2020-2021学年河北省七年级数学下学期期末模拟检测题及答案解析-精品试卷
河北省石家庄市新华区2023-2024学年七年级下学期期末数学试题(含答案)
![河北省石家庄市新华区2023-2024学年七年级下学期期末数学试题(含答案)](https://img.taocdn.com/s3/m/627f9078b5daa58da0116c175f0e7cd1842518e5.png)
2023—2024学年第二学期期末学业质量监测七年级数学(冀教版)注意事项:1.本试卷共6页,满分100分,考试时长90分钟。
2.答卷前将密封线左侧的项目填写清楚。
3.答案须用黑色字迹的签字笔书写。
一、精心选择(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项只有一项是正确的)1.如图,CF,CE,CD分别是△ABC的中线、角平分线、高,下列线段中,长度最短的是()A.CF B.CE C.CD D.CB2.2−3可以表示为()A.2×2×2B.(−2)×(−2)×(−2)C.2÷2÷2D.12×2×23.如图.∠1与∠2是()A.同位角B.内错角C.同旁内角D.对顶角4.我国陆地上风能储量约为253,000兆瓦,将253,000用科学记数法表示为2.53×10n,则n的值为()A.4B.5C.6D.−55.一款晾衣架的示意图如图所示,支架OP=OQ=30cm(连接处的长度忽略计),则点P,Q之间的距离可以是()A.50cm B.65cm C.70cm D.80cm6.下列运算中,结果正确的是()A.a4⋅a3=a12B.(a3)2=a6C.a6÷a2=a3D.(−3x)2=−9x27.数轴上表示数m,n的点的位置如图所示,则下列结论不正确的是()A.m−n<0B.m+1<n−1C.−3m<−3n D.m2<n28.如图,将长方形纸片按如图方式折叠,已知∠DQP=50∘,则∠CPM=()A.40∘B.50∘C.60∘D.80∘9.等式“☐a2−b2=−(2a−b)(2a+b)”中的“□”表示的数是()A.4B.−4C.16D.−1610.如图,已知直线m平移后得到直线n,∠1=108∘,∠2=35∘.则∠3的度数为()A.98∘B.103∘C.107∘D.143∘11.【问题】已知关于x,y的方程组{3x+5y=4k−2x−3y=2的解满足2x+y=3.求k的值.嘉嘉同学有如下两种解题思路和部分步骤:Ⅰ.将方程组中的两个方程相加并整理,可得到2x+y=2k,再求k的值;Ⅱ.解方程组{2x+y=3,x−3y=2,得到{x=117,y=−17.再代入3x+5y=4k−2中,可求k的值.下列判断正确的是()A.Ⅰ的解题思路不正确B.Ⅱ的解题思路不正确C.Ⅱ的解题思路正确,求解不正确D.Ⅰ与Ⅱ的解题思路与求解都正确12.阅读下面的数学问题:如图,在△ABC中,AE⊥BC于点E,CD⊥AB于点D,AE,CD交于点P,AQ平分∠CAE,CQ平分∠ACD.甲、乙两人经过研究,分别得到如下结论:甲:∠APC+∠ABC=180∘;乙:∠AQC+12∠ABC=180∘.其中判断正确的是()A.甲、乙两人的结论都正确B.甲、乙两人的结论都错误C.甲的结论错误,乙的结论正确D.甲的结论正确,乙的结论错误二、准确填空(本大题共4个小题,每小题3分,共12分.其中16小题第一个空2分,第二个空1分)13.写出一个满足不等式x−6>0的x的整数值为 .14.整式a2−a和(a−1)2的公因式为 .15.命题“若△ABC中的∠A:∠B:∠C=1:2:3,则△ABC是直角三角形”是 .(填“真命题”或“假命题”)16.几何验证:如图1,可验证公式(a+b)2=a2+2ab+b2.(1)公式应用:若m+n=5,mn=6,则m2+n2的值为;,则S1+S2的(2)拓展延伸:如图2,四边形ACDE和四边形BCFG是两个正方形,若DF=6,S△ACF=92值为 .图2三、细心解答(本大题共8个小题,共52分.解答应写出文字说明、说理过程或演算步骤)17.