曲靖市实验中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲靖市实验中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 命题“设a 、b 、c ∈R ,若ac 2>bc 2则a >b ”以及它的逆命题、否命题、逆否命题中,真命题的个数为( ) A .0 B .1
C .2
D .3
2.
已知,则f{f[f (﹣2)]}的值为( ) A .0
B .2
C .4
D .8
3. 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V
≈L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为3,
那么,近似公式V
≈L 2h 相当于将圆锥体积公式中的π近似取为( )
A

B

C

D

4. 已知PD ⊥矩形ABCD 所在的平面,图中相互垂直的平面有( )
A .2对
B .3对
C .4对
D .5对
5. 已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的( ) A .①④
B .①⑤
C .②⑤
D .③⑤
6. 已知点A (1,1),B (3,3),则线段AB 的垂直平分线的方程是( ) A .y=﹣x+4 B .y=x C .y=x+4 D .y=﹣x
7. 已知等差数列{a n }的前n 项和为S n ,若m >1,且a m ﹣1+a m+1﹣a m 2=0,S 2m ﹣1=38,则m 等于( )
A .38
B .20
C .10
D .9
8. 已知椭圆C

+
=1(a >b >0)的左、右焦点为F 1、F 2
,离心率为
,过F 2的直线l 交C 于A 、B
两点,若△AF 1B 的周长为
4,则C 的方程为( )
A

+
=1
B

+y 2=1
C

+
=1
D

+
=1
9. 现要完成下列3项抽样调查:
①从10盒酸奶中抽取3盒进行食品卫生检查.
②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )
A .①简单随机抽样,②系统抽样,③分层抽样
B .①简单随机抽样,②分层抽样,③系统抽样
C .①系统抽样,②简单随机抽样,③分层抽样
D .①分层抽样,②系统抽样,③简单随机抽样
10.设关于x 的不等式:x 2﹣ax ﹣2>0解集为M ,若2∈M
, ∉M ,则实数a 的取值范围是( ) A .(﹣∞

)∪(1,+∞)
B .(﹣∞


C .
[,1) D
.(
,1)
11.命题“∃x ∈R ,使得x 2<1”的否定是( )
A .∀x ∈R ,都有x 2<1
B .∃x ∈R ,使得x 2>1
C .∃x ∈R ,使得x 2≥1
D .∀x ∈R ,都有x ≤﹣1或x ≥1
12.“
方程
+
=1表示椭圆”是“﹣3<m <5”的( )条件.
A .必要不充分
B .充要
C .充分不必要
D .不充分不必要
二、填空题
13
.已知函数
为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .
14.已知,0()1,0
x e x f x x ì³ï=í<ïî,则不等式2
(2)()f x f x ->的解集为________.
【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力.
15.定义)}(),(min{x g x f 为)(x f 与)(x g 中值的较小者,则函数},2min{)(2x x x f -=的取值范围是 16
.已知复数,则1+z 50+z 100
= .
17
.椭圆
+
=1上的点到直线l :x ﹣2y ﹣12=0的最大距离为 .
18.给出下列四个命题: ①函数y=|x|
与函数
表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3x 2+1的图象可由y=3x 2的图象向上平移1个单位得到; ④若函数f (x )的定义域为[0,2],则函数f (2x )的定义域为[0,4];
⑤设函数f (x )是在区间[a ,b]上图象连续的函数,且f (a )•f (b )<0,则方程f (x )=0在区间[a ,b]上至少有一实根;
其中正确命题的序号是 .(填上所有正确命题的序号)
三、解答题
19.某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。

