522cm−1appeared.Hence,the products TGOCS and C TGOCS prepared by microwave and conven-tional methods had similar structures which could be crosslinked by epichlorohydrin with–NH2groups of CS and–NH2groups of graphene oxide-triethylenetetramine monoamide(as shown in Fig.1).The XRD patterns of CS,GO,C TGOCS and TGOCS were depicted in Fig.2(b).The XRD pattern of CS represented the distinct crys-talline peaks at12.8◦and20◦.The distinct crystalline peak of GO appeared at12.4◦.For C TGOCS,the peak at20◦decreased and the peak at about12.8◦became unapparent.For TGOCS,the peaks at 20◦and12.8◦disappeared almost.The crystallinities of GO,CS, C-TGOCS and TGOCS calculated from the peak areas were83.8%, 91.1%,61.4%and50.6%,respectively.The decrease in crystallinity of the composite should be attributed to the deformation of the strong hydrogen bond in original chitosan due to the reaction of amine groups with the grafted GO.This implied that the compos-ites were substantially more amorphous than chitosan and GO and TGOCS was more amorphous than C TGOCS.SEM graphs(20,000×)of CS,GO,C TGOCS and TGOCS were shown in Fig.2(c).The surfaces of CS had some holes and crevasses. The surfaces of GO showed wrinkle fabrics with someflakes.For the composites,their surfaces were similar to those of GO.However, the surfaces of TGOCS had more crevasses than those of C TGOCS.parison of Cr(VI)adsorptionThe adsorption of Cr(VI)on the conventional product C TGOCS, MW product TGOCS and reactants(CS and GO)was conducted by placing20mg of adsorbent in250mL conicalflasks with50mL of200mg L−1Cr(VI)solutions at pH2and303K.The uptake capacities were listed in Table1.The order of capacity was TGOCS>C TGOCS>CS GO.This might be attributed to that the adsorption of Cr(VI)on the adsorbent was partly by the electro-static attraction.At pH2,the amine group existed in the cation and Cr(VI)existed mainly in the HCrO4−anion.The action of active –COOH and–OH groups in GO for Cr(VI)was weak and the action of active amine groups in CS for Cr(VI)was strong.Hence,the capac-ity of CS for Cr(VI)was significantly higher than that of GO.As for TGOCS and C TGOCS,however,the graft of triethylenetetramine increased the amount of amine groups which led to the increase of uptake.The results of elemental analysis and surface area were also summarized in Table1.The N content and surface area of TGOCS were larger than that of C TGOCS.These might be the main rea-son why the uptake of TGOCS was higher than that of C TGOCS. In this preparation,the product obtained by MW had higher yield and uptake than one obtained by the conventional.Hence,the microwave preparation was a better method and adsorption of Cr(VI)on the TGOCS produced by MW was systematically studied in the following.3.3.Microwave mechanism of the preparationBased on the above characteristic results of the products obtained by the microwave and conventional methods,the struc-tures and morphologies of the products were similar.Hence,the probable prepared routes(as showed in Fig.1)should be simi-lar.The higher yield and uptake of the product obtained by the microwave should be related to the interaction of the reactants with microwave.Microwave energy was transferred directly to the reaction mixture,through the molecular dielectric interaction with the electromagneticfield,generating the heat throughout the entire mixture volume simultaneously(Singh,Kumar,&Sanghi, 2012).However,the conventional heating is the heat transfer pro-cess from the outer surface of the mixture to the inner.In our reactive systems,the active groups of reactants such as carboxylic and amine groups were polar.Microwave could interact with these polar groups which might reduce the active energies of reactions (Vergara,de Sarrionandia,Gondra,&Aurrekoetxea,2014).These might led to that the yield and N content of the product obtained by the microwave were higher than by the conventional.The higher N content of the microwave product would be favorable for the uptake of Cr(VI).3.4.Effect of pHThe effect of pH was studied in the pH range of1–7.As shown in Fig.3(a),the pH of solution strongly affected the adsorption performance of TGOCS.The adsorption capacity increased with the increase of the pH value till a maximum value at pH2and then decreased slowly with further increase of pH while decreased markedly with pH>6.This was because Cr(VI)existed mainly in the form of HCrO4−in present study(Hena,2010).In acidic solu-tion,the amine groups of TGOCS could form protonated cations. The extent of protonation of amine group would be reduced with rising pH.The amine group cations in TGOCS would be in favor of forming complexes with Cr(VI)anions by the electrostatic attrac-tion.These resulted in that the adsorption of Cr(VI)on TGOCS hada maximal value at pH2.3.5.Effect of contact time and kinetic studiesAdsorption kinetics was an important constant for the evalua-tion of a good sorbent.As shown in Fig.3(b),the Cr(VI)uptake on TGOCS was rapid in thefirst20min,contributing to about85%ofH.Ge,Z.Ma/Carbohydrate Polymers131(2015)280–287283Fig.2.(a)FT-IR spectra of CS,GO,C TGOCS,TGOCS and TGOCS-Cr(VI);(b)XRD curves of CS,GO,C TGOCS and TGOCS;(c)SEM graphs(20,000×)of CS,GO,C TGOCS and TGOCS.the ultimate adsorption amount for Cr(VI),and then augmented gradually.In present study,the adsorption equilibrium was achieved within about2h.The pseudo-first-order and pseudo-second-order models were used to investigate the adsorption mechanism.The linear forms of pseudo-first-order and the pseudo-second-order equations are expressed as follows(Ge et al.,2012):ln(q e−q t)=ln q e−k1t(2) tq t=1k2q2e+tq e(3) where k1(min−1)and k2(g mg−1min−1)are successively the pseudo-first-order and pseudo-second-order rate constants;q t is the amount adsorbed at time t(min),and q e denotes the amount284H.Ge,Z.Ma /Carbohydrate Polymers 131(2015)280–287Table 1The results of elemental analysis,surface area and uptake capacity of Cr(VI)for CS,GO,C TGOCS and TGOCS.Materialwt (%)Surface area (m 2g −1)q e (mg g −1)CNHCS 40.187.5117.776 6.20131.4GO99.570.0080.04511.95 3.653C TGOCS 36.21 6.0237.52110.58178.8TGOCS34.746.2297.47111.69216.9adsorbed at equilibrium,both in units of mg g −1.The values of k 1and q e (namely q e cal )are calculated from the slope and intercept of the linear fit of ln (q e exp −q t )versus t ,and q e exp is the exper-imental value of q e .The values k 2and q e can be calculated from the linear fit of t /q t versus t .The pseudo-first-order and pseudo-second-order kinetics models were shown in Fig.3(b).The results of kinetic constants and correlation coefficients (R 2)were listed in Table 2.Based on the R 2values and Fig.3(b),the pseudo-second-order model could give the best fit for the experimental data.The results connoted that the adsorption was a chemical process.The intraparticle diffusion model was also selected to fit the kinetic data and it can be formulated as (Ge &Fan,2011):q t =k i t 1/2+C(4)where k i (mg g −1min −1/2)is the intraparticle diffusion rate con-stant and C (mg g −1)is a constant.Values k i and C can be obtained by the linear fit of q t against t 1/2.The intraparticle model kinetics was also shown in Fig.3(b).Taken as a whole,the linear relation of q t versus t 1/2was not good.However,the linear relation was better in the initial 20min of Cr(VI)adsorption,and the constants were also listed in Table 2.The positive value of C indicated that the ini-tial stage of the adsorption process was governed by the boundary layer diffusion (Annadurai,Ling,&Lee,2008).The kinetic plots inFig.3(b)exhibited the two-stage linearity and the latter was the final equilibrium stage where the intraparticle diffusion slowed down.3.6.Effect of initial Cr(VI)concentration and adsorption isothermAdsorption isotherm was important to evaluate the adsorption capacity of TGOCS.Fig.4(a)showed the adsorption equilibrium isotherm of Cr(VI)on TGOCS.Obviously,the uptake of Cr(VI)on TGOCS increased as the initial concentration increased up to 120mg L −1thereafter uptake reached the ngmuir,Freundlich and Temkin isothermic models were used to fur-ther understand the adsorbate–adsorbent ngmuir,Freundlich and Temkin models can be represented as follows (Ge et al.,2012;Kumar et al.,2013):q e =q mK L c e 1+K L c e or c e q e =c e q m +1q m K L,R L =1(1+K L c 0)(5)q e =K F c 1/n eor ln q e =1nln c e +ln K F(6)q e =RT b Tln(K T c e )or q e =RT b Tln(K T )+RT b Tln(c e )(7)where c e (mg L −1)is the equilibrium concentration of adsorbate in solution and q e (mg g −1)is the amount adsorbed at equilibrium.K L (L mg −1)is the Langmuir constant,q m (mg g −1)is the maximum adsorption capacity for monolayer formation on adsorbent,R L is the separation factor.K F (mg g −1(L mg −1)1/n )is a constant represent-ing the sorption capacity and n is a constant depicting the sorption intensity.R (8.315J K −1mol −1)is the universal gas constant,T (K)is the absolute temperature,and b T is related to the heat of adsorp-tion.The Langmuir constants,q m and K L ,could be calculated from the linear fit of c e /q e versus c e .The Freundlich constants,K F and n ,4080120160200q e (m g g -1)pH(a)q (m g g t-1)t (min)(b)Fig.3.(a)The effect of pH on Cr(VI)adsorption by TGOCS;(b)adsorption kinetics of Cr(VI)onto TGOCS.Table 2Constants of kinetic and isotherm models for Cr(VI)adsorption on TGOCS.Kinetic model constantsIsotherm model constantsPseudo-first-orderq e cal (mg g −1)83.59Langmuirq m (mg g −1)219.5k 1(min −1)0.02460K L (L mg −1)0.5524R 20.9522R 20.9997Pseudo-second-orderq e (mg g −1)218.6FreundlichK F (mg g −1(L mg −1)1/n )78.86k 2(g mg −1min −1) 1.103×10−3N 3.939R 20.9996R 20.9178Intraparticle diffusion ak i (mg g −1)42.34Temkinb T (g kJ mg −1mol −1)88.31C (g mg −1min −1)21.34K T (L mg −1)26.52R 20.8796R 20.9828aLinear fitting results at the initial 20min.H.Ge,Z.Ma /Carbohydrate Polymers 131(2015)280–2872854080120160200240q e (m g g -1)c e (mg L -1)(a)q e (m g g -1)Temperat ure (K)(b)Fig.4.(a)Adsorption isotherms of Cr(VI)onto TGOCS;(b)effect of temperature on the adsorption of Cr(VI)by TGOCS.Table 3Adsorption comparison of TGOCS and reported studies on adsorbents for Cr(VI).No.Adsorbentq max (mg g−1)Reference 1TGOCS219.5This work2Cyclodextrin–chitosanmodified GO61.31Li et al.(2013)3Protonated crosslinked chitosan189.3Huang et al.(2013)4Ethylenediamine-modified cross-linked magnetic chitosan51.813Hu et al.(2011)5Cross-linked chitosan86.81Wu et al.