2010五年级决赛详解
2010年度五年级第一学期期末整理与提高(计算、概念、几何篇)
2010年度五年级第一学期期末整理与提高班级()姓名()学号()一、计算部分:1、直接写出答案:以小数的四则运算为主(易错题型):0.36+1.54= 10-0.01= 3.5÷0.1= 0.25×52×0.4=2.4×0. 5= 7÷0.5=3.5÷0.35= 2.4 ×9+2.4=2.5×0.4÷2.5×0.4= 5.3-(0.3+3.5)= 0.3+1.4+0.06+0.7=2.5×0.4-2.5×0.4=2、竖式计算:2.22×0.027 2.5307÷0.23 0.82÷0.36 (得数凑整到千分位)(商到百分位,并写出余数)(商用循环节表示)6.9÷3.3 4.28×5.85 4.8÷0.23(商用循环节表示) (保留两位小数) (得数保留三位小数)递等式计算:能简就简8 ×(12.5+0.5) 1. 01 ×9.9 12 ÷0.25(2.5+2.5+2.5+2.5+2.5)×8.8 17.48 ×37-174.8 ×1.9+1.748 ×820(3.8 ×7.2 ×5.5)÷(1.9 ×2.4 ×11)0.1 ÷0.01 ×[6.8 -(1.6 -0.16)] 1.6 ×3.7 ×1.25 (1-0.39)×(5.82-0.82)43÷2.5÷42.64-5.19+3.19 0.25×4.8 700÷28 8.8×1.25 30.3-[(7.344÷2.4-1.11)×2.2]÷1.43 45-(1.6+0.84÷0.06)×1.63、简易方程(带*检验)2x+0.4x=48 8x-x=14.7 * 0.52×5-4x=0.672÷4=198÷x 0.7(x+0.9)=42 x-2.4+1.4=12.47.4-(x-2.1)=6 x+(3-0.5)=12 3x-3.2 = 2.4-5x5×8+6x=2(5-x)( x+1.6)÷3 = 5 x÷0.5=60.2-37.64、化简求值:(1)当a=5,b=3.8时,求(15+ b)÷a (2)当k=9,m=4,n=6时,求m(3k+4n)的值。
历届(9—13届)希望杯五年级答案及解析
历届五年级希望杯答案及解析2010年第八届2011年第九届1、解:原式=1.25 ×31.3 ×3 ×8 = 100 ×93.9 = 9392、解:将循环节多写一次即可逐位比较3、解:十位数之前应该有1 + 2 + 3 +……+9 = 45位。
1位数有9位,10—19有20位,20—27有16位,所以十位数的开头应为28,为28293031324、解:从A到B一定会经过三步,第一步要从A走到中间,最后一步应该是从中间走到B,而第二步为从中间走到中间只能有一种走法。
从A到中间一条线上共有5种走法,从B到中间一条线上也有5种走法。
所以共有5 ×1 ×5 = 25种走法。
5、解:在3 ×4的长方形中有20个横平竖直的正方形。
斜着的有1 ×1正方形17个,2 ×2的正方形8个,还有1个3 ×3的大正方形。
共46个。
6、解:47 ÷b = c ……c ,即b ×c + c = 47,即c ×( b + 1 ) = 47,所以c一定是47的约数,c为47肯定不符合条件,所以c = 1,即除数是46,余数是1.7、解:能被90整除说明即能被9整除也能被10整除,被10整除说明最后一位是0,被9整除说明数字和应为9的倍数,即2 + 0 + 1 + 1 + a +0 是9的倍数,所以a = 5,即后两位是50.8、解:约数个数为奇数说明这个自然数为完全平方数,1000以内最大的完全平方数是31²= 9619、解:首先最下面的一个角肯定没有,最上面的中部也会少一部分,所以是丁。
10、解:一圈共400米,甲是乙速度的1.5倍,所以甲共走了240米,乙走了160米。
DE为60米,CE为40米。
SADE = 3000平方米,SBCE = 2000平方米,差为1000平方米。
11、解:弟弟如果不多跑半小时应比哥哥少跑80 ×30 — 900 = 1500米,所以哥哥共跑了1500 ÷(110—80)= 50分钟,共跑了50 ×110 = 5500米。
2010年第8届走美杯5年级试题详解
2010年走美杯五年级初赛试卷(A卷)一、填空题I(每空8分,共40分)1、.⨯+÷=378201067。
分析:3.7×8+2010÷67=(4-0.3)×8+30=32-2.4+30=59.6考点:本题难度较低,考察速算中的凑整技巧、对年份数2010=2×3×5×67的熟悉。
2、某车间男工人数是女工人数的2倍,若调走12名男工,则女工人数是男工人数的2倍。
这个车间原有人。
分析:调走前男工人数是女工的2倍,调走后男工人数变成女工的0.5倍。
所以以女工人数为单位“1”,那么可以求出女工人数为12÷(2-0.5)=8(人)这个车间原有8×(1+2)=24(人)考点:本题难度中等,考察差倍应用题与分数应用题的结合,需要学生对这类问题中单位“1”的找法有明确的理解。
3、小明要在⨯44的方格表中选择4个方格表图上阴影,使得每行,每列,每条对角线上都恰好有一个格子涂上阴影。
现在,小明已经涂了两格,请你替他把剩下的两格涂上。
分析:涂法如下图所示考点:本题难度较低,主要需要学生利用逆向思维,先在根据已经涂色的格子在图中找到不能染色的格,再根据排除的结果,找到符合要求的唯一染色方法。
4、小华每分钟吹一次肥皂泡泡,每次恰好吹出100个,肥皂泡泡吹出后,经过一分钟就有一半破了,经过两分钟还有二十分之一没有破,经过两分半肥皂泡泡全破了。
