高考数学压轴专题人教版备战高考《三角函数与解三角形》知识点总复习附解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新高中数学《三角函数与解三角形》专题解析(1)
一、选择题
1.已知1F 、2F 分别为双曲线22
146
x y -=的左、右焦点,M 为双曲线右支上一点且满足
120MF MF ⋅=u u u u v u u u u v
,若直线2MF 与双曲线的另一个交点为N ,则1MF N ∆的面积为( )
A .12
B .
C .24
D .【答案】C 【解析】 【分析】
设1MF m =,2MF n =,根据双曲线的定义和12MF MF ⊥,可求出6m =,2n =,再设2NF t =,则14NF t =+根据勾股定理求出6t =即可求出三角形的面积. 【详解】
解:设1MF m =,2MF n =,
∵1F 、2F 分别为双曲线22146
x y -=的左、右焦点,
∴24m n a -==,122F F c ==
∵120
MF MF ⋅=u u u u v u u u u v
, ∴12MF MF ⊥,
∴222440m n c +==, ∴()2
222m n m n mn -=+-, 即2401624mn =-=, ∴12mn =, 解得6m =,2n =,
设2NF t =,则124NF a t t =+=+, 在1Rt NMF ∆中可得()()2
2
2426t t +=++, 解得6t =, ∴628MN =+=, ∴1MF N ∆的面积111
862422
S MN MF =⋅=⨯⨯=. 故选C .
【点睛】
本题考查了双曲线的定义和向量的数量积和三角形的面积,考查了运算能力和转化能力,属于中档题.
2.△ABC 中,已知tanA =13
,tanB =1
2,则∠C 等于( )
A .30°
B .45°
C .60°
D .135°
【答案】D 【解析】 【分析】
利用三角形内角和为180o ,可得:tan tan()tan(+)C A B A B π=--=-,利用两角和公式和已知条件,即可得解. 【详解】 在△ABC 中,
11
tan tan 32tan tan()tan(+)=-1111tan tan 132
A B C A B A B A B π+
+=--=-=-
=---⋅, 所以135C ?o .
故选:D. 【点睛】
本题考查了正切的两角和公式,考查了三角形内角和,考查了转化思想和计算能力,属于中档题.
3.已知函数()sin 3f x a x x =的一条对称轴为56
x π
=
,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论:
①实数a 的值为1;
②()()1,x f x 和()()
22,x f x 两点关于函数()f x 图象的一条对称轴对称; ③21x x -的最大值为π,
④12x x +的最小值为
23
π. 其中所有正确结论的编号是( ) A .①②③ B .①③④
C .①④
D .③④
【答案】B 【解析】 【分析】 根据56
x π
=
是函数()f x 的一条对称轴,确定函数()f x ,再根据函数()f x 在区间()12,x x 上具有单调性,得到21x x -的最大值为
2
T
π=,然后由()()12f x f x =-,得到()()1
1
,x f x 和()()2
2
,x f x 两点关于函数()f x 的一个对称中心对称求解验证.
【详解】 ∵56x π
=
是函数()f x 的一条对称轴,∴()53f x f x π⎛⎫=- ⎪⎝⎭

