高一物理下册期末精选专题练习(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一物理下册期末精选专题练习(解析版)
一、第五章 抛体运动易错题培优(难)
1.如图所示,一小球从一半圆轨道左端A 点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B 点。
O 为半圆轨道圆心,半圆轨道半径为R ,OB 与水平方向夹角为30°,重力加速度为g ,不计空气阻力,则小球抛出时的初速度大小为( )
A (323)6gR +
B 332
gR
C (13)3
gR +D 33
gR
【答案】A 【解析】 【分析】
根据题意,小球在飞行过程中恰好与半圆轨道相切于B 点,可知速度的方向与水平方向成600
角,根据速度方向得到平抛运动的初速度与时间的关系,再根据水平位移与初速度及时间的关系,联立即可求得初速度。
【详解】
小球在飞行过程中恰好与半圆轨道相切于B 点,可知速度的方向与水平方向成60°角,则有
0tan60y v v =
竖直方向
y gt =v
水平方向小球做匀速直线运动,则有
0cos30R R v t +=
联立解得
0(323)6
gR
v +=
故A 正确,BCD 错误。
故选A 。
【点睛】
解决本题的关键是掌握平抛运动在水平方向和竖直方向上的运动规律,抓住速度方向,结合位移关系、速度关系进行求解。
2.一阶梯如图所示,其中每级台阶的高度和宽度都是0.4m,一小球以水平速度v飞出,欲打在第四台阶上,则v的取值范围是()
A6m/s22m/s
v
<<B.22m/s 3.5m/s
v
<≤
C2m/s6m/s
v
<<D6m/s23m/s
v
<<
【答案】A
【解析】
【分析】
【详解】
若小球打在第四级台阶的边缘上高度4
h d
=,根据2
1
1
2
h gt
=,得
1
880.4
s0.32s
10
d
t
g
⨯
===
水平位移14
x d
=则平抛的最大速度
1
1
1
2m/s
0.32
x
v
t
===
若小球打在第三级台阶的边缘上,高度3
h d
=,根据2
2
1
2
h gt
=,得
2
6
0.24s
d
t
g
==
水平位移23
x d
=,则平抛运动的最小速度
2
2
2
6m/s
0.24
x
v
t
===
所以速度范围
6m/s22m/s
v
<<
故A正确。
故选A。
【点睛】
对于平抛运动的临界问题,可以通过画它们的运动草图确定其临界状态及对应的临界条件。
3.物体A做平抛运动,以抛出点O为坐标原点,以初速度v0的方向为x轴的正方向、竖
直向下的方向为y 轴的正方向,建立平面直角坐标系。
如图所示,两束光分别沿着与坐标轴平行的方向照射物体A ,在坐标轴上留下两个“影子”,则两个“影子”的位移x 、y 和速度v x 、v y 描述了物体在x 、y 两个方向上的运动。
若从物体自O 点抛出时开始计时,下列图像中正确的是( )
A .
B .
C .
D .
【答案】B 【解析】 【分析】 【详解】
AC .“影子”在x 轴方向做匀速运动,因此在x v x — 图象中是一条平行于x 轴的直线,根据
0x v t =
可知在—x t 图象中是一条过坐标原点的直线,AC 错误; BD .物体在竖直方向上做自由落体运动,根据
212
y gt =
可知在y t —图象中是一条开口向上的抛物线,根据
22y v gy =
可知在y v y — 图象是是一条开口向右的抛物理线,B 正确,D 错误。
故选B 。
4.如图所示,在固定的斜面上A 、B 、C 、D 四点,AB=BC=CD 。
三个相同的小球分别从A 、B 、C 三点以v 1、v 2、v 3的水平速度抛出,不计空气阻力,它们同时落在斜面的D 点,则下列判断正确的是( )
A .A 球最后才抛出
B .