在第20次吹出了肥皂泡泡的时候,没有破的肥皂泡泡有个。
分析:由已知条件,第20次吹出肥皂泡时,没有破的肥皂泡中有第18、19、20分钟吹出来的。
第20分钟吹出来的有100个,第19分钟吹出来的剩100÷2=50(个),第18分钟吹出来的有100÷20=5(个),所以共有100+50+5=155(个)肥皂泡没有破。
考点:本题难度较低,考查学生对题意的理解和分类讨论思想。
5、甲、乙、丙、丁四人中只有1人会开汽车。
2010年南安市小学五年级上学期语文学习目标检测情况分析
2010年南安市小学五年级上学期语文学习目标检测情况分析2010年秋季,我市小学五年级上学期语文学习目标检测由市教师进修学校统一命题。
据了解,各中心校对此次期末检测都相当重视,组织严密,部分单位采用不同年级学生混合编位,不同年级教师互调监考,中心小学组织人员下校或蹲点全程监督,并由中心统一组织评改,考试结果能较真实地体现教师教学和学生学习的真实情况。
现根据各单位送交的质量分析对试题内容和学生答卷情况作简要分析。
一、总体情况我们从各单位送交的质量分析中抽取了10所市直及乡镇中心小学,从抽样统计的成绩看,到考率达到100%,及格率95.68%,优秀率72.8%,平均成绩83.8分,从而看出我市小学五年级上学期学生语文学习目标达成情况较好,教学质量正常。
二、试卷分析本次期末检测卷以课程标准为依据,立足教材,以教材为依托,从学生的生活实际入手,注重课内外的相互结合,侧重检测学生的综合能力,体现了以生为主这一指导思想。
试卷较好地体现了对知识与能力、过程与方法、情感态度与价值观三维目标的结合,对平时的教学工作有较好的导向作用。
本试卷由三部分组成。
第一部分“积累与运用”。
占全卷的52%。
本部分有看拼音写词语、选择正确的读音、字义辨析、改正错别字、选词填空、加标点和歇后语、名言、古诗的积累等字等方面的考核;有修改病句、加标点;有课文内容掌握情况的测查。
目的在于考查学生对本学期的字、词、句以及课文内容的积累、理解、灵活运用的能力。
第二部分“阅读”。
占全卷的18%本试卷的课外阅读部分安排有了一篇和学生生活实际的短文,讲述了一个由一张纸条引起误会的故事。
考查内容涉及近义词、词语理解、给短文加标题、短文内容体会以及口语交际,还涉及文章的描写方法和描写顺序的考核。
重在检测学生的理解、分析、概括、判断能力能及口语表达的能力。
第三部分“习作”。
以《泪水》为话题,要求学生围绕“泪水”,写出自己流泪的经历,要求感情真实,语句通顺,并能自己给文章取个合适的题目。
2010学年第二学期五年级语文期中质量测试卷
2010学年第二学期五年级语文期中质量测试卷一、阅读理解:55%(一)百朵千朵丝瓜花28%① 盛夏的乡下,最美的风景,莫过于满眼的丝瓜花了。
② 那花是怎么开的?简直像一群活泼的孩子,在天地间撒野了,草垛上伏着,院墙上爬着,树上攀着。
满屋顶的花笑逐颜开,一朵一朵的小花异常兴奋地笑着。
③ 其实,单朵看丝瓜花,不美。
但清纯、朴素的一张笑脸,让你忍不住喜爱。
而百朵千朵的丝瓜花一齐开放,就是壮观了。
看着它们,心里不能不涌起一种震撼:微弱的生命,原来也是有这样的爆发力。
④ 有首著名的写春天的诗句“黄四娘家花满蹊,千朵万朵压枝低。
”我猜想诗里的花是桃花,或是梨花。
若是换成丝瓜花呢?定是千朵万朵压藤低了。
那些丝瓜藤实在美妙得很,细细的,沿着什么攀援而上。
它们是袅娜的,如有着纤弱的腰肢的少女,一步一步,都藏了生动,藏了语言。
⑤ 我在怀念丝瓜花的时候,不能不想起我老去的祖母。
记忆里的每个夏天,她都会把房前屋后打扮成丝瓜花的乐园。
这还不够,她还搭了丝瓜架,专门长丝瓜。
她会做很好喝的丝瓜汤,她会用丝瓜做成许多菜肴,如丝瓜炒鸡蛋,丝瓜炒豆瓣。
⑥ 一院的丝瓜花,这朵谢了,那朵又开了,那种浓烈的美好,是记忆里永存的景象。
一个人可以离去,但他(她)曾经的印迹,会因一株植物而复活。
1.划去带点字的不正确的读音。
3% 盛.夏(shèng chéng ) 乐.园(yuè lè) 专门长.丝瓜(ch áng zh ǎng ) 2.写出与句中划线的词语意思相近的词。
2%满屋顶的花笑逐颜开,一朵一朵的小花异常兴奋地笑着。
( )( ) 3.在文中找出下列词语的反义词。
2%强壮( ) 华丽( ) 4.用上合适的关联词把两句话合成一句话。
2%(1) 单朵看丝瓜花并不美。
(2)百朵千朵的丝瓜花一齐开放,就很壮观了。
5.查字典理解。
4%“壮观”的“壮”,音序是 部首是 。
壮观的意思是: 6.认真阅读短文,完成填空。
2010年世少赛五年级总决赛试卷
2010 世界少年奥林匹克数学竞赛(中国区)选拔赛全国总决赛五年级总决赛试题1. 有四个相同的瓶子里分别装有不同重量的酒,每瓶与其他各瓶分别合称一次,重量分别是8,9,10,11,12,13千克。
已知4只空瓶重量之和及酒的重量之和均是质数,问最重的两瓶内共有()千克酒。
2. 在1—100的100个数中取出两个不同数相加,使其和是3的倍数,问有()种不同取法。
3. 某部84集的电视连续剧在某星期日开播,从星期一到星期五以及星期日每天都要播出1集,星期六停播,问:最后一集在星期()播出。
4. 如果一个101位数33…3 N 55…5,这个数能被7整除,那么N等于()30个3 50个55. 一个四位数的数码都是非零偶数,它又恰是某个偶数字组成的数的平方,则这个四位数是()。
