类X43高超声速飞行器气动力和气动热的数值研究
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工学硕士学位论文
类 X43 高超声速飞行器气动力和气动热的 数值研究
朱建阳
哈Байду номын сангаас滨工业大学
2008 年 12 月
国内图书分类号: V211.1+4 国际图书分类号: 530
工学硕士学位论文
类 X43 高超声速飞行器气动力和气动热 的数值研究
硕 士 研 究 生 : 朱建阳 导 申 请 师: 周超英教授 学 位: 工学硕士
II
哈尔滨工业大学工学硕士学位论文
目录
摘要 ......................................................................................................................... I Abstract ................................................................................................................. II 第 1 章 绪论 ........................................................................................................ 1 1.1 高超声速流动的主要特征 ............................................................................ 1 1.2 吸气式高超声速飞行器的设计特点 ............................................................ 2 1.3 国内外研究现状 ........................................................................................... 3 1.4 本文的研究内容 ........................................................................................... 7 第 2 章 高超声速飞行器流场数值方法 ............................................................... 8 2.1 引言 .............................................................................................................. 8 2.2 流动控制方程 .............................................................................................. 8 2.2.1 流动方程的限制和假设 .......................................................................... 8 2.2.2 在直角坐标系下的三维守恒方程 .......................................................... 9 2.3 气体的热力学属性 ..................................................................................... 12 2.3.1 热力学状态方程 ................................................................................... 12 2.3.2 气体属性 ............................................................................................... 12 2.4 气体的输运系数 ......................................................................................... 13 2.5 控制方程源项及其参数 ............................................................................. 13 2.6 k- 两方程湍流模型 ................................................................................ 14 2.7 壁面边界条件 ............................................................................................. 15 2.8 流场的数值解法 ......................................................................................... 17 2.8.1 有限体积和空间离散 ........................................................................... 17 2.8.2 空间数值方法 ....................................................................................... 19 2.8.3 限制器的使用 ...................................................................................... 21 2.9 本文所采用的数值方法 .............................................................................. 22 2.10 本章小结 ................................................................................................... 22 第 3 章 高超声速飞行器外形优化 ..................................................................... 23 3.1 引言 ............................................................................................................ 23 3.2 飞行器机身前体的优化 .............................................................................. 24 3.3 飞行器机身后体设计 ................................................................................. 29
I
哈尔滨工业大学工学硕士学位论文
Abstract
Hypersonic Technology is one of the key technologies that the world's major aviation and space powers are actively exploring and developing, and the hypersonic aircraft which are developed by this technology will play an important role in aerospace in the future, while the optimization of aerodynamic shape and aerodynamic heating problem have always been hot issues in the development of hypersonic aircraft. In this thesis, attempt to optimize the shape of X43-type hypersonic vehicle is carried first, where a three ramp external compression fore-body is considered. The optimization of fore-body and the inlet of engine is reached to meet largest total pressure recovery factor, while the back-body is obtained to meet a better thrust coefficient. In the process of optimization fore-body and the inlet of engine, it is necessary to solve a transcendental equation, which is difficult. In order to solve this problem, a numerical method is used where the second wedge angle is divided into a series of angles. The numerical results show that the optimal model