(本小题满分5分)小明在解方程组{x−3y=3,①2x−5y=4②的过程如下:解:由①×2,得2x−6y=6③,…………第一步②−③,得−y=−2,…………第二步得y=2.…………第三步把y=2代入①,得x=9,…………第四步所以原方程组的解为{x=9,y=2.(1)小明的解题过程从第步开始出现错误;(2)请你写出正确的解方程组的过程.18.(本小题满分5分)已知不等式组{2(x−1)≥−3,①4x−2<1+3x.②(1)解该不等式组,并把解集在下面的数轴上表示出来;(2)写出该不等式组的所有正整数解.19.(本小题满分6分)如图,△ABC的顶点都在正方形网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC向左平移7个单位长度得到△A′B′C′.(1)在网格中画出△A′B′C′及A′B′边上的中线C′H和高线C′G;(2)直接写出线段BC所扫过的面积.20.(本小题满分6分)已知A=(a+2b)(a−b)−a5÷a3−(2b)2.(1)先化简A,再求当a=1,b=−3时,A的值;(2)若a=6b,求A的值.21.(本小题满分6分)如图,△ABC中,∠A=70∘,∠ABC=75∘,点D为线段AC上的点(不与点A,C重合),点E在AB的延长线上,连接DE,∠E=40∘,DF平分∠ADE.(1)求∠C的度数;(2)说明BC//DF的理由.22.(本小题满分7分)有三个连续奇数,最小的奇数为2n−1(n为正整数).(1)用含n的代数式表示另外两个奇数;(2)判断这三个奇数的平方和是否是12的倍数.若是,请说明理由;若不是,请写出被12除的余数是多少.23.(本小题满分8分)某校欲租用租赁公司的甲、乙两种型号的大巴车共8辆(两种车型都要租用),将部分师生送去植物园游玩,相关的租车信息如下:信息一:若租用3辆甲型大巴、5辆乙型大巴,共可载客435人;若租用6辆甲型大巴、2辆乙型大巴,共可载客390人。
2020-2021学年河北省保定市曲阳县七年级(下)期末数学试卷
![2020-2021学年河北省保定市曲阳县七年级(下)期末数学试卷](https://img.taocdn.com/s3/m/f4f680c231126edb6e1a10ea.png)
2020-2021学年河北省保定市曲阳县七年级(下)期末数学试卷一、单选题(每小题3分,共30分)1.(3分)下列运算中,计算结果正确的是()A.2x3•x2=2x6B.(﹣a3)2=a6C.(﹣3a2)3=﹣9a6D.x8÷x2=x42.(3分)一个不等式组的两个不等式的解集如图所示、则这个不等式组的解集为()A.x<2B.x≤2C.x<3D.x≤33.(3分)如图,△ABC中,点D在BC上,△ACD和△ABD面积相等,线段AD是三角形的()A.高B.角平分线C.中线D.无法确定4.(3分)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B 的度数为()A.30°B.36°C.40°D.45°5.(3分)若x2﹣ax﹣2可以分解为(x﹣2)(x+b),则a+b的值为()A.﹣1B.1C.﹣2D.26.(3分)不等式组的解集是()A.﹣1<x≤1B.﹣1<x<1C.x>﹣1D.x≤17.(3分)关于式子a2﹣2a+3的说法正确的是()A.当a=1时,式子有最大值2B.当a=1时,式子有最小值2C.当a=﹣1时,式子有最大值2D.当a=﹣1时,式子有最小值28.(3分)在解方程组时,由于粗心,甲看错了方程组中的a,而得到解,乙看错了方程组中的b,而得到解为,则a2020﹣(﹣)2121的值为()A.2B.﹣2C.0D.﹣29.(3分)直线上依次有A,B,C,D四个点,AD=7,AB=2,若AB,BC,CD可构成以BC为腰的等腰三角形,则BC的长为()A.2B.5C.2或2.5D.无法计算10.(3分)如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是()A.2.5秒B.3秒C.3.5秒D.4秒二、填空题(每小题3分,共30分)11.