令0x =,得()503
f f π
⎛⎫=
⎪⎝⎭
,即-1a =,①正确; ∴(
)sin 2sin 3π⎛
⎫=-=- ⎪⎝
⎭f x x x x .
又因为函数()f x 在区间()12,x x 上具有单调性, ∴21x x -的最大值为
2
T
π=,且()()12f x f x =-, ∴()(
)11,x f x 和()()
22,x f x 两点关于函数()f x 的一个对称中心对称,
∴121233223
x x x x k ππ⎛⎫⎛⎫-+- ⎪ ⎪+π⎝⎭⎝⎭=-=π
,k Z ∈, ∴12223
x x k π
π+=+,k Z ∈,
当0k =时,12x x +取最小值23
π
,所以①③④正确,②错误. 故选:B 【点睛】
本题主要考查三角函数的图象和性质,还考查了推理论证,运算求解的能力,属于中档题.
4.在ABC ∆中,角,,A B C 所对的边分别为,,a b c 满足,222b c a bc +-=,
0AB BC ⋅>u ur u u r u u
,a =b c +的取值范围是( )
A .31,2⎛⎫ ⎪⎝⎭
B
.32⎫
⎪⎪⎝⎭
C .13,22⎛⎫
⎪⎝⎭
D .31,2
⎛⎤ ⎥⎝⎦
【答案】B 【解析】 【分析】
利用余弦定理222
cos 2b c a A bc
+-=,可得3A π=,由
|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r
,可得B
为钝角,由正弦定理可得
sin sin(120)30)o o b c B B B ∴+=+-=+,结合B 的范围,可得解
【详解】
由余弦定理有:222
cos 2b c a A bc
+-=,又222b c a bc +-=
故2221
cos 222
b c a bc A bc bc +-===
又A 为三角形的内角,故3
A π
=
又2
a
=sin sin sin(120)o
b c c B C B ==
- 又|||cos()|0AB BC AB BC B π⋅=⋅->u u u u u u u u r u ur u r u r
故cos 0B B <∴为钝角
3sin sin(120)sin 30)2o o b c B B B B B ∴+=+-=+=+
(90,120)o o B ∈Q ,可得
130(120150)sin(30)(2o o o o B B +∈∴+∈,
330))2
o b c B ∴+=+∈ 故选:B 【点睛】
本题考查了正弦定理、余弦定理和向量的综合应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题
5.已知函数sin(),0
()cos(),0
x a x f x x b x +≤⎧=⎨
+>⎩的图像关于y 轴对称,则sin y x =的图像向左平移
( )个单位,可以得到cos()y x a b =++的图像( ). A .
4
π B .
3
π C .
2
π D .π
【答案】D 【解析】 【分析】
根据条件确定,a b 关系,再化简()cos y x a b =++,最后根据诱导公式确定选项. 【详解】
因为函数()()(),0
,0sin x a x f x cos x b x ⎧+≤⎪=⎨+>⎪⎩的图像关于y 轴对称,所以
sin cos 22a b ππ⎛⎫⎛⎫
-+=+ ⎪ ⎪⎝⎭⎝⎭
,()()sin cos a b ππ-+=+,即sin cos sin cos b a a b ,==,因此π
2π()2
a b k k Z +=
+∈, 从而()()cos sin y x a b sinx x π=++=-=+,选D. 【点睛】
本题考查偶函数性质、诱导公式、三角函数图象变换,考查基本分析识别能力,属中档题.
6.函数sin 26y x π⎛
⎫=+ ⎪⎝
⎭的图象可由函数2cos 2y x x =-的图象( )
A .向右平移3
π
个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得到 B .向右平移6
π
个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得到 C .向左平移3π
个单位,再将所得图象上所有点的纵坐标缩短到原来的12
,横坐标不变得到 D .向左平移6π
个单位,再将所得图象上所有点的纵坐标缩短到原来的12
,横坐标不变得到 【答案】D 【解析】 【分析】
合并cos2y x x =-得:2sin 26y x π⎛

=- ⎪⎝

,利用平移、伸缩知识即可判断选项。

【详解】
由cos2y x x =-得:2sin 26y x π⎛⎫
=- ⎪⎝

将它的图象向左平移
6
π
个单位, 可得函数2sin 22sin 2666y x x πππ⎛⎫

⎫⎛
⎫=+
-=+ ⎪ ⎪ ⎪⎝
⎭⎝⎭⎝⎭
的图象, 再将上述图象上所有点的纵坐标缩短到原来的12,横坐标不变得到:sin 26y x π⎛
⎫=+ ⎪⎝
⎭图
象. 故选:D 【点睛】
本题主要考查了三角函数图象的平移、伸缩变换,考查了两角差的正弦公式,属于中档题。