is improved in aerodynamics and aerodynamic heating. It has bigger lift-drag ratio and less aerodynamic heating. This indicates that the optimization method used in this work is practical and effective. In order to verify the accuracy of numerical methods, a model for which there exist experimental data is chosen at first. The numerical simulation results appear to match well with the experimental data in lift-drag ratio and static pressure along the wall. This indicates that the optimization method used in this work is rational. Finally, in order to get more practical information about the hypersonic vehicle, a simulation for a three-dimensional model which is extended from optimized two-dimensional model are carried out. An analysis of the surface of the heat flux distribution shows that there exists an extreme heating flux on the fore-body and engine flow channel. The present study provides some useful information for aircraft thermal structure design. Keywords hypersonic, aerodynamic, aerodynamic heat, aircraft total pressure recovery factor, lift-drag ratio
Zhu Jianyang Prof. Zhou Chaoying Master of Engineering Mechatronics Engineering Shenzhen Graduate School December, 2008 Harbin Institute of Technology
哈尔滨工业大学工学硕士学位论文
摘要
高超声速技术是当前世界各主要航空航天大国正在积极探讨与研发的关 键性技术之一,运用这项技术开发的高超声速飞行器将成为未来航空航天领 域飞行器的重要组成部分,而外形和气动热问题贯穿高超声速飞行器研制的 始终,本文针对这一问题进行了研究。 先对高超声速飞行器的外形优化进行研究。 针对三斜波系外部压缩前体, 前体和发动机进气道的优化以最大总压恢复系数为参数,后体的优化以推力 系数为参数, 对类 X43 高超声速飞行器外形进行优化。 在前体的优化过程中, 针对求解超越方程存在的困难,本文吸取了数值离散的思想,对前体的第二 个楔形角进行离散,通过计算选择最优的角度。接着对模型进行数值计算, 发现优化后的模型升阻比增大,热流密度值减少,验证了优化方法具有一定 的合理性。 为了验证数值方法的正确性,本文对一个具有实验数据的模型进行数值 模拟,将计算结果和实验数据进行比较,发现两者在升阻比、飞行器上壁面 沿程静压等方面吻合较好,充分证明了数值方法的正确性。 最后为了得到更多关于类 X43 高超声速飞行器流场的信息,对飞行器的 三维模型进行数值模拟,三维模型是对优化后的二维升力体模型进行拉伸而 得到的。通过数值模拟得到飞行器表面的热流密度分布,通过分析发现飞行 器的热流密度极值出现在楔形前体或者发动机内流道,这为飞行器防热结构 的设计提供一些有用的信息。 关键词 高超声速飞行器;气动力;气动热;最大总压恢复系数;升阻比
AERODYNAMICS AND AERODYNAMIC HEAT NUMERICAL RESEARCH OF X43-TYPE HYPERSONIC VEHICLE
Candidate: Supervisor: Academic Degree Applied for: Specialty: Affiliation: Date of Defence: Degree-Conferring-Institution:
学 科 、 专 业: 机械电子工程 所 在 单 位: 深圳研究生院 答 辩 日 期: 2008 年 12 月 授予学位单位: 哈尔滨工业大学
Classified Index: V211.1+4 U.D.C:530
Dissertation for the Master Degree of Engineering
类 X43 高超声速飞行器气动力和气动热的 数值研究
朱建阳
哈Байду номын сангаас滨工业大学
2008 年 12 月
国内图书分类号: V211.1+4 国际图书分类号: 530
工学硕士学位论文
类 X43 高超声速飞行器气动力和气动热 的数值研究
硕 士 研 究 生 : 朱建阳 导 申 请 师: 周超英教授 学 位: 工学硕士
II
哈尔滨工业大学工学硕士学位论文
目录
摘要 ......................................................................................................................... I Abstract ................................................................................................................. II 第 1 章 绪论 ........................................................................................................ 1 1.1 高超声速流动的主要特征 ............................................................................ 1 1.2 吸气式高超声速飞行器的设计特点 ............................................................ 2 1.3 国内外研究现状 ........................................................................................... 3 1.4 本文的研究内容 ........................................................................................... 7 第 2 章 高超声速飞行器流场数值方法 ............................................................... 8 2.1 引言 .............................................................................................................. 8 2.2 流动控制方程 .............................................................................................. 8 2.2.1 流动方程的限制和假设 .......................................................................... 8 2.2.2 在直角坐标系下的三维守恒方程 .......................................................... 9 2.3 气体的热力学属性 ..................................................................................... 12 2.3.1 热力学状态方程 ................................................................................... 12 2.3.2 气体属性 ............................................................................................... 12 2.4 气体的输运系数 ......................................................................................... 13 2.5 控制方程源项及其参数 ............................................................................. 13 2.6 k- 两方程湍流模型 ................................................................................ 14 2.7 壁面边界条件 ............................................................................................. 