6. 电影厅每排有19个座位,共23排,要求每一观众都仅和它邻近(即前、后、左、右)一人交换位置,问:这种交换方法是否可行:()7. 一旧钟钟面上的两针每66分钟重合一次,这只旧钟在标准时间的一天中快或慢()分钟。
8. 有一个两位数,将这个两位数乘以1—9中任意一个数,所得积的各位数字之和都和原来的两位数的各位数字之和相等,请找出所有的这样的两位数()。
9. 将长25分米,宽20分米,高15分米的长方体木块锯成完全一样的尽可能大的立方体,不能有剩余,每个立方体的体积是(),一共可据()块。
10. 在10×10方格纸的每个方格中任意填入1,2,3,4四个数之一,然后分别对2×2方格的四个数求和。
在这些和中,至少有()个相同。
11. 水果店有一批苹果,若每千克卖1.2元,就会亏40元,若每千克卖1.5元,就能赚80元,为尽快卖出,老板决定降价出售,结果赚得40元钱,每千克苹果应以()元出售。
12. 在一次数学竞赛中甲答错题目总数的91,乙答对7道题,两人都对的题目是题目总数的61,问:甲答对了 ( )道题13. 甲、乙、丙、丁均买了奖券,他们中只有1个人中奖,而中奖号码的最后四位数字组成的四位数(不变顺序)恰是一个完全平方数,已知甲的奖券最后四位数是1 □□ 8,乙的奖券最后四位数是□ □4 5,丙的奖券最后四位数是3 4 □ 1,丁的奖券的最后四位数是□ □ 4 0,则中奖号码的后四位数字组成的四位数是( )14. 王小明从家到学校上学。
2010年统测五年级数学参考答案
2010年统测五年级数学参考答案一题:每空1分,共计29分。
1、2102、 8 9 233、23+7和13+17或11+194、66 109 5、千 2009 6、15 180 7、1980 1980 320 8、15 9、4 10、5629 11、4143 12、71 3 4 13、5 150 正方体 二题:每题1分,共计10分。
1、×2、×3、√4、√5、×6、×7、√8、×9、× 10、×三题:每题2分,共计16分。
(1) C (2) B (3) B (4) A (5) C (6) A(7)B (8) A四题:共计17分1、32 1103 113 61 31 2、121 1813 2419 53 3、165 2 1 五题:每题2分,共计6分。
8437 25 32 六题:共计22分。
1、 1 - 52 - 31 = 154 或1 - (52 + 31 )= 154 2、25×6 = 150 立方分米 =150 升 150×0.74=111千克3、 146.5平方米 58.6元4、2.5分米5、(1)平均数19.5 中位数 18.5众数 27 (2)中位数2010年统测四年级数学参考答案一、每空0.5分,共计12分。
1、2 0.15 152、 2.854 二点八五四 2.93、6537000000 653700万 65.37亿4、0.30 0.2995、32760 3.008 10.296、8 0°锐角三角形7、0.309 3.098、 1009、36 10、1/1000 100 11、5612、80÷(24-16)=10二、每题1分,共计10分。
1、×2、×3、×4、×5、√6、×7、×8、√9、× 10、×三、每题2分,共计18分。
2009年五年级决赛详解
考点分析:图形的拼合。
1
1 3 5 9 10 6
3 12
9 7 5
12
10
4
2 7
5 1 6 3
拼出的最大面积是 35。
H G C F
D
D
C
B
在直角三角形 AEG 中,∠EAG = 30° , 所以有 EG =
∠EGH = 30° ,所以有 EH =
1 AE ; 在直角三角形 EHG 中, 2
1 1 EG ;那么 EH = AE 。 2 4 HG AH 3 3 3 由于 HG 平行于 BC ,所以有 = = ,那么 HG = EC = BC 。 EC AE 4 4 8 1 1 1 3 3 3 15 所以 S ∆EGH = EH × HG = × AE × BC = S ∆ABC = × 10 = cm 2 。 2 2 4 8 32 32 16 注:有一个角是 30° 的直角三角形非常特殊, ∠BAC = 30° ,那么作 ∠DBA = 30° , 三角形 ABD 是等腰三角形,且 ∠CBD = 60° ,那么三角形 BCD 就是等边三角形, 1 那么有 BC = BD = CD = AD ,即 BC = AC 。 2
9.11 头牛 10 天可吃完 5 公顷的草地上的草,12 头牛 14 天可吃完 6 公顷的草地上 的草。假设每公顷草地上的草量相等,每天新生长的草量相等,每头牛每天的吃草 量也相等,那么 8 公顷草地可供 19 头牛吃(8)天。 考点分析:牛吃草问题。 草地大小不一样,先变成一样的: 120 公顷的草地:(120 ÷ 5 ) × 11 = 264 头牛 10 天可吃完,(120 ÷ 6 ) × 12 = 240 头牛 14 天可吃完,问 (120 ÷ 8 ) × 19 = 285 头牛多少天可吃完。
2010陈省身杯数学邀请赛五年级答案
2010年“陈省身杯”国际青少年数学邀请赛五年级1. 计算:58+15⨯⨯8+25⨯8+35⨯8+45⨯8= 。
【分析】: 原式=58358558758958⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯相邻两个加数之间相差258⨯⨯。
是等差数列,所以原式=(58958)521000⨯+⨯⨯⨯÷=2. 在一个减法算式里,被减数、减数与差的和等于2010,而被减数是差的5倍,那么差等于 。