(3分)不等式3﹣3x>4x﹣2的最大整数解是.12.(3分)计算:(2a)3=.13.(3分)小威到小吃店买水饺,他身上带的钱恰好等于15粒虾仁水饺或20粒韭菜水饺的价钱,若小威先买了9粒虾仁水饺,则他身上剩下的钱恰好可买粒韭菜水饺.14.(3分)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D等于.15.(3分)学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x 辆,租用30座客车y辆,则不等式“45x+30y≥500”表示的实际意义是.16.(3分)分解因式:m3n﹣4mn=.17.(3分)如图是一个长为2m,宽为2n(m>n)的长方形,用剪刀剪成四个一样的小长方形拼成一个正方形,则正方形中空白的面积为.18.(3分)若线段AM,AN分别是△ABC中BC边上的高线和中线,则AM与AN的数量大小关系为.19.(3分)某商场计划每月销售900台电脑,2007年5月1日至7日黄金周期间,商场开展促销活动,5月的销售计划又增加了30%,已知黄金周这7天平均每天销售54台,则这个商场本月后24天平均每天至少销售台才能完成本月计划.20.(3分)如图,点D是△ABC的边BC上一点,且BD:CD=2:3,点E,F分别是线段AD,CE的中点,且△ABC的面积为20cm2,则△CDE和△BEF的面积分别为.三、解答题(满分60分)21.(10分)把下列各式因式分解:(1)18a2b﹣8b;(2)(x﹣1)(x﹣3)+1.22.(10分)解不等式(组):(1);(2).23.(8分)先化简,后求值:(2x﹣1)(2x+1)+4x3﹣x(1+2x)2,其中x=﹣.24.(10分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).25.(10分)如图,△ABC中,AD⊥BC于点D,BE平分∠ABC,若∠EBC=32°,∠AEB =70°.(1)求∠BAD和∠CAD的度数;(2)若点F为线段BC上的任意一点,当△EFC为直角三角形时,求∠BEF的度数.26.(12分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.2020-2021学年河北省保定市曲阳县七年级(下)期末数学试卷参考答案与试题解析一、单选题(每小题3分,共30分)1.(3分)下列运算中,计算结果正确的是()A.2x3•x2=2x6B.(﹣a3)2=a6C.(﹣3a2)3=﹣9a6D.x8÷x2=x4【解答】解:(A)原式=2x5,故A错误.(B)原式=a6,故B正确.(C)原式=﹣27a6,故C错误.(D)原式=x6,故D错误.故选:B.2.(3分)一个不等式组的两个不等式的解集如图所示、则这个不等式组的解集为()A.x<2B.x≤2C.x<3D.x≤3【解答】解:由数轴知这个不等式组的解集为x<2,故选:A.3.(3分)如图,△ABC中,点D在BC上,△ACD和△ABD面积相等,线段AD是三角形的()A.高B.角平分线C.中线D.无法确定【解答】解:过A作AH⊥BC于H,∵S△ACD=CD•AH,S△ABD=BD•AH,∵△ACD和△ABD面积相等,∴CD•AH=BD•AH,∴CD=BD,∴线段AD是三角形ABC的中线,故选:C.4.(3分)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B 的度数为()A.30°B.36°C.40°D.45°【解答】解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.5.(3分)若x2﹣ax﹣2可以分解为(x﹣2)(x+b),则a+b的值为()A.﹣1B.1C.﹣2D.2【解答】解:x2﹣ax﹣2=(x﹣2)(x+b)=x2+(b﹣2)x﹣2b,∴,解得:,∴a+b=2.故选:D.6.