7.设函数f (x )=cos (x +
3
π
),则下列结论错误的是 A .f(x)的一个周期为−2π B .y=f(x)的图像关于直线x=
83
π
对称 C .f(x+π)的一个零点为x=6
π D .f(x)在(
2
π
,π)单调递减 【答案】D 【解析】
f (x )的最小正周期为2π,易知A 正确; f 8π3⎛⎫
⎪⎝⎭=cos 8ππ33⎛⎫
+ ⎪⎝⎭
=cos3π=-1,为f (x )的最小值,故B 正确;
∵f (x +π)=cos ππ3x ⎛
⎫++ ⎪⎝
⎭=-cos π3x ⎛⎫+ ⎪⎝⎭,∴f ππ6⎛⎫+ ⎪⎝⎭=-cos ππ63⎛⎫
+ ⎪
⎝⎭
=-cos 2π=0,故C 正确; 由于f 2π3⎛⎫
⎪⎝⎭=cos 2ππ33⎛⎫+ ⎪
⎝⎭
=cosπ=-1,为f (x )的最小值,故f (x )在,2ππ⎛⎫ ⎪⎝⎭上不单调,故D 错误. 故选D.
8.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+若
2sin sin sin B C A ⋅=,则ABC ∆的形状是()
A .等腰三角形
B .直角三角形
C .等边三角形
D .等腰直角三角形
【答案】C 【解析】
【分析】
直接利用余弦定理的应用求出A 的值,进一步利用正弦定理得到:b =c ,最后判断出三角形的形状. 【详解】
在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c , 且b 2+c 2=a 2+bc .
则:2221
222
b c a bc cosA bc bc +-===,
由于:0<A <π,
故:A 3
π
=

由于:sin B sin C =sin 2A , 利用正弦定理得:bc =a 2, 所以:b 2+c 2﹣2bc =0, 故:b =c ,
所以:△ABC 为等边三角形. 故选C . 【点睛】
本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.
9.已知函数()sin()f x x πϕ=+某个周期的图象如图所示,A ,B 分别是()f x 图象的最高点与最低点,C 是()f x 图象与x 轴的交点,则tan ∠BAC =( )
A .
12
B .
47
C 255
D 7
6565
【答案】B 【解析】 【分析】
过A 作AD 垂直于x 轴于点D ,AB 与x 轴交于E ,设C (a ,0),可得32
CD =
,11,2AD DE ==
,3
tan 2CD CAD AD ∠=
=,1tan 2
ED EAD AD ∠==,再利用
tan tan()BAC CAD EAD ∠=∠-∠计算即可.
【详解】
过A 作AD 垂直于x 轴于点D ,AB 与x 轴交于E , 由题可得周期为2,设(,0)C a ,则1(,1)2B a +-,3
(,1)2
A a +, 所以32
CD =
,1
1,2AD DE ==,
3
tan 2CD CAD AD ∠=
=,1tan 2
ED EAD AD ∠== 所以tan tan tan tan()1tan tan CAD EAD
BAC CAD EAD CAD EAD
∠-∠∠=∠-∠=
+∠⋅∠
31422317122-=
=+⨯. 故选:B
【点睛】
本题主要考查两角差的正切公式,涉及到正弦型函数图象等知识,考查学生数学运算能力,是一道中档题.
10.在ABC ∆中,060,10,A BC D ∠==是边AB 上的一点,2,CD CBD =∆的面积
为1,
则BD 的长为( ) A .
32
B .4
C .2
D .1
【答案】C 【解析】
1210sin 1sin 25BCD BCD ∠=∴∠= 2
22102210425
BD BD ∴=-=∴=,选C
11.在ABC ∆中,若2
sin sin cos 2
C
A B =,则ABC ∆是( ) A .等边三角形 B .等腰三角形
C .不等边三角形
D .直角三角形
【答案】B 【解析】
试题分析:因为2
sin sin cos
2C
A B =,所以,1cos sin sin 2
C A B +=,即
2sin sin 1cos[()],cos()1A B A B A B π=+-+-=,故A=B ,三角形为等腰三角形,选B 。