【分析】: 减数+差=被减数,被减数+减数+差=2010,所以2×被减数=2010,被减数=1005,差=被减数÷5=1005÷5=201.3. 数列2,9,17,24,32,39,47,54,62,……的2010项是 。
【分析】:经过观察,会发现奇数项和偶数项分别是公差是15的两个等差数列,2010即为偶数项等差数列的第1005项,由等差数列的通项公式1(1)n a a n d =+-可知:第1005项为9+1004×15=15069.4. 如图,一个正方体被切成27个小长方体,这27个小长方体的表面积之和是原长方体表面积的_______倍。
第4题图 第8题图【分析】:本来的大长方体前后各有一个面,被切了两下之后相当于多了4个面,前后面的面积变为原来的3倍,同理,左右上下也变为原来3倍。
总面积也变为3倍。
5. 数学大师陈省身先生生于1911年,2010年是他诞辰99周年,若六位数2010恰好是99的倍数,则这个六位数是 。
【分析】:被99整除的特征:从末位开始两位一断,分成两位数,把这些两位数求和,这个和能被99整除原来的数就能,根据这个特征,方框里填入696. 一个平行四边形,其相邻的两边的长度分别是14cm 和10cm ,而它的一条高是12cm ,则这个平行四边形的面积是 cm 2。
如下图,由于直角三角形中,斜边肯定大于直角边,所以12cm 的高只能是图②中的,所以面积为10×12=120(cm 2 )。
2010迎春杯五年级初赛详解
三、填空题Ⅲ(每题 12 分,共 48 分)
9. 如图,请沿虚线将 7×7 的方格表分割成若干个长方形,使得每个长方形中恰好包含一个数字,并且
次这样的交换后,小张手中的铅笔的数量是小李手中钢笔数量的 11 倍. 【答案】4 【专题】应用题
【解析】设经过 x 次交换后,小张手中铅笔的数量是小李手中钢笔数量的 11 倍.则可以列方程:
200 6 x 11 20 x ,解得 x 4 .
帅
图所示,那么 【答案】20
3. 在长方形 ABCD 中,BE=5, EC=4,CF=4,FD=1,如
帅
老
当乙行 CA 的同时,甲,丙合行 CD,而 CA=CD,所以乙的速度等于甲,丙速度和.
师
【解析】乙行全程需 30-12=18(分) ,
A
C
D
B
【答案】16 【专题】行程问题
那么他行 CA 用 18÷3=6 分,行 BC 用 18÷3×2=12 分, 所以甲、乙在 C 点相遇时为 8 点 24 分;
从而甲行 AC 用 24 分,所以乙的速度为甲速度的 24÷6=4 倍.
所以,丙速为甲速的 4-1=3 倍.
帅
帅帅思维公众号:shuaiteacher 第 5 页 兴趣是最好的老师
帅帅思维公众号:shuaiteacher 第 4 页 兴趣是最好的老师
帅
老
师
B A
学习有意思
快乐思维
12. 如图,C,D 为 AB 的三等分点;8 点整时甲从 A 出发匀速向 B 行走,8 点 12 分乙从 B 出发匀速向 A
2010-2015年高思杯数学五年级试题及答案
18. 墨莫、萱萱和卡莉娅在比较他们获得的高思积分卡,墨莫比萱萱多 26 分,墨莫的积分比卡莉娅和
萱萱加起来的多
1 6
,卡莉娅的积分比萱萱的少
2 5
,那么墨莫有________分.
A
B
19. 如图,正方形 ABCD 和正方形 CEFG 放在一起,∠BCE 是直角,已
知 AB 9 , IG 12 ,那么三角形 CFI 的面积是________.
8. 一个两位数除以 5 余 1,除以 8 余 4.这个两位数最小是_______. 知识点:余数问题 难易度:☆(半颗星) 答案: 36.
9. 下面是一个数列:1、4、9、16、25、„„,这个数列前十项的和是______. 知识点:计算问题 难易度:★(一颗星) 答案: 385.
10. 如图所示,四个半径是 1 厘米的圆放在一起,四个圆的圆心刚好在一个边长 是 2 厘米的正方形的四个顶点上,图中阴影部分的面积是_______平方厘 米.(π 取 3.14) 知识点:几何——圆面积计算 难易度:☆(半颗星) 答案: 9.42.
14. a、b、c、d、e、f 分别代表 0~5 中的 6 个不同数字, abca d ebf ,则 abca ________.
15. 在 1 到 100 这 100 个正整数中,不能被 2、3、5、7 中任何一个数整除的数有________个.
三、填空题 II
16.
计算:
22 1 1 3
42 1 35
62 1 57
20122 1 2011 2013
=
________.
17. 一天晚上,亨亨同学熬夜写作业,写到凌晨 2 点多时,实在不行了,倒在床上就开始呼呼大睡.睡 觉前他看了一下闹钟,发现了一件有趣的事情——时钟上的时针和分针正好重合在了一起.早晨 8 点多时,亨亨被闹钟闹醒.他看了一下闹钟,又发现了一件有意思的事——此时时钟上的时针和分 针正好张开成一条直线.亨亨睡了_________小时.
历年迎春杯高年级决赛(5年级)经典试题汇编
数论
21. (2009 年数学解题能力展示中年级组初试试题)将 1、2、3、4、5、6、7、8、9 这九个数排成一 行,使得第一个数是第二个数的整数倍,前两个数的和是第三个数的整数倍,前三个数的和是第 四个数的整数倍,……,前八个数的和是第九个数的整数倍.如果第一个数是 6,第四个数是 2, 第五个数是 1,最后一个数是_____________.