规定:只能通过前一轮考核才能进入下一轮的考核,否则将被淘汰;三轮考核都通过才算通过该高校的自主招生考试。

学生甲三轮考试通
过的概率分别为2
3,3
4
,4
5
,且各轮考核通过与否相互独立。

(1)求甲通过该高校自主招生考试的概率;
(2)若学生甲每通过一轮考核,则家长奖励人民币1000元作为大学学习的教育基金。

记学生甲得到教育基金的金额为X,求X的分布列和数学期望。

20.已知函数f(x)=x3﹣x2+cx+d有极值.
(Ⅰ)求c的取值范围;
(Ⅱ)若f(x)在x=2处取得极值,且当x<0时,f(x)<d2+2d恒成立,求d的取值范围.
21.已知椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,
过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点.(Ⅰ)求椭圆C的方程;
(Ⅱ)求△F2PQ面积的最小值.
22.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球. (1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?
(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X ,求X 的分布列和数学期望.
23.已知△ABC 的顶点A (3,2),∠C 的平分线CD 所在直线方程为y ﹣1=0,AC 边上的高BH 所在直线方程为4x+2y ﹣9=0.
(1)求顶点C 的坐标; (2)求△ABC 的面积.
24.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c 2sin a b A =. (1)求角B 的大小;
(2)若a =5c =,求.
曲靖市实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】C
【解析】解:命题“设a、b、c∈R,若ac2>bc2,则c2>0,则a>b”为真命题;
故其逆否命题也为真命题;
其逆命题为“设a、b、c∈R,若a>b,则ac2>bc2”在c=0时不成立,故为假命题
故其否命题也为假命题
故原命题及其逆命题、否命题、逆否命题中,真命题的个数为2个
故选C
【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键.
2.【答案】C
【解析】解:∵﹣2<0
∴f(﹣2)=0
∴f(f(﹣2))=f(0)
∵0=0
∴f(0)=2即f(f(﹣2))=f(0)=2
∵2>0
∴f(2)=22=4
即f{f[(﹣2)]}=f(f(0))=f(2)=4
故选C.
3.【答案】B
【解析】解:设圆锥底面圆的半径为r,高为h,则L=2πr,
∴=(2πr)2h,
∴π=.
故选:B.
4.【答案】D
【解析】解:∵PD⊥矩形ABCD所在的平面且PD⊆面PDA,PD⊆面PDC,
∴面PDA⊥面ABCD,面PDC⊥面ABCD,
又∵四边形ABCD为矩形
∴BC⊥CD,CD⊥AD
∵PD⊥矩形ABCD所在的平面
∴PD⊥BC,PD⊥CD
∵PD∩AD=D,PD∩CD=D
∴CD⊥面PAD,BC⊥面PDC,AB⊥面PAD,
∵CD⊆面PDC,BC⊆面PBC,AB⊆面PAB,
∴面PDC⊥面PAD,面PBC⊥面PCD,面PAB⊥面PAD
综上相互垂直的平面有5对
故答案选D
5.【答案】D
【解析】解:当m⊂α,α∥β时,根据线面平行的定义,m与β没有公共点,有m∥β,其他条件无法推出m ∥β,
故选D
【点评】本题考查直线与平面平行的判定,一般有两种思路:判定定理和定义,要注意根据条件选择使用.6.【答案】A
【解析】解:∵点A(1,1),B(3,3),
∴AB的中点C(2,2),
k AB==1,
∴线段AB的垂直平分线的斜率k=﹣1,
∴线段AB的垂直平分线的方程为:
y﹣2=﹣(x﹣2),整理,得:y=﹣x+4.
故选:A.
7.【答案】C
【解析】解:根据等差数列的性质可得:a m﹣1+a m+1=2a m,
则a m﹣1+a m+1﹣a m2=a m(2﹣a m)=0,
解得:a m=0或a m=2,
若a m等于0,显然S2m﹣1=
=(2m﹣1)a m=38不成立,故有a m=2,
∴S2m﹣1=(2m﹣1)a m=4m﹣2=38,
解得m=10.
故选C
8.【答案】A
【解析】解:∵△AF
B的周长为4,
1
∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,
∴4a=4,
∴a=,
∵离心率为,
∴,c=1,
∴b==,
∴椭圆C的方程为+=1.
故选:A.
【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.
9.【答案】A
【解析】解;观察所给的四组数据,
①个体没有差异且总数不多可用随机抽样法,简单随机抽样,
②将总体分成均衡的若干部分指的是将总体分段,
在第1段内采用简单随机抽样确定一个起始编号,
在此编号的基础上加上分段间隔的整倍数即为抽样编号,系统抽样,
③个体有了明显了差异,所以选用分层抽样法,分层抽样,
故选A.
10.【答案】C
【解析】解:由题意得:,
解得:≤a<1,
则实数a的取值范围为[,1).
故选C
【点评】此题考查了一元二次不等式的解法,以及不等式组的解法,根据题意列出关于a的不等式组是解本题的关键.
11.【答案】D
【解析】解:命题是特称命题,则命题的否定是∀x∈R,都有x≤﹣1或x≥1,
故选:D.
【点评】本题主要考查含有量词的命题的否定,比较基础.
12.【答案】C
【解析】解:若方程+=1表示椭圆,则满足,即,
即﹣3<m <5且m ≠1,此时﹣3<m <5成立,即充分性成立,
当m=1时,满足﹣3<m <5,但此时方程+
=1即为x 2+y 2=4为圆,不是椭圆,不满足条件.即必要
性不成立.
故“方程+
=1表示椭圆”是“﹣3<m <5”的充分不必要条件.
故选:C .
【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题.
二、填空题
13.【答案】 2 .
【解析】解:∵f (x )是定义在[﹣2a ,3a ﹣1]上奇函数, ∴定义域关于原点对称, 即﹣2a+3a ﹣1=0, ∴a=1,
∵函数为奇函数,
∴f (﹣x )=
=﹣

即b •2x ﹣1=﹣b+2x

∴b=1. 即a+b=2,
故答案为:2.
14.【答案】(-
【解析】函数()f x 在[0,)+?递增,当0x <时,220x ->,解得0x -<<;当0x ³时,22x x ->,
解得01x ?,综上所述,不等式2
(2)()f x f x ->的解集为(.
15.【答案】(],1-∞ 【解析】
试题分析:函数(){}
2
min 2,f x x x =-的图象如下图:
观察上图可知:()f x 的取值范围是(],1-∞。