考点:本题主要考查和差倍半的三角函数,三角形内角和定理,诱导公式。

点评:简单题,判断三角形的形状,一般有两种思路,一种是从角入手,一种是从边入手。

12.已知角α的终边与单位圆交于点34
(,)55
P -,则cos α的值为( ) A .
35
B .35
-
C .
45
D .45
-
【答案】B 【解析】 【分析】
根据已知角α的终边与单位圆交于点34(,)55
P -,结合三角函数的定义即可得到cos α的值. 【详解】
因为角α的终边与单位圆交于点34(,)55
P -, 所以34
,,155
x y r =-==, 所以3cos 5
α=-, 故选B. 【点睛】
该题考查的是有关已知角终边上一点求其三角函数值的问题,涉及到的知识点有三角函数的定义,属于简单题目.
13.若,2παπ⎛⎫∈ ⎪⎝⎭,2cos2sin 4παα⎛⎫
=- ⎪⎝⎭
,则sin 2α的值为( ) A .78-
B .
78
C .18
-
D .
18
【答案】A 【解析】 【分析】
利用二倍角公式及两角差的正弦公式化简得到cos sin αα+=,再将两边平方利用二倍角正弦公式计算可得; 【详解】
解:因为2cos2sin 4παα⎛⎫
=-
⎪⎝⎭
所以(
)
22
2cos sin sin
cos cos
sin 4
4
π
π
αααα-=-
所以()())2cos sin cos sin cos sin αααααα-+=
- ,cos sin 02παπαα⎛⎫∈-≠ ⎪⎝⎭
Q ,
所以cos sin 4
αα+=
所以()2
1cos sin 8αα+=,即22
1cos 2cos sin sin 8αααα++=,11sin 28
α+= 所以7sin 28
α=- 故选:A 【点睛】
本题考查两角和差的正弦公式、二倍角公式的应用,属于中档题;
14.已知函数f (x )=sin 2x +sin 2(x 3
π
+),则f (x )的最小值为( )
A .
12
B .
14
C D .
2
【答案】A 【解析】 【分析】
先通过降幂公式和辅助角法将函数转化为()11cos 223f x x π⎛
⎫=-+ ⎪⎝
⎭,再求最值. 【详解】
已知函数f (x )=sin 2x +sin 2(x 3
π
+
),
=21cos 21cos 2322
x x π⎛

-+
⎪-⎝⎭
+
, =1cos 23sin 2111cos 22223x x x π⎛⎫⎛
⎫--=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭
, 因为[]cos 21,13x π⎛⎫
+
∈- ⎪⎝

, 所以f (x )的最小值为12
. 故选:A 【点睛】
本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.
15.函数()2sin sin cos y x x x =+的最大值为( ) A .12+ B .21- C .2
D .2
【答案】A 【解析】
由题意,得()2
2sin sin cos 2sin 2sin cos sin2cos21y x x x x x x x x =+=+=-+
π2sin 21214x ⎛
⎫=-+≤+ ⎪⎝
⎭;故选A.
16.若θ是第二象限角,则下列选项中能确定为正值的是( ) A .sin B .cos
C .tan
D .cos2θ
【答案】C 【解析】 【分析】
直接利用三角函数象限角的三角函数的符号判断即可. 【详解】
由θ是第二象限角可得为第一或第三象限角,所以tan >0.故选C 【点睛】
本题考查三角函数值的符号的判断,是基础题.
17.已知曲线1:sin C y x =,21
:cos 2
3C y x π⎛⎫=- ⎪⎝⎭,则下面结论正确的是( )
A .把1C 上各点的横坐标缩短到原来的
12
倍,纵坐标不变,再把得到的曲线向右平移3π