22. (2009 年迎春杯高年级决赛试题)三个两两不同的正整数,和为 126,则它们两两最大公约数之 和的最大值为 .
23. (1993 年第 9 届迎春杯决赛试题) 设 a 与 b 是两个不相等的自然数, 如果它们的最小公倍数是 72, 那么 a 与 b 之和可以有 种不同的值.
9 历年数学解题能力展示高年级经典试题汇编(1984?~2010)
11 历年数学解题能力展示高年级经典试题汇编(1984?~2010)
31. 从甲地到乙地,需先走一段下坡路,再走一段平路,最后再走一段上坡路。其中下坡路与上坡路 的距离相等。陈明开车从甲地到乙地共用了 3 小时,其中第一小时比第二小时多走 15 千米,第二 小时比第三小时多走 25 千米。如果汽车走上坡路比走平路每小时慢 30 千米,走下坡路比走平路 每小时快 15 千米。那么甲乙两地相距多少千米?
C
B
A
E D
4 历年数学解题能力展示高年级经典试题汇编(1984?~2010)
11. (迎春杯模拟题)如图,求 x 的度数。
80° 20°
20° 20°
12. (2010 年数学解题能力高年级复试试题)现有一块 L 形的蛋糕如图所示,现在要求一刀把它切成 3 部分,因此只能按照如图的方式切,但不能斜着切或横着切.要使得到的最小的那块面积尽可能 大,那么最小的面积为 平方厘米. 10 厘米
2010年秋季五年级科学期末考试
2010年秋季期末考试小学五年级科学试卷题号一二三四总分总分人得分(30分钟完卷,满分50分)一、我知道。
(每空1分,共18分)1、生物之间像链环一样的关系,叫做食物链。
食物链通常从开始,到终止。
2、种子发芽需要合适的、和这三个基本条件。
3、光是沿传播的。
当用一面镜子挡住光的去路时,会改变方向,形成。
4、和会强烈地改变地球表面的地形。
5、力的单位是,用字母“”表示。
6、物体间接触面光滑,摩擦力;接触面粗糙,摩擦力。
7、影子的产生需要、和三个条件。
8、我国的地形特点是东部多平原,西部多。
二、辨一辨。
对的打“√”,错的打“×”。
(每小题2分,共12分)1、不同的生物对环境有着自己特有的需要。
()2、摩擦力我们看不见,也感觉不到。
()3、我们眼睛里的瞳孔有控制进入眼睛内部光线多少的作用。
()4、体操运动员在比赛前要在手上抹上镁粉,目的是减小摩擦力。
()5、土壤中有腐殖质和盐分,它们是植物生长必需的营养元素。
()6、教室的墙壁涂成白色是为了利用光的反射。
()三、对号入座。
请将正确答案的番号填在横线上。
(每题2分,共10分)1、火箭升空,主要是靠来工作的。
A、摩擦力B、反冲C、重力2、蚯蚓喜欢生活在的环境中。
A、温暖宁静B、干燥明亮C、阴暗潮湿3、早晨,阳光照射的物体所产生的影子方向应该在。
A、东方B、西方C、南方4、地球上最有价值的资源是。
A、钻石B、黄金C、土壤5、潜水艇上装的潜望镜是利用光的原理制作的。
A、反射B、折射C、直射四、实验分析。
(1、2小题各3分,3小题4分,共10分)1、用一个长方形的盒子,里面涂成黑色,盖子的一端剪掉一块,盒子底部铺上吸水纸(如图一)。
将10条蚯蚓放在盒子中间,盖好盖子,5分钟后,打开盒盖。
我们发现蚯蚓呆在明亮一端的有条,中间条,黑暗一端条。
2、再找一个盒子,在盒子里一端铺湿润的泥土,另一端铺干燥的泥土(如图二)。
将10条蚯蚓放在盒子中间,盖好盖,5分钟后,打开盖子。
2010小学五级数学期中质量检测分析
2010年小学五年级数学期中质量检测分析◆您现在正在阅读的2010年小学五年级数学期中质量检测分析文章内容由收集!本站将为您提供更多的精品教学资源!2010年小学五年级数学期中质量检测分析一、命题分析本次试卷命题有以下特点:1、检测内容比较全面,包括小数乘法、小数除法、循环小数、求近似数、观察物体、小数乘除法的简便运算、以及解方程和解决问题的知识。
2、本次检测命题充分体现了以教材为主的特点,注重对基础知识基本技能的考查。
3、加强了对学生灵活运用数学知识解决生活实际问题能力的考查,使学生在解答中充分感受到学以致用的快乐。
4、本次检测命题层次有跨度,题目比较灵活,题型很新颖。
5、注重检查学生的学习习惯。
如果学生没有良好的学习习惯,如认真审题、细心计算、学会检验是很难获得高分的。
二、检测整体情况:(成绩分析略)三、存在问题:分析学生试卷答题情况,主要有以下几个问题要引起教师注意:1、计算失分很多。
小数乘除在实际生活和后续数学学习中有着广泛的应用,是小学生应该形成的基础知识和基本技能。
可是,学生反映的情况不容乐观,出错较多,尤其是小数除法。
有的学生小数点点错了,有的学生减错。
2、量的转化有困难,主要是弄错计量单位之间的进率,特别是时间单位。
3、对循环小数和无限小数的关系理解出错。
很多人把循环小数当做有限小数,反映出有限小数、循环小数和无限小数的意义建构不成功。
4、不能根据题目特点灵活应用运算定律使计算简便。
面对一道计算题,题目指明简算的就简算,没有明确要求简算的就不知道怎么办。
反映出教师在数学教学过程中缺乏对学生自主判断、选择意识能力的训练和培养。
5、解决问题方面还存在较大问题。
解决问题是学生数学学习最重要的方面之一。
在这次检测中表现出学生解决问题错误较多。
一方面不能准确清楚理解数量关系,即便常用如时间、速度、路程的关系都有很多人出错;另一方面,利用数学知识解决实际问题时,不考虑实际情况,不根据实际情况灵活选择方法。