C 球的初速度最大
C .A 球离斜面最远距离是C 球的三倍
D .三个小球落在斜面上速度方向与斜面成30︒斜向右下方 【答案】C 【解析】 【详解】
A .设球在竖直方向下降的距离为h ,三球水平抛出后,均做平抛运动,据212
h gt =可得,球在空中飞行的时间
2h t g
=
所以A 球在空中飞行时间最长,三球同时落在斜面的D 点,所以A 球最先抛出,故A 项错误;
B .设球飞行的水平距离为x ,三球水平抛出后,球在水平方向做匀速直线运动,则球的初速度
03tan302
h x gh v t t ︒===
C 球竖直下降的高度最小,则C 球的初速度最小,故B 项错误;
C .将球的运动分解成垂直于斜面和平行于斜面可得,球在垂直斜面方向的初速度和加速度分别为
0sin30v v ⊥=︒,cos30a g ⊥=︒
当球离斜面距离最远时,球垂直于斜面的分速度为零,球距离斜面的最远距离
222
0sin 303
22cos30v v d h a g ⊥⊥︒===︒
A 球在竖直方向下降的距离是C 球的三倍,则A 球离斜面最远距离是C 球的三倍,故C 项正确;
D .三球水平抛出,最终落在斜面上,则
2012tan30gt v t
=︒ 设球落在斜面上速度方向与水平面成α角,则
tan y v gt v v α=
=
解得
2tan 2tan3033
α=︒=
所以球落在斜面上速度方向与水平面夹角不是60︒,即球落在斜面上速度方向与斜面不是成30︒斜向右下方,故D 项错误。
5.如图所示,套在竖直细杆上的轻环A 由跨过定滑轮的不可伸长的轻绳与重物B 相连,施加外力让A 沿杆以速度v 匀速上升,从图中M 位置上升至与定滑轮的连线处于水平N 位置,已知AO 与竖直杆成θ角,则( )
A .刚开始时
B 的速度为
cos v
θ
B .A 匀速上升时,重物B 也匀速下降
C .重物B 下降过程,绳对B 的拉力大于B 的重力
D .A 运动到位置N 时,B 的速度最大 【答案】C 【解析】 【详解】
A.对于A ,它的速度如图中标出的v ,这个速度看成是A 的合速度,其分速度分别是
a b v v 、,其中a v 就是B 的速率(同一根绳子,大小相同),故刚开始上升时B 的速度cos B v v θ=,故A 不符合题意;
B.由于A 匀速上升,θ在增大,所以B v 在减小,故B 不符合题意;
C .B 做减速运动,处于超重状态,绳对B 的拉力大于B 的重力,故C 符合题意; D.当运动至定滑轮的连线处于水平位置时90θ=︒,所以0B v =, 故
D 不符合题意。
6.如图所示,在不计滑轮摩擦和绳子质量的前提下,当小车匀速向右运动时,绳中拉力 ( ).
A .大于A 所受的重力
B .等于A 所受的重力
C .小于A 所受的重力
D .先大于A 所受的重力,后等于A 所受的重力 【答案】A 【解析】 【详解】
绳与小车的结点向右匀速运动,此为合运动,可把它按如图所示进行分解.
其中v 1为绳被拉伸的速度,
v 1=v cos θ
A 上升的速度v A 与v 1大小相等,即
v A =v 1=v cos θ
随着车往右运动,θ角减小,故v A 增大,即A 物体加速上升,加速度竖直向上,由牛顿第二定律得,绳中拉力
T =mg +ma >mg
故A 正确,BCD 错误。
故选A .
7.里约奥运会我国女排获得世界冠军,女排队员“重炮手”朱婷某次发球如图所示,朱婷站在底线的中点外侧,球离开手时正好在底线中点正上空3.04m 处,速度方向水平且在水平方向可任意调整.已知每边球场的长和宽均为9m ,球网高2.24m ,不计空气阻力,重力加速度2
10g m s .为了使球能落到对方场地,下列发球速度大小可行的是
A .22m/s
B .23m/s
C .25m/s
D .