(2012)6Ti–CTS171Zhang et al.(2015)7CD-E-MGO68.41Wang et al.(2014)8Chitosan22.09Aydın and Aksoy (2009)9Graphene nanosheets43Jabeen et al.(2011)can be obtained from the linear fit of ln q e versus ln c e .The Temkin constants,K T and b T ,can be obtained from the linear fit of q e versus ln c e .The isotherm constants were summarized in the Table 2and the three models were shown in Fig.4(a).The R 2values (in Table 2)and Fig.4(a)manifested that the Langmuir isotherm could give the best fit for the experimental data.The maximum adsorption capacity of Cr(VI)on the TGOCS from Langmuir model was 219.5mg g −1,which was higher than that of the recently reported adsorbents (listed in Table 3).The R L values were 0.008721–0.09908(0<R L <1),indicating that the adsorption processes were favorable.3.7.Thermodynamic studiesThe influence of temperature for the adsorption of Cr(VI)on TGOCS was given in Fig.4(b).The Cr(VI)uptake increased with increasing temperature.The thermodynamic parameters such as enthalpy change ( H ),entropy change ( S ),and Gibbs functionchange ( G )of the adsorption process were obtained from exper-iments using the following equations (Ge et al.,2012):lnq ec e=S R − H R 1T(8) G = H −T S(9)where q e ,c e ,R and T are the same as indicated above.The S and H values could be calculated from the linear fit of ln(q e /c e )versus 1/T .The calculated values of H and S were 22.02kJ mol −1and 42.26J K −1mol −1,respectively.The positive H indicated an endothermic nature for the adsorption process.The positive S showed the increasing randomness at the solid/liquid interface during the sorption of Cr(VI)onto TGOCS.Meanwhile,the values of G at 303K,313K,323K and 333K were −2.238,−2.761,−3.183and −3.606kJ mol −1,respectively.The negative G revealed the spontaneity of uptake process for Cr (VI).It was noteworthy that the value of H approached the general reaction enthalpy (≥40kJ mol −1)and the value of S was also large (Ge et al.,2012).These meant that the adsorption process should be predominantly chemical.3.8.Effect of adsorbent dosageThe effect of TGOCS dosage on the removal of Cr (VI)was con-ducted in 50mL of Cr (VI)solution with pH 2at 303K for 2h and the result was shown in Fig.5.Obviously,the removal percentage of Cr (VI)increased with the increase of adsorbent dosage.For the initial Cr(VI)concentrations of 80and 200mg L −1,98%removal for Cr(VI)required about 40mg and 100mg of TGOCS,respectively.These results indicated that the Cr(VI)in solution could be effec-tively removed when the dosage of TGOCS was about 10times amount of Cr(VI).3.9.Effect of coexisting ionsBy contacting 20mg of TGOCS with 50mL of Cr (VI)solution (200mg L −1)at pH 2and 303K for 2h,effects of coexisting salts (50mmol L −1of NaCl,KCl or K 2SO 4)were evaluated.The capac-ities in absence of coexisting salt,coexisting NaCl,KCl or K 2SO 4were 213.2,205.8,207.9and 72.27mg g −1,respectively.The result showed that the presence of Na +or K +had no significant effect for the Cr(VI)adsorption.However,SO 42−had greater inhibitory effect than Cl −.This was because the sorbent (TGOCS)had posi-tive charge due to the protonation of amine groups (–NH 3+)in acid solution,causing the electrostatic attractions between anion and286H.Ge,Z.Ma /Carbohydrate Polymers 131(2015)280–287R e m o v a l p e r c e n t a g e (%)Absorbent dos age (m g)Fig.5.The effect of adsorbent dosage on the removal of Cr (VI)by TGOCS.The initialCr(VI)concentration was 80and 200mg L −1,respectively.sorbent.Therefore,the anions such as SO 42−and Cl −in the solution could result in a competitive adsorption with Cr(VI)(mainly in form of HCrO 4−)on the sorbent.In contrast,the electrostatic repulsion could occur between cation (Na +and K +)and the sorbent,leaving the adsorption site of sorbent still available for Cr(VI).3.10.Regeneration of TGOCSThe regeneration and reuse of TGOCS for Cr(VI)removal were also evaluated.1mol L −1NaOH or 1mol L −1HCl was tried to use as a solvent of desorption and the desorption percentages of Cr(VI)on TGOCS were 92.25%and 82.82%,respectively.Hence,1mol L −1NaOH was further selected as a solvent of desorption in adsorp-tion/desorption/regeneration cycles.After five cycles,the uptake of Cr(VI)on TGOCS was still maintained above 80%of initial uptake.This result suggested that TGOCS could be used repeatedly for the treatment of Cr(VI)in wastewater.3.11.Mechanism of Cr(VI)adsorptionFrom the results of the pH and coexisting ion studies,the active groups on the surface of TGOCS composite could be protonated in an acidic medium.The protonated surface had a stronger electrostatic attraction for chromium anions (HCrO 4−).On the other hand,the kinetic and thermodynamic studies indicated that the adsorption on TGOCS was a chemical process.This could be further confirmed by FTIR analysis.The FTIR spectra of TGOCS-Cr(VI)obtained after adsorption of Cr(VI)on TGOCS was also given in Fig.2(a).For com-parison with TGOCS,two new peaks at 930cm −1(Cr O stretch)and 750cm −1(Cr–O stretch)(Kumar et al.,2013)appeared and the peak (N–H and O–H stretch)was shifted from 3417cm −1to 3373cm −1.These indicated that the adsorption of Cr(VI)on TGOCS was a chemical process partly by electrostatic attraction.4.ConclusionsThe triethylenetetramine modified graphene oxide/chitosan composites (TGOCS and C TGOCS)were synthesized by microwave irradiation and conventional heating method.These composites were characterized by FTIR,XRD,SEM,BET and elemental analy-ses.The adsorption of Cr(VI)on these composites were studied and compared.The probable mechanism of the microwave preparation had been discussed.The results indicated that the product obtained by MW had higher yield and uptake than one obtained by the con-ventional.The microwave preparation was a better method than the conventional.The effects of various variables on the adsorptionof Cr(VI)by TGOCS were further discussed.The maximum uptakeof Cr(VI)with 20mg TGOCS at 303K was 219.5mg g −1at pH 2.The adsorption was a fast process which could reach 85%of maximal uptake in 20min.The adsorption followed the pseudo-second-order model and Langmuir isotherm.The Cr(VI)uptake increased with increasing temperature.The adsorption was an endothermic and spontaneous chemical process partly by electrostatic interac-tion.The TGOCS with 10times amount of Cr(VI)could effectively remove the Cr(VI)of solution and the composite could be recycled with 1mol L −1NaOH.Thus the composite may be promising for application in the removal of Cr (VI)from the wastewater.AcknowledgementsThe authors gratefully acknowledge the financial support from the National Nature Science Foundation of China (No.21077034).Additionally,students Na-na Wu and Zhao-xin Wang took part in some work on this research.ReferencesAnnadurai,G.,Ling,L.Y.,&Lee,J.F.(2008).Adsorption of reactive dye from anaqueous solution by chitosan:Isotherm,kinetic and thermodynamic analysis.Journal of Hazardous Materials ,152,337–346.Aydın,Y.A.,&Aksoy,N.D.(2009).Adsorption of chromium on chitosan:Optimiza-tion,kinetics and thermodynamics.Chemical Engineering Journal ,151,188–194.Bhattacharya,A.K.,Naiya,T.K.,Mandal,S.N.,&Das,S.K.(2008).Adsorption,kinet-ics and equilibrium studies on removal of Cr(VI)from aqueous solutions using different low-cost adsorbents.Chemical Engineering Journal ,137,529–541.Carlos,E.B.D.,Violeta,L.L.,&Bryan,B.(2012).A review of chemical,electrochem-ical and biological methods for aqueous Cr(VI)reduction.Journal of Hazardous Materials ,1,223–224.Chen,Y.Q.,Chen,L.B.,Bai,H.,&Li,L.(2013).Graphene oxide–chitosan compos-ite hydrogels as broad-spectrum adsorbents for water purification.Journal of Materials Chemistry A ,1,1992–2001.Cheng,C.,Deng,J.,Lei,B.,Hea,A.,Zhang,X.,Ma,L.,et al.(2013).Toward 3D grapheneoxide gels based adsorbents for high-efficient water treatment via the promo-tion of biopolymers.Journal of Hazardous Materials ,263,467–478.Chowdhury,S.,&Balasubramanian,R.(2014).Recent advances in the use ofgraphene-family nanoadsorbents for removal of toxic pollutants from waste-water.Advances in Colloid and Interface Science ,204,35–56.Ge,H.C.,&Fan,X.H.(2011).Adsorption of Pb 2+and Cd 2+onto a novel activatedcarbon–chitosan complex.Chemical Engineering &Technology ,34,1745–1752.Ge,H.C.,&Huang,S.Y.(2010).Microwave preparation and adsorption propertiesof EDTA-modified cross-linked chitosan.Journal of Applied Polymer Science ,115,514–519.Ge,H.C.,&Luo,D.K.(2005).Preparation of carboxymethyl chitosan in aqueoussolution under microwave irradiation.Carbohydrate Research ,340,1351–1356.Ge,H.C.,&Wang,S.K.(2014).Thermal preparation of chitosan–acrylic acid super-absorbent:Optimization,characteristic and water absorbency.Carbohydrate Polymers ,113,296–303.Ge,H.C.,Chen,H.,&Huang,S.Y.(2012).Microwave preparation and properties of O-crosslinked maleic acyl chitosan adsorbent for Pb 2+and Cu 2+.Journal of Applied Polymer Science ,125,2716–2723.Ge,H.C.,Pang,W.,&Luo,D.K.(2006).Graft copolymerization of chitosan withacrylic acid under microwave irradiation and its water absorbency.Carbohydrate Polymers ,66,372–378.Gherasim,C.V.,&Bourceanu,G.(2013).Removal of chromium (VI)from aqueoussolutions using a polyvinyl-chloride inclusion membrane:Experimental study and modeling.Chemical Engineering Journal ,220,24–34.Golder,A.K.,Samanta,A.N.,&Ray,S.(2011).Removal of chromium and organic pol-lutants from industrial chrome tanning effluents by electrocoagulation.Chemical Engineering &Technology ,34,775–783.Guo,X.Y.,Du,B.,Wei,Q.,Yang,J.,Jian,H.,Hu,L.H.,et al.(2014).Synthesis of aminofunctionalized magnetic graphenes composite material and its application to remove Cr(VI),Pb(II),Hg(II),Cd(II)and Ni(II)from contaminated water.Journal of Hazardous Materials ,278,211–220.Hena,S.(2010).Removal of chromium hexavalent ion from aqueous solutions usingbiopolymer chitosan coated with poly 3-methyl thiophene polymer.Journal of Hazardous Materials ,181,474–479.Hu,X.J.,Wang,J.S.,Liu,Y.G.,Li,X.,Zeng,G.M.,Bao,Z.L.,et al.(2011).Adsorptionof chromium (VI)by ethylenediamine-modified cross-linked magnetic chitosan resin:Isotherms,kinetics and thermodynamics.Journal of Hazardous Materials ,185,306–314.Huang,R.H.,Yang,B.C.,&Liu,Q.(2013).Removal of chromium(VI)Ions from aque-ous solutions with protonated crosslinked chitosan.Journal of Applied Polymer Science ,129,908–915.Hummers,W.S.,&Offeman,R.E.(1958).Preparation of graphitic oxide.Journal ofthe American Chemical Society ,80,1339-1339.。