15 2.8 流场的数值解法 ......................................................................................... 17 2.8.1 有限体积和空间离散 ........................................................................... 17 2.8.2 空间数值方法 ....................................................................................... 19 2.8.3 限制器的使用 ...................................................................................... 21 2.9 本文所采用的数值方法 .............................................................................. 22 2.10 本章小结 ................................................................................................... 22 第 3 章 高超声速飞行器外形优化 ..................................................................... 23 3.1 引言 ............................................................................................................ 23 3.2 飞行器机身前体的优化 .............................................................................. 24 3.3 飞行器机身后体设计 ................................................................................. 29
I
哈尔滨工业大学工学硕士学位论文
Abstract
Hypersonic Technology is one of the key technologies that the world's major aviation and space powers are actively exploring and developing, and the hypersonic aircraft which are developed by this technology will play an important role in aerospace in the future, while the optimization of aerodynamic shape and aerodynamic heating problem have always been hot issues in the development of hypersonic aircraft. In this thesis, attempt to optimize the shape of X43-type hypersonic vehicle is carried first, where a three ramp external compression fore-body is considered. The optimization of fore-body and the inlet of engine is reached to meet largest total pressure recovery factor, while the back-body is obtained to meet a better thrust coefficient. In the process of optimization fore-body and the inlet of engine, it is necessary to solve a transcendental equation, which is difficult. In order to solve this problem, a numerical method is used where the second wedge angle is divided into a series of angles. The numerical results show that the optimal model is improved in aerodynamics and aerodynamic heating. It has bigger lift-drag ratio and less aerodynamic heating. This indicates that the optimization method used in this work is practical and effective. In order to verify the accuracy of numerical methods, a model for which there exist experimental data is chosen at first. The numerical simulation results appear to match well with the experimental data in lift-drag ratio and static pressure along the wall. This indicates that the optimization method used in this work is rational. Finally, in order to get more practical information about the hypersonic vehicle, a simulation for a three-dimensional model which is extended from optimized two-dimensional model are carried out. An analysis of the surface of the heat flux distribution shows that there exists an extreme heating flux on the fore-body and engine flow channel. The present study provides some useful information for aircraft thermal structure design. Keywords hypersonic, aerodynamic, aerodynamic heat, aircraft total pressure recovery factor, lift-drag ratio
Zhu Jianyang Prof. Zhou Chaoying Master of Engineering Mechatronics Engineering Shenzhen Graduate School December, 2008 Harbin Institute of Technology
哈尔滨工业大学工学硕士学位论文
摘要
高超声速技术是当前世界各主要航空航天大国正在积极探讨与研发的关 键性技术之一,运用这项技术开发的高超声速飞行器将成为未来航空航天领 域飞行器的重要组成部分,而外形和气动热问题贯穿高超声速飞行器研制的 始终,本文针对这一问题进行了研究。 先对高超声速飞行器的外形优化进行研究。 针对三斜波系外部压缩前体, 前体和发动机进气道的优化以最大总压恢复系数为参数,后体的优化以推力 系数为参数, 对类 X43 高超声速飞行器外形进行优化。 在前体的优化过程中, 针对求解超越方程存在的困难,本文吸取了数值离散的思想,对前体的第二 个楔形角进行离散,通过计算选择最优的角度。接着对模型进行数值计算, 发现优化后的模型升阻比增大,热流密度值减少,验证了优化方法具有一定 的合理性。 为了验证数值方法的正确性,本文对一个具有实验数据的模型进行数值 模拟,将计算结果和实验数据进行比较,发现两者在升阻比、飞行器上壁面 沿程静压等方面吻合较好,充分证明了数值方法的正确性。 最后为了得到更多关于类 X43 高超声速飞行器流场的信息,对飞行器的 三维模型进行数值模拟,三维模型是对优化后的二维升力体模型进行拉伸而 得到的。通过数值模拟得到飞行器表面的热流密度分布,通过分析发现飞行 器的热流密度极值出现在楔形前体或者发动机内流道,这为飞行器防热结构 的设计提供一些有用的信息。 关键词 高超声速飞行器;气动力;气动热;最大总压恢复系数;升阻比
AERODYNAMICS AND AERODYNAMIC HEAT NUMERICAL RESEARCH OF X43-TYPE HYPERSONIC VEHICLE
Candidate: Supervisor: Academic Degree Applied for: Specialty: Affiliation: Date of Defence: Degree-Conferring-Institution:
学 科 、 专 业: 机械电子工程 所 在 单 位: 深圳研究生院 答 辩 日 期: 2008 年 12 月 授予学位单位: 哈尔滨工业大学
Classified Index: V211.1+4 U.D.C:530
Dissertation for the Master Degree of Engineering