28m/s
【答案】B 【解析】
恰好能过网时,根据2112H h gt -=得,12()2(3.04 2.24)0.4s 10
H h t g -⨯-=== ,则击球的最小初速度11922.5m/s 0.4
s v t =
==, 球恰好不出线时,根据2212H gt =
,得222 3.040.78s 10
H t g ⨯==≈ 则击球的最大初速度:2222240.25 4.2581
23.8m/s s l l v t +⨯===≈',注意运动距离
最远是到对方球场的的角落点,所以22.5m/s 23.8m/s v ,故B 项正确. 综上所述本题正确答案为B .
8.如图所示,水平面上有一汽车A ,通过定滑轮用绳子拉同一水平面的物体B ,使物体B 匀速向右运动,物体B 与地面的动摩擦因数为0.6,当拉至图示位置时,两绳子与水平面的夹角分别为α、β,二者速度分别为A v 和B v ,则( )
A .汽车向右做减速运动
B .若图示位置αβ<,则A B v v <
C .β从30°到60°的过程中组子对B 的拉力越来越小
D .β从30°到60°的过程中绳子对B 的拉力的功率越来越小 【答案】ABD 【解析】 【详解】
A. A 、B 两物体的速度分解如图:
由图可知,
A A v v cos α=绳
B B v v cos β=绳 A B v v =绳绳
物体B 匀速向右运动,所以β增大,A B v v =绳绳减小,又α减小,cos α增大,所以A v 减小,即汽车向右做减速运动,选项A 正确; B.若图示位置αβ<,则A B v v <,选项B 正确;
C.β从30°到60°的过程中绳子对B 的拉力先减小后增大,选项C 错误;
D.因为β从30°到60°的过程中B 的摩擦力减小,故绳子对B 的拉力的功率减小。
选项D 正确。
故选ABD 。
9.高度为d 的仓库起火,现需要利用仓库前方固定在地面上的消防水炮给它灭火。
如图所示,水炮与仓库的距离为d ,出水口的横截面积为S 。
喷水方向可自由调节,功率也可以变化,火势最猛的那层楼窗户上、下边缘离地高度分别为0.75d 和0.25d ,(要使火火效果最好)要求水喷入时的方向与窗户面垂直,已知水炮的效率为η,水的密度为ρ,重力加速度为g ,不计空气阻力,忽略水炮离地高度。
下列说法正确的是( )
A dg
B 2dg
C .若水从窗户的正中间进入,则此时的水炮功率最小
D .满足水从窗户进入的水炮功率最小值为()3
21
22S gd ρη
【答案】CD 【解析】 【分析】
【详解】
A.把抛出水的运动逆向思维为平抛运动,根据平抛运动规律有
022
g g
v x d
h h
==
水从上边缘进入0.75
h d
=,解得
2
20.753
g gd
v d
d
==
⨯
故A错误;
B.水从下边缘进入0.25
h d
=,解得
2
20.25
g
v d gd
d
==
⨯
故B错误;
C.逆向思维,水到达水炮时
x
v v
=,2
y
v gh
=
则有
2
22(2)
2
x y
d
v v v g h
h
=+=+
根据数学知识可知,当2
d h
=,即0.5
h d
=时,v最小,对应位置为窗户正中间,故C正确;
D.由上面的分析可知,当v的最小值2
v dg
=,满足水从窗户进入的水炮功率最小,其最小值为
()
22
3
3
2
1
2
1
2
2
1
2
2
mv vt
S g
Sv
W Sv
P
t t
d
t
ρρ
ηη
ρ
η
η
=====
故D正确。
故选CD。
10.如图所示,在水平地面上固定一倾角为θ的光滑斜面,在斜面底端将一物块以初速度1
v沿斜面上滑,同时在斜面底端正上方高h处以初速度
2
v水平抛出一小球,已知当物块的速度最小时,小球与物块恰在斜面中点相撞,忽略空气阻力,那么下列说法正确的有
()
A .物块与小球相遇的时间
t =
B .物块初速度1v =
C .小球初速度
2v =
D .斜面的水平长度2sin 21sin L h θ
θ
=⋅+
【答案】ABD 【解析】 【分析】 【详解】
设物块在斜面上运动的距离为s ,由牛顿第二定律得
sin mg ma θ=
由运动学方程得
212221sin 2cos v as h s gt s v t