自乳化水性环氧固化剂的合成与性能

自乳化水性环氧固化剂的合成与性能

自乳化水性环氧固化剂的合成与性能沈志明;李娟;李安宁;朱殿奎;李晴;杨亚萍【摘要】在三乙烯四胺(TETA)的分子链段上通过加成、扩链,将亲水性多乙烯多胺改性成为既亲水又亲油的两亲性化合物,再经封端工艺合成了自乳化水性环氧树脂固化剂,该固化剂兼具乳化和固化功能.实验研究了固化剂的合成工艺及漆膜各项性能,结果表明,所合成的自乳化水性环氧固化剂具有良好的乳化环氧树脂的功能,所制备的水性环氧树脂涂膜具有良好的铅笔硬度、耐冲击性、附着力、耐水和耐化学品性,且适用期较长.【期刊名称】《安徽化工》【年(卷),期】2016(042)002【总页数】5页(P30-34)【关键词】水性环氧树脂;自乳化固化剂;合成;扩链;封端【作者】沈志明;李娟;李安宁;朱殿奎;李晴;杨亚萍【作者单位】江苏丰彩新型建材有限公司,江苏南京 210000;江苏省既有建筑绿色化改造工程技术研究中心,江苏南京 210000;江苏丰彩新型建材有限公司,江苏南京 210000;江苏省既有建筑绿色化改造工程技术研究中心,江苏南京 210000;江苏丰彩新型建材有限公司,江苏南京 210000;江苏省既有建筑绿色化改造工程技术研究中心,江苏南京 210000;江苏丰彩新型建材有限公司,江苏南京 210000;江苏省既有建筑绿色化改造工程技术研究中心,江苏南京 210000;江苏丰彩新型建材有限公司,江苏南京 210000;江苏省既有建筑绿色化改造工程技术研究中心,江苏南京210000;江苏丰彩新型建材有限公司,江苏南京 210000;江苏省既有建筑绿色化改造工程技术研究中心,江苏南京 210000【正文语种】中文【中图分类】TQ584+.31环氧树脂粘结性好,固化收缩率低,机械性能优异,并具有良好的耐腐蚀、耐溶剂及电绝缘性,在化工、电器、建筑、航空等领域有着广泛的应用。

传统的环氧树脂都是溶剂性,造成大量的VOC污染环境,同时,溶剂的挥发及易燃性使环氧树脂在施工、运输、存储方面存在较大的安全隐患,对人体健康也造成不利的影响,而且溶剂的大量使用也会使应用成本提高,因此以水代替溶剂的水性环氧树脂成为近年新的发展趋势,作为一种环境友好型产品,得到了越来越广泛的关注[1-3]。

曼尼希改性三乙烯四胺固化剂的合成及性能研究

曼尼希改性三乙烯四胺固化剂的合成及性能研究

曼尼希改性三乙烯四胺固化剂的合成及性能研究倪维良;王林同;柳云骐;周欣明;陈克磊;孙玲玲【摘要】This paper has reported a new kind of triethylene tetramine (TETA) type curing agents for epoxy resin were chemically modified by Mannich reactions. Dependence of their properties on the components of curing agents was studied. It was found that modified TETA curing agents with suitable viscosity, appropriate amine values, and a free phenol content of <5% (by wt) ,can be prepared by using optimum composition of raw materials, which showed much better physical chemical properties and also environmental effects.%对三乙烯四胺(TETA)环氧树脂固化剂进行了曼尼希(Mannich )改性及其固化性能的研究.实验结果表明:曼尼希固化剂最佳合成条件为n(TETA):n(苯酚):n(甲醛)=1.5:1:1,反应温度为80℃,反应时间4h,可制备出具有合适的黏度、适中的胺值以及游离酚含量小于5%的改性环氧树脂固化剂;其比未改性的三乙烯四胺有优异的物理化学性能和环保性能.固化剂与水不互容,不能与乳化环氧树脂互容,可用无水乙醇作为溶剂,得到良好的效果.【期刊名称】《涂料工业》【年(卷),期】2011(041)005【总页数】4页(P18-21)【关键词】曼尼希改性;合成;固化剂;环保性能【作者】倪维良;王林同;柳云骐;周欣明;陈克磊;孙玲玲【作者单位】中国石油大学(华东)化学化工学院,山东,青岛,266555;潍坊学院化学化工学院,山东,潍坊261061;中国石油大学(华东)化学化工学院,山东,青岛,266555;中国石油大学(华东)化学化工学院,山东,青岛,266555;中国石油大学(华东)化学化工学院,山东,青岛,266555;中国石油大学(华东)化学化工学院,山东,青岛,266555【正文语种】中文【中图分类】TQ630.4环氧树脂是一种用途广泛的高分子材料。