2010年第八届五年级希望杯二试解析
1、原题:计算:587÷26.8×19×2.68÷58.7×1.9= 3.61 .解析:这是一道四则运算的题目,主要考察学生对除法基本性质的掌握情况。
对于五年级的学生来讲,已经学过了分数的约分,完全可以把这道题变成分数计算的形式,587与58.7约分,26.8与2.68约分,最后只剩下了19×1.9,计算结果是:36.12、原题:在下面的两个小数的小数部分的上方分别加上表示循环节的一个或两个点,使不等式成立。
0.285<2/7<0.285解析:“循环小数问题,是希望杯五年级的必考题”首先我需要把七分之二化成小数,得数为:0.285714285714,前面的数本来就比这个数小,如果要加表示循环节的点的话,在2和5上面加都可以,同时加或只加一个都行;后面的数要加的话,就只能同时在“8”和“5”上面加点了。
3、原题:如图,在长500米,宽300米的长方形广场的外围,每隔2.5米摆放一盆花。
现在改为每隔2米摆放一盆花,并且广场的四个顶点处的花盆不动,则需增加盆花;在重新摆放花盆时,共有盆花不用挪动。
解析:对于这道题,我们可以转变一下观察的角度,把广场的四条边整理一下,变成一条直线上连在一起的四条线段。
进一步想,这是“一条长为(500+300)×2=1600米的公路,要在公路的一边栽树,原计划每隔2.5米栽一棵,后来改为每隔2米栽一棵,需要加多少棵树,原来有多少树坑不用重挖?”。
因为原来是一条闭合的线路,所以原来的栽树数量是:1600/2.5 +1=641(棵),现在的栽树数量则:1600/2 +1=801(棵),801-641=160(棵),即需要增加160(盆);又因为每隔10米就有一盆花不用动,1600/10=160(盆),这是一个很巧合的数字,不动挪动的花盆数也是160盆。
4、如图,是1只蚂蚱站在1号位置上,它第1次跳1步,到达2号位置;第2次跳2步,到达4号位置;第3次跳3步,到达1号位置;...,第n次跳n步,当蚂蚱沿顺时针方向跳了100次时,到达位置。
人教版小学五年级上册数学期末解析技巧与实战演练题目与应用经验
人教版小学五年级上册数学期末解析技巧与实战演练题目与应用经验数学是小学生学习中的一门重要学科,为了帮助五年级的学生更好地掌握数学知识,提高解题能力,以下将分享一些解析技巧和实战演练题目,同时结合经验给出一些建议。
一、解析技巧1. 认真阅读题目首先,同学们要认真阅读题目,理解题目所给的信息和要求。
有时候,关键的信息可能隐藏在题目中的某个细节,只有仔细读题才能发现并正确解答问题。
2. 打破常规思维有些数学题目可能会给出陈旧的思维模式,但同学们需要善于打破常规思维,寻找新的解题路径。
通过创新的思维方式,能够更快地找到解题的思路,并且得出准确的答案。
3. 总结归纳规律数学中的一些问题可能存在一定的规律和模式,同学们需要通过总结和归纳,找出其中的规律。
通过发现规律,不仅能够更好地解答当前的问题,还能帮助同学们应对类似的题目。
4. 灵活运用计算方法对于一些复杂的计算问题,同学们可以灵活运用各种计算方法,例如近似估算、逆向思维以及分步计算等。
同时,可以画图、使用图表等可视化的方式辅助计算,提高计算准确性和效率。
二、实战演练题目请同学们根据以下题目进行练习,并自主完成解答。
1. 题目一:某班有48名学生,其中男生和女生的比例是2比3,请问男生有几位?2. 题目二:请问6的九倍等于多少?3. 题目三:小明每天早上计步器的读数都是从0开始,他每天的步数规律如下:第一天计步器加3,第二天计步器加5,第三天计步器加7,以此类推。
请问经过8天后,小明的计步器读数是多少?三、应用经验1. 积累数学常识数学是一门需要积累的学科,在学习过程中,同学们要注意积累各类数学常识和规则。
只有对基础知识有所掌握,才能更好地解决复杂的数学问题。
2. 多做题,多练习掌握数学需要不断地进行练习,同学们要多做题目,提高解题能力。
可以通过做一些数学题目的模拟测试来锻炼自己的应对能力,培养解题的思维习惯。
3. 分类总结题型数学题目具有一定的分类特点,同学们应该根据不同类型的题目进行分类总结。
5-2五年级决赛详解 考点
第十四届“中环杯”五年级决赛考题及详解1. 计算:11.99×73+1.09×297+21×(32-12)=_________ 【分析】原式=11×1.09×73+1.09×11×27+4=11×1.09×100+4=1199+4=1203考点:小数巧算2. 420×814×1616除以13的余数为__________【分析】420×814×1616≡4×8×4≡128≡11(mod13)考点:同余3. 五年级有甲乙两班,甲班学生人数是乙班学生人数的5/7,如果从乙班调3人去甲班,甲班学生人数就是乙班学生人数的4/5,甲班原有学生_________人【分析】原来人数比为甲:乙=5: 7=15: 21人数调整后人数比为甲:乙=4 : 5=16 : 20,前后两次总人数不变,因此将总人数变为[(5+7),(4+5)]=36份,比例调整如上,发现人数调整为1份,因此1份为3人,所以甲班原有学生15×3=45人。