θθ⎧=⎪
⎪
-=⎨⎪
=⎪⎩
又因为
2cos s L θ=⋅
联立解得
t =
1v =
2v =2
sin 21sin L h θ
θ
=
⋅+ 故ABD 正确,C 错误。
故选ABD 。
二、第六章 圆周运动易错题培优(难)
11.如图所示,用一根长为l =1m 的细线,一端系一质量为m =1kg 的小球(可视为质点),另
一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=30°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T ,取g=10m/s 2。
则下列说法正确的是( )
A .当ω=2rad/s 时,T 3+1)N
B .当ω=2rad/s 时,T =4N
C .当ω=4rad/s 时,T =16N
D .当ω=4rad/s 时,细绳与竖直方向间夹角
大于45° 【答案】ACD 【解析】 【分析】 【详解】
当小球对圆锥面恰好没有压力时,设角速度为0ω,则有
cos T mg θ=
2
0sin sin T m l θωθ=
解得
053
2
rad/s 3
ω= AB .当02rad/s<ωω=,小球紧贴圆锥面,则
cos sin T N mg θθ+=
2sin cos sin T N m l θθωθ-=
代入数据整理得
(531)N T =
A 正确,
B 错误;
CD .当04rad/s>ωω=,小球离开锥面,设绳子与竖直方向夹角为α,则
cos T mg α= 2sin sin T m l αωα=
解得
16N T =,o 5
arccos 458
α=>
CD 正确。
故选ACD 。
12.如图,质量为m 的物块,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是( )
A .滑块对轨道的压力为2
v mg m R
+
B .受到的摩擦力为2
v m R
μ
C .受到的摩擦力为μmg
D .受到的合力方向斜向左上方
【答案】AD 【解析】 【分析】 【详解】
A .根据牛顿第二定律
2
N v F mg m R
-=
根据牛顿第三定律可知对轨道的压力大小
2
N
N v F F mg m R
'==+ A 正确;
BC .物块受到的摩擦力
2
N ()v f F mg m R
μμ==+
BC 错误;
D .水平方向合力向左,竖直方向合力向上,因此物块受到的合力方向斜向左上方,D 正确。
故选AD 。
13.如图所示,内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则( )
A .球A 的周期一定大于球
B 的周期 B .球A 的角速度一定大于球B 的角速度
C .球A 的线速度一定大于球B 的线速度
D .球A 对筒壁的压力一定大于球B 对筒壁的压力
【解析】 【分析】 【详解】
ABC .对小球受力分析,小球受到重力和支持力,它们的合力提供向心力,如图:
根据牛顿第二定律,有
2
2tan v F mg m mr r
θω===
解得
tan v gr θ=
tan g r
θ
ω=
A 的半径大,则A 的线速度大,角速度小
根据2T
π
ω=
知A 球的周期大,选项AC 正确,B 错误; D .因为支持力
cos mg N θ
=
知球A 对筒壁的压力一定等于球B 对筒壁的压力,选项D 错误。
故选AC 。
14.荡秋千是小朋友们喜爱的一种户外活动,大人在推动小孩后让小孩自由晃动。
若将此模型简化为一用绳子悬挂的物体,并忽略空气阻力,已知O 点为最低点,a 、b 两点分别为最高点,则小孩在运动过程中( )
A .从a 到O 的运动过程中重力的瞬时功率在先增大后减小
B .从a 到O 的运动过程中,重力与绳子拉力的合力就是向心力
C .从a 到O 的运动过程中,重力与绳子拉力做的总功等于小球在此过程中获得的动能
D .从a 到O 的运动过程中,拉力向上有分量,位移向下有分量,所以绳子拉力做了负功
【解析】 【分析】 【详解】