一种新型咪唑啉缓蚀剂的合成及缓蚀性能研究

一种新型咪唑啉缓蚀剂的合成及缓蚀性能研究

一种新型咪唑啉缓蚀剂的合成及缓蚀性能研究郭文姝;程丽华;朱华平;许江兵;王慧;丛玉凤【摘要】为减少石油炼制过程中高酸原油对设备的腐蚀,不断优化加注缓蚀剂的缓蚀性能,实验通过低耗节能的曼尼希反应对加注的缓蚀剂进行改性,获得缓蚀性能优良的曼尼希碱型缓蚀剂.首先,以三乙烯四胺与脱氢松香酸为原料制得松香基咪唑啉衍生物缓蚀剂中间体(IMDO),再以亚磷酸对其进行曼尼希反应改性,制得一种松香基咪唑啉衍生物缓蚀剂(IMDOM),利用红外光谱对结构进行表征,以电化学法、动态失重法、能谱分析和扫描电子显微镜等方法分析缓蚀剂对10 #碳钢的缓蚀作用.结果表明:IMDO和IMDOM均为阳极型缓蚀剂,缓蚀剂的添加降低了腐蚀电流密度,使腐蚀速率减小,缓蚀剂取代水分子及其他腐蚀物质吸附于金属表面成膜,IMDOM的缓蚀性能优于IMDO;当缓蚀剂添加量为3 g/L时,IMDOM的缓蚀率为90.87%,IMDO缓蚀率为84.85%,点蚀程度大大降低,两者均满足Langmuir等温吸附方程,属于化学吸附.【期刊名称】《精细石油化工》【年(卷),期】2018(035)005【总页数】5页(P1-5)【关键词】咪唑啉;缓蚀剂;脱氢松香酸【作者】郭文姝;程丽华;朱华平;许江兵;王慧;丛玉凤【作者单位】广东石油化工学院广东石油化工腐蚀与安全工程技术研究开发中心,广东茂名525000;辽宁石油化工大学化学化工与环境学部,辽宁抚顺113001;广东石油化工学院广东石油化工腐蚀与安全工程技术研究开发中心,广东茂名525000;中国石油化工股份有限公司茂名分公司,广东茂名525000;中国石油化工股份有限公司茂名分公司,广东茂名525000;广东石油化工学院广东石油化工腐蚀与安全工程技术研究开发中心,广东茂名525000;辽宁石油化工大学化学化工与环境学部,辽宁抚顺113001【正文语种】中文【中图分类】TG174.42随着原油重质化程度的日益增加[1],高酸原油年产量占地球原油总量5%左右,年增长率为0.3%。

环氧胺类环氧固化剂的改性手段极其应用经验总结

环氧胺类环氧固化剂的改性手段极其应用经验总结

环氧胺类环氧固化剂的改性手段极其应用经验总结00 引言胺类固化剂是环氧树脂交联剂非常重要的一类固化剂,广泛的应用在各个领域。

然而,由于单一的胺室温下,挥发性大,毒性大,配比严格,反应放热大,固化剂黄变,脆等问题。

一般都需要对胺进行改性,改变其原来的一些特性,比如:可使用时间延长,固化变快,改善固化剂和树脂相容性,液体化,降低胺类固化剂的毒性等,减少固化剂的使用误差,改善施工工艺等,继而提高其相应的固化物性能等。

01 与环氧加成物改性常用的环氧包括双官能度的环氧树脂,但官能度的活性稀释剂等。

主要操作工艺包括过量的胺与树脂反应,进行预改性, 反应掉一部分胺,降低其毒性,拓宽其配比,另外,由于环氧中含有羟基, 会加快体系的反应等,同时由于体系的粘度变大,也会增加体系的反应速度。

比如“多种二元胺与环氧丙基烃基醚(烃基可为丁基、苯基、烯丙基、异辛基、三溴苯基等)反应物固化活性与原料胺相仿,但毒性小、固化物柔性大为提高。

例如由正丁基缩水甘油醚与二乙烯三胺加成反应得到的593固化剂。

还有,环氧树脂与过量二元胺反应生成的改性胺,固化物透明,不需要熟化,不吸潮泛白,臭味小,其它性能与未改性前相仿,操作性能却好多了。

环氧树脂可用低分子量(如E51)或高分子量(如E20)品种,可用溶剂(甲苯,丁醇等),少量的胺可以去掉,也可不去掉,去掉过量胺后的加成物毒性低,固化物无毒,可用于饮用水槽的内壁涂层等与人类饮食有关的领域。

02 与丙烯腈进行的迈克尔加成反应多元胺与丙烯腈的反应,称为氰乙基化反应,亦称迈克尔反应。

丙烯腈用量不同,多元胺的氰乙基化程度亦不同,给固化剂的反应性和树脂固化物的性能也带来相应地变化。

多元胺经氰乙基化后,固化变慢、温和,适用期增长,湿度影响变难。

随着氰乙基化增加,最高放热温度降低,为了得到优良的性能有必要进行后固化。

固化物的力学性能、电气性能要低于多元胺及其加成物。

树脂固化物的耐药品性变化不大,可是耐溶剂性变好,耐无机酸性有些下降,但非常耐含氯溶剂。

曼尼西改性二乙烯三胺建筑结构胶用固化剂的制备研究

曼尼西改性二乙烯三胺建筑结构胶用固化剂的制备研究

曼尼希改性二乙烯三胺建筑结构胶用固化剂的制备研究俞寅辉1,2,乔敏1,2,高南箫1,2,冉千平1,2,刘加平1,21. 高性能土木工程国家重点实验室江苏省建筑科学研究院有限公司, 南京20008;2. 江苏博特新材料有限公司,南京20008摘要:选用苯酚(P)、甲醛(F)对二乙烯三胺(DETA)进行曼尼希反应改性,研究了产物粘度、胺值与原料配比的关系。

将改性的固化剂与环氧树脂E51进行配胶浇筑,研究了胶体的力学性能与潮湿环境下的粘结性能。

结果表明,P、DETA与F的摩尔比[n(P): n(DETA): n(F)]= 1.5:1.5:1.5的产物综合性能最佳。

该固化剂粘度适宜(654.2 mPa⋅s),与E51配胶浇筑后,拉伸强度为40MPa,压缩强度达80MPa,潮湿环境下的钢—钢剪切强度为9.2MPa,与混凝土的正拉粘结强度达4.7MPa,为混凝土内聚破坏。

关键词:曼尼希改性;结构胶;固化剂;环氧树脂中图分类号:TQ433.4+37:TQ314.256文献标志码:A文章编号:Investigation on synthesis and properties of modified diethylenetriamine curing agent by Mannich Reaction for structural adhesiveYU Yin-Hui1,2*,QIAO Min1,2,GAO Nan-Xiao1,2,RAN Qian-Ping1, 2,LIU Jia-Ping1,2 1. State Key Laboratory of High Performance Civil Engineering Materials (Jiangsu Research Instituteof Building Science), Nanjing, 210008, P. R. China2. Jiangsu Bote New Materials Limited Company, Nanjing, 210008, P. R. ChinaABSTRACT:Diethylenetriamine (DETA) is modified by mannich reaction from phenol (P) and formaldehyde (F) for the preparation of a curing agent. Viscosity, amine value and their connection with material ratio is systematically investigated in this paper. In addition, mechanical properties and adhesive strength i s also studied. Results indicated that product has an optimal property with appropriate molar ratio of material. The viscosity of the product was 654.21mPa⋅s. Tensile strength and compressive strength is 40MPa and 80 MPa, respectively. Furthermore, its shear strength and bonding strength under humid environment is 9.2 MPa and 4.7 MPa.Key Words:Mannich modification; Structural adhesive; Curing agent; Epoxy Resin1作者简介:俞寅辉(1986.12-),男,汉族,江苏南通人,硕士,工程师,主要从事建筑结构胶、环氧地坪的开发与应用研究。

环氧树脂改性三乙烯四胺固化剂的合成及性能研究

环氧树脂改性三乙烯四胺固化剂的合成及性能研究

环氧树脂改性三乙烯四胺固化剂的合成及性能研究马尚权;钱瑞;康惠花【摘要】采用环氧树脂E44对三乙烯四胺(TETA)固化剂进行改性及其性能的研究.实验结果表明:最佳改性条件为n(AGE):n(E44):n(TETA)=4.5∶1∶3,反应温度为50℃,反应时间为3h,可制备出水溶性优异,与环氧树脂乳液相容性优良的改性环氧树脂固化剂,其比未改性的三乙烯四胺有优异的物理化学性能和环保性能.该固化剂以水为溶剂,大大降低了制备出的涂料的VOC含量.【期刊名称】《华北科技学院学报》【年(卷),期】2018(015)001【总页数】6页(P109-113,119)【关键词】三乙烯四胺;环氧树脂E44;改性【作者】马尚权;钱瑞;康惠花【作者单位】华北科技学院安全工程学院,北京东燕郊065201;华北科技学院安全工程学院,北京东燕郊065201;华北科技学院安全工程学院,北京东燕郊065201【正文语种】中文【中图分类】TQ433.4370 引言脂肪族多元胺类是指分子中带有两个或两个以上氨基,并以碳氢结构为主链的一类化合物[1],这类化合物是环氧树脂发展史上最早被当做固化剂使用的,而且目前仍处于环氧树脂固化剂的核心地位,然而该类固化剂都存在着一些显著的缺点,如挥发性强,毒性大等,对环境和个人都会造成一定的危害,甚至会吸收空气中的二氧化碳,使得固化剂发黄鼓泡以及各项性能的下降[2~4]。