单位长度,得到曲线2C
B .把1
C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3
π个单位长度,得到曲线2C
C .把1C 上各点的横坐标缩短到原来的12
倍,纵坐标不变,再把得到的曲线向左平移3π个
单位长度,得到曲线2C
D .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移3
π个单位长度,得到曲线2C 【答案】D 【解析】 【分析】
根据三角函数的周期变换和左右平移变换依次得到各选项中所得的函数解析式,从而得到正确选项. 【详解】
A 中,将sin y x =横坐标缩短到原来的12
倍得:sin 2y x =;向右平移3π
个单位长度后
得:2sin 2sin 2sin 2cos 233266y x x x x πππππ⎛⎫⎛
⎫⎛⎫⎛
⎫=-=-=--=-- ⎪
⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝
⎭,A 错误;
B 中,将sin y x =横坐标伸长到原来的2倍得:1sin
2
y x =;向右平移3π
个单位长度后
得:11121sin sin cos cos 232622
632y x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫
=-=-=--=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,B 错误;
C 中,将sin y x =横坐标缩短到原来的12
倍得:sin 2y x =;向左平移3π
个单位长度后
得:2sin 2sin 2sin 2cos 233266y x x x x πππππ⎛⎫⎛
⎫⎛⎫⎛
⎫=+=+=++=+ ⎪
⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝
⎭,C 错误;
D 中,将sin y x =横坐标伸长到原来的2倍得:1sin
2
y x =;向左平移3π
个单位长度后
得:1111
sin sin cos cos 232622
623y x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+=+=-+=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,D 正确. 故选:D 【点睛】
本题考查三角函数的周期变换和平移变换的问题,关键是能够准确掌握变换原则,得到变换后的函数解析式.
18.已知函数())(0f x x ωϕω=+>,)22
ππ-
<ϕ<,1
(3A ,0)为()f x 图象的对称中
心,B ,C 是该图象上相邻的最高点和最低点,若4BC =,则()f x 的单调递增区间是(
)
A .2(23k -,4
2)3k +,k Z ∈ B .2(23k ππ-,4
2)3k ππ+,k Z ∈
C .2(43k -
,4
4)3
k +,k Z ∈ D .2(43k ππ-,4
4)3
k ππ+,k Z ∈
【答案】C 【解析】 【分析】
由三角函数图像的性质可求得:2
π
ω=
,6
π
ϕ=-
,即()sin(
)26
f x x π
π
=-,再令
222262
k x k ππππ
ππ--+剟,求出函数的单调增区间即可.
【详解】
解:函数())(0f x x ωϕω=+>,)22
ππ
-
<ϕ<, 因为1
(3
A ,0)为()f x 图象的对称中心,
B ,
C 是该图象上相邻的最高点和最低点,
又4BC =,∴2
22
()42T +=,即221216πω
+=,求得2πω=.
再根据123k πϕπ+=g ,k Z ∈,可得6
πϕ=-,()3sin()26f x x ππ
∴=-,
令222262k x k ππππππ--
+剟,求得24
4433
k x k -+剟, 故()f x 的单调递增区间为2(43k -,4
4)3
k +,k Z ∈, 故选:C . 【点睛】
本题考查了三角函数图像的性质及单调性,属中档题.
19.已知向量m =r
(1,cosθ),(sin ,2)n θ=-r
,且m r ⊥n r
,则sin 2θ+6cos 2θ的值为( )
A .
1
2
B .2
C .
D .﹣2
【答案】B 【解析】 【分析】
根据m r ⊥n r 可得tanθ,而sin 2θ+6cos 2
θ222
26sin cos cos sin cos θθθθθ
+=+,分子分母同除以cos 2θ,
代入tanθ可得答案. 【详解】
因为向量m =r (1,cosθ),n =r
(sinθ,﹣2), 所以sin 2cos m n θθ⋅=-u r r
因为m r ⊥n r

所以sin 2cos 0θθ-=,即tanθ=2,
所以sin 2θ+6cos 2θ2
222
2626226
141
sin cos cos tan sin cos tan θθθθθθθ++⨯+====+++ 2. 故选:B. 【点睛】
本题主要考查平面向量的数量积与三角恒等变换,还考查运算求解的能力,属于中档题.
20.化简
21
sin 352sin 20︒︒
-=( )
A .
12 B .12
-
C .1-
D .1
【答案】B 【解析】 【分析】
利用降次公式和诱导公式化简所求表达式,由此求得正确结论. 【详解】
依题意,原式1cos701
1cos701sin 20122sin 202sin 202sin 202
--
==-⨯=-⨯=-
o o o o o o ,故选B. 【点睛】
本小题主要考查三角函数降次公式,考查三角函数诱导公式,属于基础题.。

相关文档
最新文档