A .由题可知,a 、b 两点分别为最高点,所以在a 、b 两点人是速度是0,所以此时重力的瞬时功率为0;在最低点O 时,速度方向与重力方向垂直,所以此时重力的瞬时功率为0,所以从a 到O 的运动过程中重力的瞬时功率在先增大后减小,故A 正确;
B .从a 到O 的运动过程中,将重力分解为速度方向的分力和背离半径方向的分力,所以提供向心力的是重力背离半径方向的分力和绳子的拉力的合力共同提供的,故B 错误;
C .根据动能定理可知,从a 到O 的运动过程中,重力与绳子拉力做的总功等于小球在此过程中获得的动能,故C 正确;
D .从a 到O 的运动过程中,绳子的拉力与人运动的速度方向垂直,所以拉力不做功,故D 错误。
故选AC 。
15.如图所示,匀速转动的水平圆盘上放有质量分别为2kg 和3kg 的小物体A 、B ,A 、B 间用细线沿半径方向相连。
它们到转轴的距离分别为R A =0.2m 、R B =0.3m 。
A 、B 与盘面间的最大静摩擦力均为重力的0.4倍。
g 取10m/s 2,现极其缓慢地增大圆盘的角速度,则下列说法正确的是( )
A .小物体A 达到最大静摩擦力时,
B 受到的摩擦力大小为12N B .当A 恰好达到最大静摩擦力时,圆盘的角速度为4rad/s
C 230
D .当A 恰好达到最大静摩擦力时,剪断细线,A 将做向心运动,B 将做离心运动 【答案】AC 【解析】 【分析】 【详解】
A .当增大原盘的角速度,
B 先达到最大静摩擦力,所以A 达到最大静摩擦力时,B 受摩擦力也最大,大小为
f B=km B
g =0.4⨯3⨯10N=12N
故A 正确;
B .当A 恰好达到最大静摩擦力时,圆盘的角速度为ω,此时细线上的拉力为T ,由牛顿第二定律,对A
2A A A k T R m g m ω-=
对B
2B B B T km g m R ω+=
联立可解得
s 13
102
rad/ω=
故B 错误;
C. 当细线上开始有弹力时,此时B 物体受到最大摩擦力,由牛顿第二定律,有
2B B 1B k m R m g ω=
可得
1230
rad/s ω=
故C 正确;
D. 当A 恰好达到最大静摩擦力时,剪断细线,A 物体摩擦力减小,随圆盘继续做圆周运动,而B 不再受细线拉力,最大摩擦力不足以提供向心力,做离心运动,故D 错误。
故选AC 。
16.水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,一小球以初速度v 0沿直轨道向右运动,如图所示,小球进入圆形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的d 点,则( )
A .小球到达c gR
B .小球在c 点将向下做自由落体运动
C .小球在直轨道上的落点d 与b 点距离为2R
D .小球从c 点落到d 点需要时间为2R g
【答案】ACD 【解析】 【分析】 【详解】
小球恰好通过最高点C,根据重力提供向心力,有: 2
v mg m R
= 解得:v gR =A 正确;小球离开C 点后做平抛运动,即水平方向做匀速运动,0bd s v t = 竖直方向做自由落体运动,
2122R gt =
解得:2R t g
= ;2bd s R = 故B 错误;CD 正确;故选ACD
17.A 、B 、C 三个物体放在旋转圆台上,它们由相同材料制成,A 的质量为2m ,B 、C 的质量各为m .如果OA=OB=R ,OC=2R ,则当圆台旋转时(设A 、B 、C 都没有滑动),下述结论中正确的是( )
A .物体A 向心加速度最大
B .B 物静摩擦力最小
C .当圆台旋转转速增加时,C 比B 先开始滑动
D .当圆台旋转转速增加时,A 比B 先开始滑动 【答案】BC 【解析】
A 、三个物体都做匀速圆周运动,角速度相等,向心加速度2
n a r ω=,可见,半径越大,
向心加速度越大,所以C 物的向心加速度最大,A 错误; B 、三个物体的合力都指向圆心,对任意一个受力分析,如图
支持力与重力平衡,由静摩擦力f 提供向心力,则得 f n F =. 根据题意,222C A B r r r R ===
由向心力公式2
m n F r ω=,得三个物体所受的静摩擦力分别为:
()2222A f m R m R ωω==,
2B f m R ω=.