近年来,随着环境保护要求的深入人心,人们对环保型固化剂的需求量日益增大。

通过环氧树脂对脂肪胺进行改性,不但能够克服未改性胺类固化剂的缺点,而且以水为溶剂,使得整个施工过程更为安全。

必将成为未来固化剂发展的新趋势[5~7]。

本文主要是对脂肪胺固化剂三乙烯四胺进行改性,首先利用单环氧化合物AGE对三乙烯四胺(TETA)进行封端处理,起到降低活性的作用,再与环氧树脂E44进行加成反应,生成环氧-多胺加成物,TETA本身是水溶性的,但经过加成反应之后水溶性下降,采用冰乙酸与之中和成盐,适当的提高其水溶性和水分散能力[8~11]。

2011年第41卷《涂料工业》总目次

2011年第41卷《涂料工业》总目次
第4 卷第l 期 l 2
21 0 1年 1 2月
涂 料 工 业
P N & C AI T 0AT N N I GS I DUS RY T
V J 1 N .2 0 4 。 1 .
De . 0 1 c 2 1
2 1 年第 4 卷 《 0 1 1 涂料工业 》 目次 总
题 目
不 同粒径含氟丙烯酸酯共 聚乳液 的合成及膜表面 6
还原剂对 A E T P乳液体系制备含氟涂料性 6 G TA R
能 的影 响
响应 曲面法优化有机硅改性环氧树脂基耐磨涂料 6
配 方
工艺技 术
载 银 纳 米 二 氧 化 钛 的 分 散 及 对 P C清漆 的改 性 V 1
涂膜开裂机理探讨
氮钒共掺杂纳米 TO 的表 面改性及其对涂料 中 1 i, O 1 0 1 0
4 4 5

聚苯胺复合涂料红外与吸波性能研究
树枝状聚酰胺 一胺紫外光 固化树脂的合成
1 1
1 1
¨
涂料用 自乳化型硝化棉乳液 的制备与性能研究
雷达吸波涂料用混合环氧树脂 固化动力学研究 ¨ 4 9 新 型中高温太 阳能选择性吸收涂层 的研制 u V光 固化涂料 固化后黄变 的探讨 疏水性能研究
聚硅硼氧烷改性环氧树脂的合成和性能研究
第 4 卷第 l 1 2期
21 年 1 01 2月
涂 料 工 业
P N & C0 I S I AI T AT NG NDU T S RY
Vo. No. 2 1 41 1
De . 01 c2 l




期 页
丙烯 酸粉末涂 料耐冲击 性影 响因素的研究

三乙烯四胺接枝型絮凝剂制备及其对模拟焦化废水处理

三乙烯四胺接枝型絮凝剂制备及其对模拟焦化废水处理

工程与技术三乙烯四胺接枝型絮凝剂制备及其对模拟焦化废水处理丛成铭董岁明柴丽红杨晓明(长安大学环境科学与工程学院,陕西西安710064)摘要:焦化废水是一种成分比较复杂性质相对稳定的难处理的高含氮有机废水,所以我们以丙烯酰胺,甲醛和三乙烯四胺为原料,按照曼尼奇反应机理合成一种新型阳离子絮凝剂—三乙烯四胺接枝型絮凝剂。

通 过实验确定的三乙烯四胺接枝絮凝剂的最佳合成条件为投料比1 : 4.68 : 1.65, p H值为9,反应温度为45S C,反 应时间T1为lh,反应时间T2为3h。

通过实验处理模拟焦化废水的过程可知,丙烯酰胺直接接枝引入三乙烯四 胺对模拟焦化废水也有一定的处理效果。

确定最佳处理条件为絮凝剂的用量为1.5m l,p H值为7,沉降时间为 40m in,揽拌时间为6m in,揽拌速度为300r/m in。

在该条件下处理污水的性能最佳。

关键词:三乙烯四胺;合成;絮凝剂;焦化废水处理中图分类号:T B文献标识码:A d o i:10. 19311/j.c n k i. 1672-3198. 2016. 14. 098我国是个资源型和水质型缺水的国家,水污染 问题越来越严重,焦化生产过程中产生了含酚、氰、氨 氮等有毒害物质的高浓度含氮废水。

废水色度高,性 质稳定,其中的C O D和色度都较难除去试验中以丙烯酰胺为主体,根据曼尼奇反应的机理引人并接枝三乙烯四胺,在完成反应后合成胺化接枝型絮凝剂9这 种絮凝剂其中的接枝基团会发生水解反应,从而带正 电,这样絮凝剂就与带负电荷的有机物发生静电吸附作用,从而让废水中的有机物絮凝,形成沉降和脱色0同时该絮凝剂对焦化废水也有一定的处理效果。

在试 验中通过优化工艺条件和完备的正交实验,通过对投 料比、体系p H值、温度及反应时间这些条件的正交实验,得出制备接枝麵絮凝剂的各个条件的最佳值,包括 也得到了处理模拟焦化有机废水的性能和条件。

1实验部分1.1实验试剂与仪器试剂:丙烯酰胺、甲醛、S乙烯四胺、邻菲罗啉等均 为分析纯,模拟焦化废水(苯和硫酸铵配置)《仪器:BSA224S电子天平;D H T型自动恒温温电热套;JB-500D加固型数显恒速搅拌器;HHS-21-4数 显电热恒温水浴锅;MT-5000型精密pH计。

一种曼尼希碱季铵盐缓蚀剂的合成与性能研究_彭雪飞

一种曼尼希碱季铵盐缓蚀剂的合成与性能研究_彭雪飞
第 31 卷 第 5 期 2010 年 5 月
腐蚀与防护
CO R RO SION & PRO T ECT IO N
V ol .31 N o .5 M ay 2010
一种曼尼希碱季铵盐缓蚀剂的合成与性能研究
彭雪飞1 , 冯浦涌1 , 王 贵1 , 陈振宇2
(1 .中海油田生产事业技术部 , 天津 300451 ;2 .华中科技大学化学与化工学院 , 武汉 430074)
彭雪飞等 :一种曼尼希碱季铵盐缓蚀剂的合成与性能研究
H Cl 及含 0 .0056 mol/ L 缓蚀剂的 15 % H Cl 溶液 中极化曲线 , 拟合结果见表 3 。
电路进行拟合 。 图 5 等效电路中 Rs 、Rf 及 Rt 分别为溶液电阻 、
膜电阻与电荷转移电阻 , CP E1 与 CP Edl 分别为与 膜电容及双电层电容相关的常相位角元件 。 各元件 的拟合结果见表 2 。
F lory-H uggins[ 4] 等温方程 :
log(cθ)=lo gK +xlog(1 -θ)
(2)
式中 :c 为缓蚀剂浓度(m ol/ L), K 为相应的常数 , x 是一个尺寸参数 , 表示一个缓蚀剂分子取代的水分
子数 , x 大等于 1 表明缓蚀剂是单分子层吸附 , 小于
1 则是多分子层的吸附 。 把表 1 数据代入上述方程
摘 要 :以甲醛 、苯乙酮 、N-甲基苯胺为原料 , 经缩合反应生成曼尼希 碱 , 向 生成的曼尼 希碱中加 入氯乙酸进 行季铵 化反应 , 最终得到具有优良的酸溶性的曼 尼希碱季铵盐 。 曼尼希碱季铵盐在 碳钢表面形 成单分子 吸附层 , 每个曼尼 希碱季铵盐分子平均取代 1 .38 个水分子 。 电化学阻抗测试结果显 示 , 膜 电阻与电 荷传递电阻 同时随着 曼尼希碱季 铵盐浓度的增加而增大 。 曼尼希碱季铵盐通过降低指前因子及增加 腐蚀反应的 活化能抑 制腐蚀速率 。 将曼尼希碱 季铵盐与丙炔醇复配后 , 可以用于 180℃盐酸或土酸的酸化施工 。 关键词 :缓蚀剂 ;曼尼希碱季铵盐 ;丙炔醇 ;油井酸化 中图分类号 :TG 174.42 文献标识码 :A 文章编号 :1005-748X(2010)05-0345-04