考点:函数图象的应用。

16.【答案】 i .
【解析】解:复数

所以z 2=i ,又i 2=﹣1,所以1+z 50+z 100=1+i 25+i 50
=1+i ﹣1=i ;
故答案为:i .
【点评】本题考查了虚数单位i 的性质运用;注意i 2
=﹣1.
17.【答案】 4 .
【解析】解:由题意,设P (4cos θ,2sin θ)
则P 到直线的距离为d==,
当sin (θ﹣
)=1时,d 取得最大值为4

故答案为:4.
18.【答案】 ③⑤
【解析】解:①函数y=|x|,(x ∈R )与函数,(x ≥0)的定义域不同,它们不表示同一个函数;
错;
②奇函数y=,它的图象不通过直角坐标系的原点;故②错;
③函数y=3(x ﹣1)2的图象可由y=3x 2的图象向右平移1个单位得到;正确; ④若函数f (x )的定义域为[0,2],则函数f (2x )的定义域由0≤2x ≤2,⇒0≤x ≤1, 它的定义域为:[0,1];故错;
⑤设函数f (x )是在区间[a .b]上图象连续的函数,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b]上至少有一实根.故正确; 故答案为:③⑤
三、解答题
19.【答案】(1)2
5
(2)X 的分布列为
数学期望为11124700()0100020003000361053
E X =⨯
+⨯+⨯+⨯=-- 解析:(1)设“学生甲通过该高校自主招生考试”为事件A ,则P (A )=2342
3455
⨯⨯= 所以学生甲通过该高校自主招生考试的概率为
2
5
-------------4分 (2)X 的可能取值为0元,1000元,2000元,3000元--------------5分
21(0)133P X ==-
=,231(1000)(1)346P X ==⨯-=,2341(2000)(1)34510P X ==⨯⨯-= 2342
(3000)3455P X ==⨯⨯=------------------9分
所以,X 的分布列为
数学期望为11124700()0100020003000361053
E X =⨯+⨯+⨯+⨯=---------------------12分 20.【答案】
【解析】解(Ⅰ)∵f (x )=x 3﹣x 2
+cx+d ,
∴f ′(x )=x 2﹣x+c ,要使f (x )有极值,则方程f ′(x )=x 2
﹣x+c=0有两个实数解,
从而△=1﹣4c >0,
∴c <.
(Ⅱ)∵f (x )在x=2处取得极值,
∴f ′(2)=4﹣2+c=0, ∴c=﹣2.
∴f (x )=x 3﹣x 2
﹣2x+d ,
∵f ′(x )=x 2
﹣x ﹣2=(x ﹣2)(x+1),
∴当x∈(﹣∞,﹣1]时,f′(x)>0,函数单调递增,当x∈(﹣1,2]时,f′(x)<0,函数单调递减.
∴x<0时,f(x)在x=﹣1处取得最大值,
∵x<0时,f(x)<恒成立,
∴<,即(d+7)(d﹣1)>0,
∴d<﹣7或d>1,
即d的取值范围是(﹣∞,﹣7)∪(1,+∞).
【点评】本题考查的知识点是函数在某点取得极值的条件,导数在最大值,最小值问题中的应用,其中根据已知中函数的解析式,求出函数的导函数的解析式,是解答本题的关键.
21.【答案】
【解析】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,
∴,解得a2=4,b2=3,
∴椭圆C的方程为=1.
(Ⅱ)设直线MN的方程为x=ty+1,(﹣),
代入椭圆,化简,得(3t2+4)y2+6ty﹣9=0,
∴,,
设M(x1,y1),N(x2,y2),又F1(﹣1,0),F2(1,0),
则直线F1M:,令x=4,得P(4,),同理,Q(4,),
∴=||=15×||=180×||,
令μ=∈[1,),则=180×,
∵y==在[1,)上是增函数,
∴当μ=1时,即t=0时,()min=.
【点评】本题考查椭圆方程的求法,考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意韦达定理、直线方程、弦长公式、函数单调性、椭圆性质的合理运用.
22.【答案】
【解析】解:(1)设事件A为“两手所取的球不同色”,
则P(A)=1﹣.
(2)依题意,X的可能取值为0,1,2,
左手所取的两球颜色相同的概率为=,
右手所取的两球颜色相同的概率为=.
P(X=0)=(1﹣)(1﹣)==;
P(X=1)==;
P(X=2)==.
∴X的分布列为:
0 1 2
EX=0×+1×+2×=.
【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型.解题时要认真审题,仔细解答,注意概率知识的灵活运用.
23.【答案】
【解析】解:(1)由高BH所在直线方程为4x+2y﹣9=0,∴=﹣2.
∵直线AC⊥BH,∴k AC k BH=﹣1.
∴,
直线AC的方程为,
联立
∴点C的坐标C(1,1).
(2),
∴直线BC的方程为,
联立,即.
点B 到直线AC :x ﹣2y+1=0的距离为.
又,


【点评】本题考查了相互垂直的直线斜率之间的关系、角平分线的性质、点到直线的距离公式、两点间的距离公式、三角形的面积计算公式,属于基础题.
24.【答案】(1)6
B π
=;(2)b =
【解析】1111]
(2)根据余弦定理,得
2222cos 2725457b a c ac B =+-=+-=,
所以b =
考点:正弦定理与余弦定理.。

相关文档
最新文档