()2222C f m R m R ωω==,
故B 物受到的静摩擦力最小,B 正确;
C 、
D 当ω变大时,所需要的向心力也变大,当达到最大静摩擦力时,物体开始滑动.当转速增加时,A 、C 所需向心力同步增加,且保持相等.B 所需向心力也都增加,A 和C 所需的向心力与B 所需的向心力保持2:1关系.由于B 和C 受到的最大静摩擦力始终相等,都比A 小,所以C 先滑动,A 和B 后同时滑动,C 正确;D 错误;故选BC .
18.如图所示,12O O 两轮紧挨在一起靠摩擦力传动而同时转动,其中A 、B 是两轮边缘上的点,C 为1O 上的一点,且C 点到1O 的距离与B 点到2O 的距离相等,则下列说法正确的是( )
A .BC 两点线速度大小相等
B .AB 两点角速度相等
C .BC 两点角速度相等
D .AB 两点线速度大小相等
【答案】D 【解析】 【分析】 【详解】
BD .A 、B 两点靠传送带传动,线速度大小相等,即
A B =v v
根据v r ω=可知半径不同因此角速度不相等,选项B 错误,D 正确; AC .A 、C 共轴转动,角速度相同,即
A C =ωω
根据v r ω=可知A 线速度大于C 的线速度,所以
B C B C ,v v ωω≠≠
选项AC 错误。
故选D 。
19.如图所示,放于竖直面内的光滑金属细圆环半径为R ,质量为m 的带孔小球穿在环上,同时有一长为R 的细绳一端系于球上,另一端系于圆环最低点,绳上的最大拉力为2mg ,当圆环以角速度ω绕竖直直径转动,且细绳伸直时,则ω不可能...
为( )
A 2g
R
B .g R
C 6g R
D 7g
R
【答案】D 【解析】 【分析】 【详解】
因为圆环光滑,所以小球受到重力、环对球的弹力、绳子的拉力等三个力。
细绳要产生拉力,绳要处于拉伸状态,根据几何关系可知,此时细绳与竖直方向的夹角为60°,如图所示
当圆环旋转时,小球绕竖直轴做圆周运动,向心力由三个力在水平方向的合力提供,其大小为
2F m r ω=
根据几何关系,其中
sin60r R ︒=
一定,所以当角速度越大时,所需要的向心力越大,绳子拉力越大,所以对应的临界条件是小球在此位置刚好不受拉力,此时角速度最小,需要的向心力最小,对小球进行受力分析得
min tan60F mg ︒=
即
2
min tan60sin60mg m R ω︒︒=
解得
min 2g
R
ω=
当绳子的拉力达到最大时,角速度达到最大,
m max N ax 606sin sin 0F T F ︒=+︒ N max cos cos 6060T mg F =︒︒+
可得
max 33g F m =
同理可知,最大角速度为
max 6g R
ω=
则
7g R 不在26g g
R R
ω≤≤范围内,故选D 。
20.在游乐园质量为m 的人乘坐如图所示的过山车,当过山车从高度释放之后,在竖直平面内通过了一个光滑的圆周轨道(车的轨迹如图所示的虚线),下列说法正确的是( )
A .车在最高点时人处于倒坐状态,全靠保险带拉住,若没有保险带,人一定会掉下去
B .人在最低点时对座位的压力大于mg
C .人在最高点和最低点时的向心加速度大小相等
D .人在最高点时对座位仍可能产生压力,但压力一定小于mg 【答案】B 【解析】 【分析】 【详解】
A .当人与保险带间恰好没有作用力时,由重力提供向心力得
2v mg m
R
=临
解得临界速度为
=v gR 临当速度v gR ≥
A 错误;
B .人在最低点时,加速度方向竖直向上,根据牛顿第二定律分析可知,人处于超重状态,人对座位的压力大于mg ,选项B 正确;
C .在最高点和最低点速度大小不等,根据向心加速度公式2
=v a r
可知,人在最高点和最低
点时的向心加速度大小不相等,选项C 错误; D .当人在最高点的速度v gR >2v gR =压力为3mg ,选项D 错误。
故选B 。
三、第八章 机械能守恒定律易错题培优(难)
21.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为