曼尼希反应催化机理研究

曼尼希反应催化机理研究
Key words :metal compounds ;Mannich reaction ;catalytic mechanism ;β-amino ketone derivatives
20 世纪初逐步发展起来一个重要的胺甲基化有机合成 反应,该反应称为 Mannich 反应。它是形成碳碳键和碳氮键 重要的合成反应,其命名是由系统研究该反应的德国化学家 Mannich 的名字得来。该反应制备的含氮衍生物及其 β 胺基酮 化合物被广泛应用在生物碱及制药工业的合成中。科研人员不 断发现在化工领域制备生物碱、炸药、制药等方面,Mannich 反应具有极其广泛且反应被当今化学界尤其是有机合 成化学家极大关注。由于在生产实践当中大量 Mannich 反应 的科研成果被应用,因此对该反应进行深入而宽泛的研究, 以求发现新的催化方法和催化剂,将对人类的可持续性发展 起到巨大的助推作用。本文介绍了 Mannich 反应的研究历程 和催化机理。 1 曼尼希反应的研究历程
自 二 十 世 纪 六 十 年 代 以 来, 曼 尼 希 反 应 的 两 大 研 究 方 向 是 :①充分利用现代化分析仪器深入探究曼尼希反应的催化 机理 ;②不断拓展曼尼希反应的应用及研究领域。
从 1980 以后,曼尼希反应的催化剂逐渐扩展到了各类酸, 促进了曼尼希反应的发展。大量的各类催化剂被实际应用到
Abstract :During the past hundred years,increasing attention has been paid to Mannich reaction.Mannich reaction has been widely applied to prepare β-amino ketones in medical pharmacy and synthesis of alkaloids.It has been a hot topic for chemists to develop a catalyst with high efficiency,poor corrosiveness,and low environmental pollution.In order to find better catalysts,this requires a deep understanding of the catalytic mechanism of Mannich reaction.This paper mainly introduces the development of Mannich reaction and the catalyst used in Mannich reaction,and emphatically discusses the catalytic mechanism of Mannich reaction.

