彩色图像分割算法的研究与实现
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
彩色图像分割算法的研究与实现
图像分割技术是图像处理的一个重要分支,它的目的是从含有颜色的图像中将几何形状的元素提取出来。
目前,彩色图像分割算法具有高效率、简单易行处理以及准确性方面的优势,广泛应用于机器视觉、识别等诸多领域。
本文从图像分割理论和技术基础入手,综述目前彩色图像分割算法的研究情况,包括基于阈值分割、基于模板匹配、基于区域生长和基于边缘检测等方法。
然后提出了一种基于改进的Otsu算法的彩色图像分割算法,将偏色抑制、局部阈值和K-means聚类算法相结合,最终实现了高效的彩色图像分割。
Introduction
Image segmentation is an important branch of image processing, its purpose is to extract geometric elements from color images. At present, the color image segmentation algorithm has the advantages of high efficiency, simple and easy processing and accuracy, and is widely used in many fields such as machine vision and recognition. In this paper, we review the current research on color image segmentation algorithms, including threshold segmentation, template matching, region growing and edge detection methods. Then, a color image segmentation algorithm based on an improved Otsu algorithm is presented, which combines
color suppression, local threshold and K-means clustering algorithm to achieve efficient color image segmentation.
1.本理论
图像分割是图像处理的基本过程,要根据图像中所含信息,将整幅图像划分成合理的子块,从而可以实现将不同的物体背景划分开来的目的。
图像分割的基本步骤包括图像预处理、图像特征的提取和分割的决策。
Image segmentation is a basic process in image processing. It is necessary to divide the whole image into reasonable sub-blocks according to the information contained in the image, so as to achieve the purpose of separating different objects from the background. The basic steps of image segmentation include image preprocessing, feature extraction and segmentation decision.
2.值分割
阈值分割是将图像划分成背景和前景两部分,其中,背景区域由满足某种阈值条件的像素组成。
阈值分割的构造原理是:从图像中采样像素,根据特定阈值划分出背景和前景区域。
阈值分割有以下几种类型:全局阈值分割、局部阈值分割和非线性阈值分割。
Threshold segmentation is to divide the image into two parts, background and foreground, in which the background area is composed of pixels that meet a certain threshold
condition. The construction principle of threshold segmentation is: sampling pixels from the image and
dividing the background and foreground areas according to a specific threshold. There are several types of threshold segmentation: global threshold segmentation, local threshold segmentation and nonlinear threshold segmentation.
3.于模板匹配的图像分割
基于模板匹配的图像分割方法,也称为模板分割方法,是以模板形状为基础,将目标图像中的对象分割出来的一种分割方法。
模板分割的基本原理是:采用相应的模板,计算模板与图像的相似度,并在最佳的位置放置模板,以分割图像。
模板匹配常用的算法,包括经典的平方差模板匹配法、归一化相关模板匹配法、归一化交叉相关匹配法等。
Template matching-based image segmentation, also known as template segmentation, is a segmentation method based on template shape to segment objects in the target image. The basic principle of template segmentation is: use the corresponding template, calculate the similarity between the template and the image, and place the template at the best position to segment the image. Common algorithms for template matching include the classical square difference
template matching, normalized correlation template matching, normalized cross-correlation matching, etc.
4.于区域生长的图像分割
基于区域生长的图像分割方法是根据目标图像中像素的属性,将其分割成不同的特征区域的方法。
该方法的核心思想是:以设定的像素点作为初始种子,按照一定的选择规则依次增加其周围相似像素,最终得到想要的特征图像区域。
其常用的算法有:区域增长算法、Kmeans聚类算法、区域增长聚类算法以及分水岭算法等。
Region growing-based image segmentation is a method for segmenting pixels in a target image into different feature regions according to their attributes. The core idea of
this method is: take the preset pixel points as initial seeds, and add their similar pixels around them according to certain selection rules, and finally get the desired feature image regions. Its common algorithms include region growing algorithm, K-means clustering algorithm, region growing clustering algorithm and watershed algorithm, etc.
5.于边缘检测的图像分割
基于边缘检测的图像分割方法是以边界检测技术为基础,结合聚类技术,最终分割出图像的特征区域的方法。
边缘检测技术有很多种,包括Sobel算子、Canny边缘检测算法和LoG算子等,它们
的核心原理是应用滤波器,检测出图像的边界或轮廓,以分割图像
中的特征区域。
Edge detection-based image segmentation is a method based on edge detection technology, combined with
clustering technology, to finally segment the feature areas of the image. There are many kinds of edge detection techniques, including Sobel operator, Canny edge detection algorithm and LoG operator, etc. Their core principle is to apply filters to detect the edges or contours of the image to segment the feature areas of the image.
6.进的Otsu算法
目前,Otsu算法是最广泛使用的阈值分割算法之一,它能够有效解决全局阈值分割无法实现的阈值分割问题,但其仍然存在一定的缺陷,如受图像光照变化影响大、无法有效抑制偏色等问题。
为了改善原Otsu算法的分割效果,提出了一种改进的Otsu算法,将偏色抑制、局部阈值和K-means聚类结合起来,实现了高效的彩色图像分割。