0.2
μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到
v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()
A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止
B.小物块
0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止
C.物块在传送带上留下划痕长度为12m
D.整个过程中小物块和传送带间因摩擦产生的热量为80J
【答案】ACD
【解析】
【分析】
【详解】
物块和传送带的运动过程如图所示。
AB.由于物块的加速度
a1=µg=2m/s2
小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间1
2
v
t
a
==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s
物块的位移
x1=
1
2
a1t12=9m
传送带的位移
x2=
1
2
a2t12=18m
两者相对位移为
121
x x x
∆=-=9m
此后传送带减速,但物块仍加速,B错误;
当物块与传送带共速时,由匀变速直线运动规律得
12- a2t2=6+ a1t2
解得t2=1s
因此物块匀加速所用的时间为
t 1+
t 2=4s
两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为
v 3=6+ a 1t 2=8 m/s
物块减速至静止所用时间为
3
31
v t a =
=4s 传送带减速至静止所用时间为
3
42
v t a =
=2s 该过程物块的位移为
x 3=
1
2
a 1t 32=16m 传送带的位移为
x 2=
1
2
a 2t 42=8m 两者相对位移为
3x ∆=8m
回滑不会增加划痕长度,所以划痕长为
12x x x ∆=∆+∆=9m+3m=12m
C 正确;
D .全程相对路程为
L =123x x x ∆+∆+∆=9m+3m+8m=20m
Q =µmgL =80J
D 正确; 故选ACD 。
22.如图所示,质量为1kg 的物块(可视为质点),由A 点以6m/s 的速度滑上正沿逆时针转动的水平传送带(不计两转轮半径的大小),传送带上A 、B 两点间的距离为8m ,已知传送带的速度大小为3m/s ,物块与传送带间的动摩擦因数为0.2,重力加速度为
210m/s 。
下列说法正确的是( )
A .物块在传送带上运动的时间为2s
B .物块在传送带上运动的时间为4s
C .整个运动过程中由于摩擦产生的热量为16J
D .整个运动过程中由于摩擦产生的热量为28J 【答案】BD 【解析】 【分析】 【详解】
AB .滑块先向右匀减速,根据牛顿第二定律有
mg ma μ=
解得
22m/s a g μ==
根据运动学公式有
010v at =-
解得
13s t =
匀减速运动的位移
0106
3m 9m 8m 22
v x t L +=
=⨯==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移
2212m 1m 222
v x a ===⨯
用时
22
s 1s 2v t a =
== 向左运动时最后3m 做匀速直线运动,有
233
=
s 1s 3
x t v == 即滑块在传送带上运动的总时间为
1234s t t t t =++=
物块滑离传送带时的速率为2m/s 。
选项A 错误,B 正确;
C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为
110.211041J 6J f W f x x mg x x μ=--=--=-⨯⨯⨯-=-()()()
选项C 错误;
D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为