曼尼希碱环氧树脂固化剂的研究进展

曼尼希碱环氧树脂固化剂的研究进展

曼尼希碱环氧树脂固化剂的研究进展hug.20l148精细与专用化学品FineandSpecialtyChemicals第19卷第8期20I1年8月曼尼希锨环氧榭脂圆丫匕剂的研究进展宋道理(长沙市化工研究所,湖南长沙410007)摘要:阐述了曼尼希碱型环氧树脂固化剂的合成原理,合成方法和发展历史与发展趋势,并就增加固化剂韧性,耐热性,降低固化剂黏度和开发水下固化剂以及改进固化剂生产工艺等方面进行了探讨.关键词:曼尼希碱;环氧树脂;固化剂ResearchdevelopmentofMannichbasetypeepoxyresincuringagentsSoNGDao—li(ChangshaChemicalResearchInstitute,Changsha410007,China)Abstract:Thesynthesisprinciplesandmethods,thedevelopmenthistoryandtendencyofMa nnichbasetypeepoxyresincuringagentswereintroducedinthispaper.Thetechniqueofimprovingtoughnes sandheatresist—anee,reducingviscosityofcuringagentsweredescribed.AndwealsodiscussedhowtOdevel opunderwatereu—ringagentsandimprovetheproductionprocessofcuringagents.Keywords:Mannichbase;epoxyresin;curingagent固化剂是环氧树脂应用中必不可少的反应助剂,与环氧树脂一起决定着固化物的理化性能和应用领域.多胺类及改性胺类固化剂应用最广,用量最大.早期的环氧树脂多使用乙二胺,二乙烯三胺等多胺类化合物作为固化剂,但这类固化剂存在毒性大,固化配比苛刻,使用期短,固化产物脆性大,综合机械性能不佳等缺点,容易从空气中吸收水和二氧化碳产生白化现象,现在很少直接使用,改性胺固化剂基本取代了基础胺类固化剂.以酚类,醛类和多胺类化合物通过曼尼希反应(Man—nichReaction)制得的曼尼希碱(MannichBase)型改性胺固化剂,具有常温呈液态,活性高,操作性好,可低温或潮湿环境固化环氧树脂等特点.我国从2O世纪80年代初开始进行曼尼希碱型固化剂H2N—R2一NHz+R2CH0+0HH2N—R2一NH的合成研究,到2O世纪末,已经有T一31,701,703等多种产品供应市场,成为环氧胶黏剂和环氧复合材料的主要固化剂种类.在21世纪的前十年, 随着合成研究的深入,一批新型曼尼希碱型固化剂出现,逐渐克服了老产品韧性差,使用期短等缺陷,将应用范围扩大到了建筑结构胶,环氧涂料等更多的领域.l基本合成原理曼尼希反应是在胺类化合物(碱组分),含活泼氢的化合物(酸组分)与醛类化合物3种组分之间进行的不对称缩合反应_1].曼尼希碱型固化剂是酚类,醛类和多胺类化合物通过曼尼希反应合成制得的低分子液态聚合物.化学反应式通常表述为『2]: 0H收稿日期:2011—06—20作者简介:宋道理(1975一),男,工程师,从事高分子合成方面的研究. H—HN—R2一NH0HH—NH—R2一NH22011年8月宋道理:曼尼希碱环氧树脂固化剂的研究进展?49?2合成方法曼尼希碱型固化剂的合成方法可以分为一步反应法和二步反应法.在近些年的研究中,还出现了一些新的合成方法,通过将新的基团枝接到3种组分上,来改善固化剂的性能,但总体上依然属于一步法或者二步法合成.2.1一步反应法合成国内研究实践中,一般采用一步反应法合成曼尼希碱型固化剂,即在室温下先将酚类和胺类化合物投入反应器混合,然后加入醛类,加热反应一段时间,真空脱水得到成品.反应工艺流程表述为:H2N—Rl—NH—CHoH+R2oHH2N—一R1一NH-ECR2OH睽类醛=类酚类一园一囡一囡---,-pa,酚类——+l搅拌混合l—I反应回流卜一l真空脱水l 研究表明,酚类和胺类混合后,会生成盐,但不稳定,易于逆向水解.而醛类加入后,可以迅速与胺类反应,使酚和胺的成盐正向反应无法进行.因此这一反应实质上可以看作是先由胺类和醛类反应生成N一羟甲基化合物l_】].H2N—R2一NH2+R2CHO—+H2N—R2一NH—CHOH lR2生成的N一羟甲基化合物在升温的条件下再与酚类缩合生成曼尼希碱l_】].2.2二步反应法合成也有使用二步反应法来进行合成的,这里仅讨论酚醛先反应生成中间体,再与胺类反应制得曼尼希碱型固化剂的工艺.第一步采用酚类和醛类化合物反应,在催化剂的存在下,生成低聚合度的液态酚醛聚合物,再与胺类化合物反应制得曼尼希碱型固化剂.工艺流程表述为:醛类一酚类__'胺类l一囡一园一产品H2N—R1一NH2+一CR2OH+H2.H2N_Rr_NH七也可以将醛与胺的反应生成醛亚胺(席夫碱)的反应或者将酚与胺反应生成盐的反应来作为第一步,但在合成中较少应用.3合成研究在曼尼希碱型固化剂中,20世纪80年代初开发的T一31固化剂具有代表性.T一31固化剂采用苯酚,甲醛水溶液和乙二胺合成制得,有着突出的特点:固化速度快;可以在0~C左右的低温或者潮湿环境下固化环氧树脂;相对于多胺类固化剂,毒性低,配比要求不严格,有效的改善了操作性;具有良好的耐化学腐蚀性和耐潮湿性.但也存在着缺H—HN—R1NHCR2OHH—NH_R1一NH2化学反应式表示为:第一步,醛类与酚类的缩合反应,生成酚醛树脂中问体:一CHR2OH第二步,胺类与酚醛树脂中间体反应,生成曼尼希碱:0H}I_一HN—R1一NH—ClR2OH陷:使用期较短;韧性较差,综合力学性能不好;耐盐雾腐蚀性一般;对涂饰界面附着性一般.为了改善曼尼希碱型固化剂的性能,2O世纪八,九十年代的研究中,使用的多胺类化合物开始多样化,例如苯二甲胺,己二胺,二乙烯三胺等,以期满足耐热性,韧性等方面的性能要求.21世纪的前十年,随着研究的发展和新材料的出现,为了获得性能更加优异的产品,各种新材料相继引人曼尼希碱型固化剂的合成中来,新的合成工艺也相继出现.3.1增韧改性曼尼希碱型固化剂在应用中具有低温,常温固剂一化一催一+H园5O?精细与专用化学品第19卷第8期化性能好的优点,而比较突出的缺陷是韧性不好,综合力学性能差.因此,在保持低温,常温固化性能的前提下,改善固化剂韧性,是近十年来曼尼希碱型固化剂研究的重点.鹿桂芳等.则提出了采用壬基酚,(2,3一二甲夏建陵等Ⅲ提出了应用桐油改性曼尼希碱型固化剂的方法.桐油先水解生成桐油酸,桐油酸甲酯化生成桐酸甲酯,桐酸甲酯通过傅氏反应改性苯酚(或甲酚),制得桐酸甲酯苯酚(甲酚),然后与甲醛基)二亚丁基三胺和甲醛来合成曼尼希碱型固化剂.由于引入了含有C.碳链的壬基酚和带有双C碳链的脂肪多胺,制得的产品与T一31固化剂比较,保持了低温固化,配比宽泛等优点,而韧性有了很大的提高.该反应的反应式为:和脂肪多胺反应制得曼尼希碱型固化剂.通过改变脂肪多胺和酚的种类,可以制得一系列固化剂.桐油改性曼尼希碱型固化剂的韧性,耐腐蚀性和附着性都有了明显的改善.该反应的曼尼希反应式如下:CH3&lt;-7CH3手3cHcH—cH—CH—cH&lt;--CH3手3COOCH3+H2N—RNH2+HCHOOH体只有1,前者的柔韧性显着改善.腰果酚结构H2N~NH2+HCHO+-H:.20NH_一.如上所述,目前改善曼尼希碱型固化剂韧性的主要方法是引入具有长碳链结构,尤其是长直碳链结构的酚类或者胺类化合物.在笔者的实践中,发现使用壬基酚或者己二胺这类具有饱和脂肪长链结构的化合物来改进T一31固化剂,可以改善固化物韧性,而固化速度,耐热性等指标变化不大;使用腰果酚,桐油这类含有不饱和双键,而且链特别长的化合物来合成曼尼希碱型固化剂,增韧效果特别显着,固化体系的韧性可以达到甚至超过低分子聚CH3-(-CH2手3cHcH—cH—N—R—NH2七CH29-3COOCH3_NH_cH—_NH_R_NH2l0H酰胺固化体系,同时使用期显着增长,固化速度变慢,而耐热性会有一定的下降.3.2耐热性曼尼希碱型固化剂结构中含有苯环,在常温固化中,耐热性比较好.以使用苯酚,甲醛和乙二胺合成的T一31固化剂为例,与E一51树脂反应生成的固化物Tg在80℃左右,可以满足一般应用的耐热要求.但在一些环氧应用中,对固化剂的耐热性要求更高,如蓝丽红],侯茜坪等人都提到了将耐热性好的曼尼希碱型固化剂,用于制备常温固化且可耐15O~200oC高温的特种胶黏剂.瑞士的耶贝尔_7提出使用间苯二酚,3,5-二甲苯酚和间甲苯酚取代苯酚与三乙烯四胺/四乙烯五胺和甲醛进行反应来获得一系列曼尼希碱,用于环氧树脂固化剂.获得的固化剂与HunstmanAralditeGY250树脂反应生成的固化物Tg温度接近或者超过100℃.笔者用烷基酚,问苯二胺和甲醛合成曼尼希碱型固化剂,该固化剂中含有双苯环结构,与CYD128树脂配合,获得的固化体结构致密,硬度高.该固化体Tg可以达到120~C左右,耐湿热老化性能优越.3.3低黏度一.一一.o一31c一一.一一./\N2011年8月宋道理:曼尼希碱环氧树脂固化剂的研究进展?51? 参与曼尼希反应的3种化合物一般都具有比较高的活性,反应中聚合度增加较快,容易形成大分子聚合物,黏度较大.而在一些应用中,如浇注,灌缝,低温或室内使用,要求低黏度固化剂,以尽可能地少使用稀释剂,因此开发低黏度固化剂具有实际意义.戴志晟提出,在合成中引入腰果酚,可以获得低黏度的曼尼希碱型固化剂,黏度可以低至500mPa?S.张兴喜等提出,使用脂环胺代替脂肪胺和芳香胺可以获得较低黏度的曼尼希碱型固化剂.3.4水下固化剂曼尼希碱型固化剂的结构特点使其能在低温和潮湿环境下固化环氧树脂.水下环境可以说是一种极端的潮湿环境,开发能在水下固化环氧树脂的固化剂在水利施工,建筑物防渗防漏等方面有积极意义.长沙市化工研究所在这方面做了有益探索,810水下环氧固化剂在水下建筑物的防渗补漏及补强加固方面的应用取得了长足进展.有文献报道,使用长链烷基酚取代苯酚可以在曼尼希碱型固化剂中引入憎水基团,从而合成出水下固化剂_2j.3.5低聚甲醛的应用现阶段曼尼希碱型固化剂的合成多采用含量在36左右的甲醛水溶液.使用甲醛水溶液可以降低生产投料难度,保持反应平稳.但大量不参与反应的水的引入,增加了生产过程中的能耗,增加了废水的排放量,不利环保.在曼尼希碱型固化剂合成中引入低聚甲醛,可以比较好地减少排放,降低能耗.笔者在T一31固化剂的生产中引入了低聚甲醛,并与使用甲醛水溶液做了对比.使用36甲醛水溶液,每生产lt产品产生的废水为400kg左右;而改用低聚甲醛生产,同样生产lt产品,废水量只有100kg左右.使用低聚甲醛合成曼尼希碱型固化剂,废水量大幅减少,从而减轻了废水无害化处理的工作量.由于反应体系内的含水量减少,升温和脱水所需要的时间和能量消耗都大幅减少,节约了能源.36甲醛水溶液在低温或长时间放置时会自聚结晶,影响投料准确性,低聚甲醛则无此问题.4发展趋势国内曼尼希碱型固化剂研究从20世纪80年代开始发展至今,三十年来一直方兴未艾.尤其是最近十年,随着新材料和新工艺的出现,新产品层出不穷.对未来新产品的发展趋势和研究方向,以下几点值得关注.(1)耐热固化剂.室温固化耐高温胶黏剂是环氧高端应用的一个热点.目前耐热改性环氧树脂的研究已经比较深入,但配套使用的常温固化剂还无法达到中温或者高温固化剂的性能.通过曼尼希反应来改性DDM之类的中温固化剂以使之可以在常温下固化但能耐高温,将是此类应用的一个发展方向.(2)低温固化剂.曼尼希碱型固化剂的一个突出优点就是可以低温固化环氧树脂,部分产品配合促进剂使用,固化温度可以达到一10℃,可以满足黄河以南地区的常年使用要求.如果能在此基础上开发出可以在一2O℃固化环氧树脂的品种,将能满足我国绝大部分地区的使用需求.(3)完全水下固化剂.现在已有一部分曼尼希碱型固化剂可用于水工建筑的水下施工,基本可以满足混凝土构建物结构补强的需要,但强度与不带水施工相差较大.如能在此基础上开发出水下黏接强度损失小于10的固化剂品种,将在更大范围内满足水下施工的需要.(4)重防腐涂料.随着我国经济的发展,大量新建的海洋工程,石油工业,公路桥梁,火车船舶,工程机械,工业建筑和工业管道都需要应用到重防腐涂料.环氧树脂是目前应用最多,应用范围最广的重防腐涂料用树脂,而曼尼希碱则是其主要的固化剂品种之一.目前环氧树脂重防腐涂料的不足有两点:耐候性差和高温耐腐蚀性不好l】.改善这两点不足可以作为重防腐涂料用固化剂的发展方向.(5)环境保护.曼尼希碱型固化剂生产过程中,容易产生大量的高化学需氧量(COD)废水,而且苯酚,低分子量有机多胺和甲醛都是有毒害的挥发性有机物(VOC),不利于环境保护和安全生产.引入高沸点组分,如壬基酚,腰果酚,(2,3一二甲基)二亚丁基三胺,己二胺,聚甲醛等,可以有效降低VOC,减少生产废水中的有机物含量,降低废水的COD值.随着对化工生产的环保要求越来越高,为做到可持续发展,在开发研究过程中应对此予以足够的重视.参考文献[1]万道正编译.曼尼希反应和曼尼希碱化学EM].北京:科学出版社,1986,17-24.52?精细与专用化学品第l9卷第8期[2]杨海望.我国曼尼希型环氧树脂固化剂的现状及发展预测[J].热固性树脂,1997,(4):41-46.[3]鹿桂芳,丁颜滨,李佩瑾,等.Mannich反应制备壬基酚改性胺固化剂EJ].化学工程师,2001,(8):1-3.E4]夏建陵,黄焕,魏斌,等.桐酸甲酯改性酚醛胺的合成与性能研究[J].黏接,2002,22(4):卜3.[5]蓝丽红,谢涛,李媚,等.柔性耐温环氧树脂胶黏剂的研制EJ].广西民族学院(自然科学版),2004,10(3):80—82.[6]侯茜坪,彭静,董艳霞,等.室温固化耐高温耐水胶黏剂的研含有物学性,还能制[J].热固性树脂,2008,23(4):3739.[7]u?耶贝尔.以间苯二酚为基础的曼尼希碱[P].ZL200680014167,2008—0423.[8]戴志晟.环氧树脂用天然长链取代酚醛胺固化剂[J].涂料工业.2000,(8):1_4.r-9]张兴喜,李娟.酚醛胺(T一31)环氧树脂固化剂之浅谈[J].中国胶黏剂,2005,14(8):52—54.[1o]李国莱,张慰盛,管从胜.重防腐涂料[M].北京:化学工业出版社,1999,1-8.耶鲁大学学生发现能降解聚氨酯的生物体包括JonRussell在内的一组耶鲁大学2011级本科生经过研究发现,亚马逊雨林中的真菌类植物;;的生物体具有降解聚氨酯的作用.耶鲁大学发布新闻稿说,这一发现被发表在《应用与环境微生;;》期刊上,据此可能找到新的方法来减少全世界的垃圾填埋.;;学生们从雨林植物身上采集内生菌,并带回美国康涅狄格州NewHaven的实验室测试其生物活÷+随后对具有生物活性的菌群进行分析,研究是否能将其用于医疗或其他用途.;+尽管其他一些介质也能够降解聚氨酯,但耶鲁大学的学生发现的这种酶的前景最为看好,因为它;+在存在氧气的情况下降解塑料.耶鲁大学称这一特性是"让填埋垃圾生物降解的先决条件.";天津列入首j比整治"地沟油"试点近日,国家发改委,财政部,住房和城乡建设部联合批复,在包括天津市津南区在内的全国33÷{个城市(区)实施餐厨废弃物资源化利用和无害化处理试点实施方案.33个试点城市将获得总计6.3÷t亿元的循环经济发展专项资金.÷作为这次实施方案的首批试点城市,天津市将精细规划完善的餐厨废弃物收集,运输,处理和利用体系,提出废弃油脂,固形物和液体的一体化统筹解决方案,探索餐厨废弃物资源化利用和无害化处理的治本之策.天津市承诺建立完善的餐厨废弃物回收,运输,利用体系,建立健全有关法规制度和政策机制,加强监管,严厉打击非法收运餐厨废弃物的行为.特别是要统筹餐厨废弃物和废油脂的一体化处理,规范"地沟油"的收运,处理和利用,坚决防止"地沟油"回流餐桌,保障食品安全.建立健全有关法规制度和政策机制,加强监管,严厉打击非法收运餐厨废弃物的行为.据了解,此次公布的试点城市(区)除天津津南区之外,还包括北京朝阳区,上海闵行区,重庆及大连,宁波,青岛,深圳等地.。

