考研数学利用等价无穷小量求函数极限的方法探讨
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学利用等价无穷小量求函数极限的方
法探讨
等价无穷小量求函数极限是求取函数极限的一种重要方式,它通过无穷小量的折中把复杂的极限问题简化为可以用微积分的知识解决的问题,因此在考研数学中运用广泛。
首先,要理解“等价无穷小量求函数极限”,我们需要熟悉极限。
极限概念可以描述一个函数在某个点附近的变化情况,也可以用来描述函数在某个点处的行为。
它的定义是:当x趋近于某个值时,f(x)的值将趋近于某个值L。
极限的计算一般有两种方法:一种是直接法,即根据已知条件直接求得极限;另一种是间接法,即把极限间接表示成等价无穷小量,然后用微积分的知识求得极限。
其次,要正确使用等价无穷小量求函数极限,可以用一些例子来说明,例如求一元函数f(x)=3*x+2在x=1处的极限,我们可以用
δ/Δx=0的方法,即把它表示成Δx→0时f(x+Δx)-f(x)→0,就可以把极限问题简化为Delta x 是一个无穷小量,所以我们可以把它表示成δ/Δx=0,即Δx→0时δ→0,这时候我们就可以用微积分的知识求得极限,得出f(x)在x=1的极限为5。
此外,使用等价无穷小量求函数极限需要注意几点:
1、针对不同的函数和情况,需要使用不同的量来表示无穷小量;
2、极限的求解结果往往不能确定,因此我们需要考虑多种极限值;
3、在求解过程中,要熟练掌握高等代数、微积分等知识,以便更好地理解和使用等价无穷小量来求解极限问题;
4、熟悉一些典型的极限求解方法,以便在遇到极限问题时能够及时应用。
总之,等价无穷小量求函数极限在考研数学中有重要意义,使用这种方法可以更好地理解极限概念并正确求解极限问题,但也需要熟悉相关知识,并能够正确运用。