114m l vt ==
物体向左加速过程,传送带运动距离为
222m l vt ==
即
121[]Q fS mg l x l x μ==++-()()
代入数据解得
28J Q =
选项D 正确。
故选BD 。
23.如图所示,一个半径和质量不计的定滑轮O 固定在天花板上,物块B 和A 通过轻弹簧栓接在一起,竖直放置在水平地面上保持静止后,再用不可伸长的轻绳绕过滑轮连接物块A 和C ,物块C 穿在竖直固定细杆上,OA 竖直,OC 间距3m l =且水平,此时A 、C 间轻绳恰好拉直而无张力作用。
已知物块A 、B 、C 质量均为2kg 。
不计一切摩擦,g 取10m/s 2.现将物块C 由静止释放,下滑h =4m 时物块B 刚好被提起,下列说法正确的是( )
A .弹簧劲度系数为20N/m
B .此过程中A 、
C 组成的系统机械能总和一直不变 C .此时物块C 的速度大小为10
8
m/s 41 D .此时物块A 的速度大小为10
8m/s 41
【答案】AD 【解析】 【分析】 【详解】
A .初态时,弹簧的压缩量
1mg
x k
=
根据勾股定理可知,C 下降h =4m 时,A 物体上升了2m ,根据题意可知
2kx mg =
122x x +=
整理可得
121m x x ==,20N/m k =
A 正确;
B .物体
C 开始下降时,弹簧处于压缩状态,弹力对物体A 做正功,系统机械能增加,后来弹簧处于伸长状态,弹力对物体A 做负功,系统的机械能减小,B 错误;
CD .由于弹簧的伸长量与压缩量相等,整个过程弹簧对A 物体做功等于零,因此A 、C 组成的系统,初态的机械能与末态的机械能相等
22
A C 1211()22
mgh mv mv mg x x =
+++ 设绳子与竖直方向夹角为θ ,由于A 、C 沿着绳的速度相等
C A cos v v θ=
且
4
cos 5
h l θ=
=
整理得
C 1010
m/s 41
v =,A 108m/s 41v =
C 错误,
D 正确。
故选AD 。
24.一辆汽车在平直的公路上由静止启动,先保持加速度不变,达到额定功率后保持额定功率不变继续行驶。
汽车所受阻力恒定,下列关于汽车运动全过程的速度、加速度、牵引力、功率的大小随时间变化的图像可能正确的是( )
A .
B .
C .
D .
【答案】AD 【解析】 【分析】 【详解】
A.汽车以恒定加速度启动,可分为三个阶段:第一个阶段,匀加速直线运动,在v t-图像中是一条通过原点的直线;第二个阶段,作加速度越来越小的加速运动;第三阶段,以最大速度作匀速直线运动,故A正确;
B.汽车刚开始做匀加速,加速度恒定,当汽车匀加速到额定功率后,速度继续增大时,牵引力减小,加速度减小,速度继续增大,这一过程加速度减小,但加速度的变化是越来越慢,而不是变化越来越快,故B错误;
C.0~t1,汽车做匀加速直线运动,牵引力不变,到t2时以最大的速度做匀速运动,此时有牵引力等于阻力,而不是为零,故C错误;
D.0~t1,汽车做匀加速直线运动,牵引力不变,由P Fv
=可知
()()
P ma f v ma f at
=+=+
即P与v成正比,到t1时刻功率达到额定功率,此后将保持这一额定功率运行,故D正确。
故选AD。
25.如图所示,固定光滑长斜面倾角θ=37°,下端有一固定挡板。
两小物块A、B放在斜面上,质量均为m,用与斜面平行的轻弹簧连接。
一跨过轻小定滑轮的轻绳左端与B相连,右端与水平地面上的电动玩具小车相连。
系统静止时,滑轮左侧轻绳与斜面平行,右侧轻
绳竖直,长度为L且绳中无弹力。
当小车缓慢向右运动3
4
L距离时A恰好不离开挡板。
已
知重力加速度为g,sin37°=0.6,c os37°=0.8.在小车从图示位置发生位移3
4
L过程中,下列
说法正确的是()
A.弹簧的劲度系数为24
5 mg
L
B.拉力对B做功为
3
10
mgL
C gL 3
4
L时B2
5
gL
D gL B做的功为
33
100
mgL
【答案】AD
【解析】
【分析】
【详解】
A.初态,弹簧压缩量。