(3分)不等式组的解集是()A.﹣1<x≤1B.﹣1<x<1C.x>﹣1D.x≤1【解答】解:,由①得,x>﹣1,由②得,x≤1,故不等式组的解集为﹣1<x≤1,故选:A.7.(3分)关于式子a2﹣2a+3的说法正确的是()A.当a=1时,式子有最大值2B.当a=1时,式子有最小值2C.当a=﹣1时,式子有最大值2D.当a=﹣1时,式子有最小值2【解答】解:a2﹣2a+3=(a﹣1)2+2,∵(a﹣1)2≥1(当a=1时,等号成立),∴(a﹣1)2+2≥2(当a=1时,取最小值2),选项B符合题意.故选:B.8.(3分)在解方程组时,由于粗心,甲看错了方程组中的a,而得到解,乙看错了方程组中的b,而得到解为,则a2020﹣(﹣)2121的值为()A.2B.﹣2C.0D.﹣2【解答】解:将代入方程4x=by﹣2,得:8=b﹣2,∴b=10,将代入方程ax+5y=15,得:5a+20=15,∴a=﹣1,∴a2020﹣(﹣)2121=(﹣1)2020﹣(﹣)2121=1﹣(﹣1)=2.故选:A.9.(3分)直线上依次有A,B,C,D四个点,AD=7,AB=2,若AB,BC,CD可构成以BC为腰的等腰三角形,则BC的长为()A.2B.5C.2或2.5D.无法计算【解答】解:如图∵AB=2,AD=7,∴BD=BC+CD=5,∵BC作为腰的等腰三角形,∴BC=AB或BC=CD,∴BC=2或2.5.故选:C.10.(3分)如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是()A.2.5秒B.3秒C.3.5秒D.4秒【解答】解:设运动的时间为xcm,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4(cm).故选:D.二、填空题(每小题3分,共30分)11.(3分)不等式3﹣3x>4x﹣2的最大整数解是0.【解答】解:不等式3﹣3x>4x﹣2的解集为x<;所以其最大整数解是0.故答案为:0.12.(3分)计算:(2a)3=8a3.【解答】解:(2a)3=23•a3=8a3.故答案为:8a3.13.(3分)小威到小吃店买水饺,他身上带的钱恰好等于15粒虾仁水饺或20粒韭菜水饺的价钱,若小威先买了9粒虾仁水饺,则他身上剩下的钱恰好可买8粒韭菜水饺.【解答】解:设虾仁水饺每粒x元,韭菜水饺每粒y元,根据题意可得:15x=20y,则x=y,故他身上剩下的钱恰好可买韭菜水饺:(15x﹣9x)×y=8(粒),故答案为:8.14.(3分)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D等于15°.【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故答案为:15°.15.(3分)学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x 辆,租用30座客车y辆,则不等式“45x+30y≥500”表示的实际意义是租用x辆45座的客车和y辆30座的客车总的载客量不少于500人.【解答】解:不等式“45x+30y≥500”表示的实际意义是租用x辆45座的客车和y辆30座的客车总的载客量不少于500人.故答案为:租用x辆45座的客车和y辆30座的客车总的载客量不少于500人.16.(3分)分解因式:m3n﹣4mn=mn(m﹣2)(m+2).【解答】解:m3n﹣4mn=mn(m2﹣4)=mn(m﹣2)(m+2).故答案为:mn(m﹣2)(m+2).17.(3分)如图是一个长为2m,宽为2n(m>n)的长方形,用剪刀剪成四个一样的小长方形拼成一个正方形,则正方形中空白的面积为(m﹣n)2.【解答】解:正方形中空白的面积为(m+n)2﹣4mn=(m﹣n)2,故答案为:(m﹣n)2.18.(3分)若线段AM,AN分别是△ABC中BC边上的高线和中线,则AM与AN的数量大小关系为AM≤AN.