考点:比例应用题4. 已知990×991×992×993=4091966428B A ,则AB =【分析】由于99丨990,所以99 丨4091966428B A所以99 丨96+64+28+9A +B 1+40→99 丨AB +247→AB=50考点:同余5. 如图,△ABC 面积为60,E 、F 分别为AB 和AC 上的点,满足AB=3AE ,AC=3AF ,点D 是线段BC 上的动点,设△FBD 的面积为S 1, △EDC 的面积为S 2,则S 1×S 2的最大值为__________.【分析】由于31==AC AF AB AE ,所以EF ∥ BC 所以S EBD = S FBD =S 1→S 1+S 2=S EBC =32S ABC =40 和一定时,差越小,积越大,所以当 S 1 =S 2 时,即D 为中点时,S 1×S 2最大为20×20=400考点:等积变换;数论最值6.如图,在每个方框中填入一个数字,使得乘法竖式成立,则这个算式乘积的最大值和最小值的之差为__________.【分析】易得,乘数中下方数的十位为1,因为十位数字乘上面的数得到的积为三位数,为百位上的2乘上面的数得到的积为四位数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.小明去电影院看电影。他在影片刚放映时看了一下手表,影片结束时又看了 一下手表。他发现,两次看手表的时刻,时针和分针刚好交换了一次。已知这部 1440 电影的时间在 1 小时到 2 小时之间,那么影片片长( )分钟。 13 考点分析:钟面上的行程问题。 分针的速度是每分钟 6° ,时针的速度是每分钟 0.5° 。 时针和分针刚好交换了一次,而且电影的时间在 1 小时到 2 小时之间,那么不难 得到分针所走的度数与时针所走的度数和是 720° ,那么影片片长为 1440 720 ÷ ( 6 + 0.5 ) = 分钟。 13 注:在钟面上的行程问题中,到底用 路程差 = 时间 × 速度差 来做,还是用
路程和 = 时间 × 速度和 来做,要根据不同的题目而定,不能一味死记硬背。
二、动手动脑题: 1.把 40 分成若干个自然数的和,且使这些自然数的乘积最大,有几种分法?怎 么分? 考点分析:最值问题,整数拆分。 如果分出的数中有大于或等于 5 的数 k : 那么把 k 再分成 2 和 k − 2 ,不难发现 2 ( k − 2 ) − k = k − 4 > 0 也就是说,把大于或等于 5 的数再这样拆分开,乘积会变大或不变。所以,要使 拆分开的数的乘积最大,拆分开的数必须小于 5,拆分出 1 肯定不行,而 4 拆开 与否乘积是不变的,所以只能是 2、3 或者 4。 如果拆分的 2 的个数大于或等于 3: 那么把 3 个 2 重新分成 2 个 3,不难发现 3 × 3 > 2 × 2 × 2 也就是说, 把 3 个 2 重新分成 2 个 3, 乘积会变大, 所以 2 的个数不能超过 2 个。 最后, 40 = 2 × 2 + 3 ×12 = 4 × 1 + 3 × 12 ,所以有两种分法:2 个 2 和 12 个 3,或者 1 个 4 和 12 个 3。
C
A
F B
G
S ∆ABC = S EFGC − S ∆AEC − S ∆ABF − S ∆GBC = 3 × 4 − 3 × 2 ÷ 2 − 2 × 1 ÷ 2 − 2 × 4 ÷ 2 = 4 对于 D :同理有 S ∆ABD = 3 × 3 − 3 × 2 ÷ 2 − 3 × 1 ÷ 2 − 2 × 1 ÷ 2 = 3.5 所以所求 C 点如图所示,且这个最大面积是 4。 3.一个长方体容器,底面是一个边长为 60 厘米的正方形。容器里直立着一个长 方体铁块,它的高是 1 米,底面是一个边长为 15 厘米的正方形。这时,容器里 的水深 1.1 米。现在把铁块轻轻地向上提起 25 厘米,那么露出水面的铁块上被 浸湿的部分长是多少厘米? 考点分析:立体图形的体积计算。 10 h 如图,两个图中阴影部分的水的体 积是相同的,所以只用考虑其他部 分水的体积相等,所以有
1470 − 4 × 60 − 5 = 1225 秒也就是 20 分钟 25 秒即所求时间。
5.用图一中编号为①到⑤的立体图形拼成如图二的立体图形,每个几何体必须 且只能用一次,可翻转拼搭。请在图二上用粗线条画出你的拼法并标上每个几何 体的编号。
2 1
3
4
5
图图
图图
考点分析:立体图形的拼合。
4
5 2 1 3
第十届“ 第十届“中环杯” 中环杯”小学生思维能力训练活动 五年级决 五年级决赛
一、填空题: 1.计算: 11× 91 + 125 × 999 + 250 = (126126)。 考点分析:速算与巧算。 11× 91 + 125 × 999 + 250
= 11× 7 × 13 + 125 × ( 999 + 2 ) = 1001 + 125 × 1001 = 1001× 126 = 126126
ห้องสมุดไป่ตู้
6.某俱乐部共有 42 名会员,所有男会员的年龄和恰好是女会员年龄和的 3 倍。 而到了明年,男会员的年龄和将比女会员的年龄和的 3 倍少 2 岁。那么这个俱乐 部有(31)名男会员。 考点分析:和差倍问题。 和差倍问题,画线段图帮助分析。
女女女女 男女女女 1份 3份
女女女女 男女女女
1份
a 3份 b 2
比较大,所以希望两辆车同时运货的时间尽可能少。那么甲、乙同时运货的时间 最少是(4)小时。 考点分析:工程问题。 要求甲、乙同时运货的时间尽可能少,那么他们单独运的数量就要尽可能多,甲 的速度比乙块,所以就要求剩下的都是甲单独运的,即甲运了 12 个小时,那么