三乙烯四胺(TETA)化 学 品 安 全 技 术 说 明 书

三乙烯四胺(TETA)化 学 品 安 全 技 术 说 明 书

化学品安全技术说明书第一部分化学品及企业标识化学品中文名称:三亚乙基四胺化学品俗名或商品名:三乙烯四胺化学品英文名称: Triethylenetetramine企业名称:爱敬海洋(江西)化工有限公司地址:江西省宜春市工业园邮编:336000电子邮件地址:传真号码:0086-795-3653666企业应急电话: 0086-795-3666260技术说明书编码:生效日期:2010年3 月5 日国家应急电话:(0532)3889090;(0532)3889191第二部分成分/组成信息化学品名称:三亚乙基四胺纯品有害物成分浓度 CAS No.三亚乙基四胺98% 112-24-3第三部分危险性概述危险性类别:第8.2类碱性腐蚀品侵入途径:吸入食入经皮吸收健康危害::吸入本品蒸气或雾对鼻、喉和呼吸道有刺激作用,高浓度吸入可引起头痛、恶心、呕吐和昏迷,蒸气、液体或雾对眼有强烈腐蚀作用,重者可致失明,皮肤接触可发生灼伤;对皮肤有强致敏作用;口服液体灼伤消化道,慢性影响:有明显的致敏作用。

环境危害:对环境有危害,对水体可造成污染。

燃爆危险:遇明火、高热或与氧化剂接触,有引起燃烧的危险,燃烧时,放出有毒气体,能腐蚀铜及其合金。

第四部分急救措施皮肤接触:脱去并隔离被污染的衣服和鞋。

用肥皂和清水清洗皮肤。

注意患者保暖并且保持安静,确保医务人员了解该物质相关的个体防护知识,注意自身防护。

眼睛接触:立即翻开上下眼睑,用流动清水或生理盐水冲洗至少15分,就医。

吸入:迅速脱离现场至空气新鲜处,呼吸困难时给输氧,呼吸停止时,立即进行人工呼吸,就医,食入:误服者立即漱口,给饮牛奶或蛋清。

就医。

第五部分消防措施危险特性:遇明火、高热可燃,与氧化剂能发生强烈反应。

有害燃烧产物:氧化氮、一氧化碳、二氧化碳。

灭火方法:用水喷射逸出液体,使其稀释成不燃性混合物,并用雾状水保护消防人员。

灭火剂:水、抗溶性泡沫、干粉、二氧化碳、砂土。

第六部分泄漏应急处理应急处理:疏散泄漏污染区人员至安全区,禁止无关人员进入污染区建议应急处理人员戴自给式呼吸器,穿化学防护服,不要直接接触泄漏物,在确保安全情况下堵漏,用沙土、干燥石灰或苏打灰混合,然后收集运至废物处理场所处置,也可以用大量水冲洗,经稀释的洗水放入废水系统,如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( .中国石 油 大学 ( 东) 学化 工学 院 , 东青 岛 2 6 5 2 1 华 化 山 6 5 5; .潍坊 学 院化 学化 工学 院 , 山东潍坊 2 16 ) 6 0 1
摘 要 : 三 乙 烯 四胺 ( E A) 氧 树脂 固化 剂 进 行 了 曼 尼 希 ( n i ) 性 及 其 固 化 性 能 的 研 究 。实 验 结 果 表 对 TT 环 Manc 改 h
环 氧 树 脂 是 一 种 用 途 广 泛 的 高 分 子 材 料 。 固化 剂 是 环 氧
o y r sn we ec e ial dfe y Ma n c e cins De e d n e o e rp o ete n t e c mp ne t f x e i r h m c ly mo i d b n ih r a to . i p n e c ft i r p riso h o o n so h c rn g ns wa t d e u g a e t ssu id. I s fu d t a d f d TETA u n g n s w t u tb e vs o i i twa o n h tmo i e i c r g a e t ih s i l ic st i a y,a p o ra e p r p t i
中 图 分 类 号 :Q 60 4 T 3 . 文 献 标 识 码 : A 文 章 编 号 :23— 3 2 2 1 ) 5— 0 8— 4 0 5 4 1 (0 1 0 0 1 0
St y o n h ss a d Pr p r i s o o i e i t lne Te r m i e ud n Sy t e i n o e te f M d f d Tr e hy e t a n i
A src :hspp r a ps danw kn fr ty n t mi T T bta tT i ae s e o e e ido tehl et r n h r i e e a e( E A)t ecr g gns o — y u n e t f e p i a rp
2 e agU i r t C lg hmir .W i n n e i ol e C e sy& C e c l ni ei ,W i n h n og2 16 , hn ) f v sy e o f t hmi gn r g e agS ad n 6 0 1 C i aE e n f a
明 : 尼希 固化 剂最 佳合 成 条 件 为 n T T : ( 酚 ) n 甲 醛 )=15 1 1反 应 温 度 为 8 曼 ( E A) n 苯 :( .:: , 0℃ , 应 时 间 4 h 可 制 备 出 反 , 具 有 合 适 的黏 度 、 中 的 胺 值 以及 游 离 酚 含 量 小 于 5 的 改 性 环 氧 树 脂 固化 剂 ; 比 未 改 性 的三 乙 烯 四胺 有 优 异 的物 适 % 其 理 化 学 性 能 和 环 保 性 能 。 固化 剂 与 水 不 互 容 , 能 与 乳 化 环 氧 树 脂 互 容 , 用无 水 乙 醇 作 为 溶剂 , 到 良好 的效 果 。 不 可 得 关 键 词 : 尼 希 改 性 ; 成 ; 化 剂 ; 保 性 能 曼 合 固 环
第 4 卷第 5期 1
2 1 年 5月 01
涂 料 工 业
PAI NT & C0ATI NGS I NDUS TRY
Vo . 1 No 5 14 . Ma 0 1 y2 1
曼 尼 希 改 性 三 乙 烯 四 胺 固 化 剂 的 合 成 及 性 能 研 究
倪 维 良 王林 同 , 云骐 周 欣 明 ቤተ መጻሕፍቲ ባይዱ 克磊 孙 玲玲 , 柳 , , ,
a ievle , n e h nl o t t f< % ( yw ) cnb rp r yuigo t u o p si f m n aus adaf ep e o cne r no 5 b t ,a epeae b s pi m cm oio o d n m tn
r w t ras,wh c h we c e trp y i a h mia r p ris a d as n io me t fe t. a mae l i ih s o d mu h b t h sc lc e c p o e e n o e vr n n a ef cs e l t l l K e W o ds: a ih m o i c t n; y t e i ; u n g n ; n io me tlefc s ) r m nn c d f a i i o s n h ss c r g a e t e v r n n a fe t i
( .C lg hmsy& C e cl n i e n , h aU i rt o e o u Qn doSa dn 6 5 5 C i ; 1 o eeo C e ir l f t hmi gn r g C i nv syf P t l m, i a h nog2 65 , hn a E ei n e i re g a
Cur n e t an i h Re c i n f r Ep x sn i g Ag n s by M n c a to o o y Re i
NiW ela g W a g L n o g Li n ,Zh u Xi m i g iin , n i t n , u Yu qi o n n ,Che l i S n L n l g’ n Kee , u i g i n
相关文档
最新文档