【解答】解:∵线段AM,AN分别是△ABC中BC边上的高线和中线,∴AM≤AN,故答案为:AM≤AN.19.(3分)某商场计划每月销售900台电脑,2007年5月1日至7日黄金周期间,商场开展促销活动,5月的销售计划又增加了30%,已知黄金周这7天平均每天销售54台,则这个商场本月后24天平均每天至少销售33台才能完成本月计划.【解答】解:设平均每天销售x台,依题意得54×7+24x≥900+900×30%,解得x≥33台,则这个商场本月后24天平均每天至少销售33台才能完成本月计划.故答案为:33.20.(3分)如图,点D是△ABC的边BC上一点,且BD:CD=2:3,点E,F分别是线段AD,CE的中点,且△ABC的面积为20cm2,则△CDE和△BEF的面积分别为6cm2,5cm2.【解答】解:∵BD:CD=2:3,△ABC的面积为20cm2,∴S△ABD=S△ABC=8cm2,S△ACD=S△ABC=12cm2,又点E,F分别是线段AD,CE的中点,∴S△BDE=S△ABD=4cm2,S△CDE=S△ACD=6cm2,∴S△BEC=S△BDE+S△CDE=S△ABC=10cm2,∴S△BEF=S△BEC==5cm2,则△CDE和△BEF的面积分别为6cm2,5cm2.故答案为:6cm2,5cm2.三、解答题(满分60分)21.(10分)把下列各式因式分解:(1)18a2b﹣8b;(2)(x﹣1)(x﹣3)+1.【解答】解:(1)原式=2b(9a2﹣4)=2b(3a+2)(3a﹣2);(2)原式=x2﹣4x+3+1=x2﹣4x+4=(x﹣2)2.22.(10分)解不等式(组):(1);(2).【解答】解:(1)去分母得:3(x﹣2)≥2(2x﹣1)+6,去括号得:3x﹣6≥4x﹣2+6,移项得:3x﹣4x≥﹣2+6+6,合并同类项得:﹣x≥10,系数化成1得:x≤﹣10;(2),解不等式①得:x>﹣1,解不等式②得:x≤4,所以不等式组的解集是﹣1<x≤4.23.(8分)先化简,后求值:(2x﹣1)(2x+1)+4x3﹣x(1+2x)2,其中x=﹣.【解答】解:(2x﹣1)(2x+1)+4x3﹣x(1+2x)2=4x2﹣1+4x3﹣x(1+4x+4x2)=4x2﹣1+4x3﹣x﹣4x2﹣4x3=﹣x﹣1当x=﹣时原式=﹣x﹣1=﹣1=﹣.24.(10分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).【解答】解:(1)根据图形得:a2﹣b2=(a+b)(a﹣b),上述操作能验证的等式是B,故答案为:B;(2)①∵x2﹣4y2=(x+2y)(x﹣2y)=12,x+2y=4,∴x﹣2y=3;②原式=(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.25.(10分)如图,△ABC中,AD⊥BC于点D,BE平分∠ABC,若∠EBC=32°,∠AEB =70°.(1)求∠BAD和∠CAD的度数;(2)若点F为线段BC上的任意一点,当△EFC为直角三角形时,求∠BEF的度数.【解答】(1)证明:∵BE平分∠ABC,∴∠ABC=2∠EBC=64°,∵AD⊥BC,∴∠ADB=∠ADC=90°,∴∠BAD=90°﹣64°=26°,∵∠C=∠AEB﹣∠EBC=70°﹣32°=38°,∴∠CAD=90°﹣38°=52°;(2)解:分两种情况:①当∠EFC=90°时,如图1所示:则∠BFE=90°,∴∠BEF=90°﹣∠EBC=90°﹣32°=58°;②当∠FEC=90°时,如图2所示:则∠EFC=90°﹣38°=52°,∴∠BEF=∠EFC﹣∠EBC=52°﹣32°=20°;综上所述:∠BEF的度数为58°或20°.26.(12分)某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【解答】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为200元、150元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.依题意得:160a+120(50﹣a)≤7500,解得:a≤37.答:超市最多采购A种型号电风扇37台时,采购金额不多于7500元.(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,∵a≤37,且a应为整数,∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.。