1 1 乙运了 1 − × 12 ÷ = 4 小时。 15 20
9.甲、乙两物体沿着周长为 40 米的圆从同一个点出发,同时作同向运动,每隔 20 秒相遇一次;若同时作反向运动,则每隔 5 秒相遇一次。已知甲的速度比乙 快,那么,甲物体的运动速度是每秒(5)米,乙物体的运动速度是每秒(3)米。 考点分析:环形跑道上的相遇追及。 环形跑道上同时作同向运动, 追及路程是跑道的周长, 有 v甲 − v乙 = 40 ÷ 20 = 2m / s 环形跑道上同时作反向运动,相遇路程是跑道的周长,有 v甲 + v乙 = 40 ÷ 5 = 8m / s 所以 v甲 = ( 2 + 8 ) ÷ 2 = 5m / s , v乙 = 5 − 2 = 3m / s 。
2.如图,5×5 的方格中,每个小方格的边长为 1,
E
A 、 B 两点在小方格的顶点上。现在要在小方格的 顶点上确定一点 C ,连接 AB 、 AC 、 BC 后,使得 三角形 ABC 的面积为最大,请在图中标出 C 点,求 出最大面积为多少? 考点分析:格点型面积的计算。 要求三角形 ABC 的面积尽可能大,因为 AB 长度固 定, 那么就是要求 AB 边上的高尽可能大, 显然当另 外一个点在 C 或 D 时这个高是最大的。 D 对于 C :
8.将一个正方体木块涂成红色,再每面等距离切若干刀,得到若干个同样大小 的小正方体。如果在这些小正方体中,一面涂有红色的共有 294 个,那么两面涂 有红色和三面涂有红色的总共有(92)个。 考点分析:立方体染色。 在立方体染色问题中,三面涂有红色的是立方体的 8 个顶点,两面涂有红色的是 立方体的 12 条棱上除了顶点之外的点,一面涂有红色的是立方体的 6 个面上除 了棱上之外的点。 294 ÷ 6 = 49 = 7 × 7 ,所以正方体的棱长是 7 + 2 = 9 ,那么两面涂有红色的有 7 ×12 = 84 个,两面涂有红色和三面涂有红色的共有 8 + 84 = 92 个。
7.32 枚棋子分成 24 堆,其中每堆得棋子数位 1、2 或 3。如果只有一枚棋子的 堆数是其余堆数的 3 倍,那么恰有 2 枚棋子的有(4)堆。 考点分析:鸡兔同笼问题。 只有一枚棋子的有 24 ÷ (1 + 3) × 3 = 18 堆,有 2 枚或 3 枚的共有 24 − 18 = 6 堆,共 有棋子 32 − 18 = 14 枚。假设每堆都是 3 枚的:那么有 6 × 3 = 18 枚棋子,实际上只 有 14 枚,所以 2 枚棋子的有 (18 − 14 ) ÷ ( 3 − 2 ) = 4 堆。
6 ( v车 − v人 ) = 车长 v车 = 11v人 ,可以解得 车长 = 60v人 5 ( v车 + v人 ) = 车长 接下来的关键就要求甲、乙 两人的距离了,其实只要能 画线段图分析清楚,这点其 乙 实不难解决。
车 4分分 甲
火车从甲身边开过后,甲、乙相距 4 × 60 × ( v车 + v人 ) + 车长 = 2940v人 从这个时候开始算起,两人需要 2940v人 ÷ ( v人 + v人 ) = 1470 秒相遇,那么
60 × 60 × (110 − 100 ) = 15 × 15 × 25 +
得 h = 9 厘米, ( 60 × 60 − 15 ×15) × h ,
25
那么露出水面的铁块的部分长是 25 − 9 = 16 厘米。 注:铁块浸入水中这类立体几何的题目,只要水没有溢出,那么解题的关键就是 水的体积不变。 4.甲、乙两人沿铁路线相向而行,速度相同。一列火车从甲身边开过用了 6 秒 钟,之后又花了 4 分钟车头遇到乙,然后又从乙身边开过,用了 5 秒钟。那么, 再过几分钟甲、乙两人相遇? 考点分析:火车问题。 首先不难求出车速、人速和车长之间的关系:
2.个位数、十位数都是质数的所有两位质数的数码和是(33)。 考点分析:数论之质数。 一位质数有 2、3、5、7,个位数、十位数都是质数的两位质数个位只能是 3 或 7, 所以满足条件的数有 23、53、73 和 37,它们的数码和是 33 3.有一个四位数,将它的数码顺序倒排后得到一个新的四位数,加上原来的四 位数后再加上 1,得到计算结果,甲的答案是 8988,乙的答案是 9998,丙的答 案是 9988,丁的答案是 9888。如果四人中有一个人的计算是正确的,那么这个 人是(甲)。 考点分析:速算与巧算。 设这个四位数是 abcd :那么对于 abcd + dcba ,甲的答案是 8987,乙的答案是 9997,丙的答案是 9987,丁的答案是 9887。那么先来看乙的答案:个位 a + d 的 个位是 7,再由千位也是 a + d 可以判断出 a + d = 7 ,接下来考虑十位可以得到 b + c = 18 ,那么千位不可能达到 9。同样的,丙和丁的答案也是错的。甲的答案 是对的: 3994 + 4993 + 1 = 8988 。 4.在不大于 1000 的自然数中,不能被 3、5、7 中任何一个整除的数共有(457) 个。 考点分析:容斥原理。 在不大于 1000 的自然数中,能被 3 或 5 或 7 整除的数的个数为 [1000 ÷ 3] +
[1000 ÷ 5] + [1000 ÷ 7] − [1000 ÷ 15] − [1000 ÷ 21] − [1000 ÷ 35] + [1000 ÷105] = 543 。那