2020-2021学年七年级数学下学期期末测试卷03(解析版)
![2020-2021学年七年级数学下学期期末测试卷03(解析版)](https://img.taocdn.com/s3/m/777f9aeaf12d2af90342e660.png)
2020-2021学年七年级数学下学期期末测试卷【人教版03】数学(答案卷)一.选择题(共12小题,满分48分,每小题4分)1.(4分)的相反数是()A.B.C.D.【分析】直接利用相反数的定义得出答案.【解答】解:﹣2的相反数是:﹣(﹣2)=2﹣.故选:A.2.(4分)(﹣7)2的算术平方根是()A.7B.±7C.﹣49D.49【分析】先求出式子的结果,再根据算术平方根的定义求出即可.【解答】解:∵(﹣7)2=49,=7,∴(﹣7)2的算术平方根是7,故选:A.3.(4分)据科学家统计,目前地球上已经被定义、命名的生物约有1500万种左右,数字1500万用科学记数法表示为()A.1.5×103B.1.5×106C.1.5×107D.15×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1500万=15000000=1.5×107.故选:C.4.(4分)下列各式正确的是()A.B.(﹣3)2=9C.﹣22=4D.=2【分析】根据平方根、立方根的意义计算.【解答】解:A.=2,故A错误,不符合题意;B.(﹣3)2=9,故B正确,符合题意;C.﹣22=﹣4,故C错误,不符合题意;D.=﹣2,故D错误,不符合题意;故选:B.5.(4分)如图,已知直线AB∥CD,点F为直线AB上一点,G为射线BD上一点.若∠HDG=2∠CDH,∠GBE=2∠EBF,HD交BE于点E,则∠E的度数为()A.45°B.55°C.60°D.无法确定【分析】设∠CDH=x,∠EBF=y,得到∠HDG=2x,∠DBE=2y,根据平行线的性质得到∠ABD=∠CDG=3x,求得x+y=60°,根据三角形的内角和即可得到结论.【解答】解:∵∠HDG=2∠CDH,∠GBE=2∠EBF,∴设∠CDH=x,∠EBF=y,∴∠HDG=2x,∠DBE=2y,∵AB∥CD,∴∠ABD=∠CDG=3x,∵∠ABD+∠DBE+∠EBF=180°,∴3x+2y+y=180°,∴x+y=60°,∵∠BDE=∠HDG=2x,∴∠E=180°﹣2x﹣2y=180°﹣2(x+y)=60°,故选:C.6.(4分)已知是二元一次方程mx+3y=7的一组解,则m的值为()A.﹣2B.2C.﹣D.【分析】把x与y的值代入方程计算,即可求出m的值.【解答】解:把代入方程得:﹣m+9=7,解得:m=2.故选:B.7.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,结合各选项中解集在数轴上的表示即可.【解答】解:解不等式﹣2x+5≥3,得:x≤1,解不等式3(x﹣1)<2x,得:x<3,故选:B.8.(4分)甲、乙两种品牌的方便面在2016~2020年销售增长率如图所示,下列说法一定正确的是()A.这几年内甲、乙两种品牌的方便面销售量都在逐步上升B.甲品牌方便面在2018年到2019年期间销售量在下降C.在2017到2018年期间,甲品牌方便面销售量高于乙品牌D.根据折线统计图的变化趋势,预测在2020~2021年期间,甲品牌的销售量高于乙品牌【分析】根据折线统计图可直接解答.【解答】解:从折线图来看:乙种品牌的方便面销售量呈上升趋势,甲种品牌的方便面销售量不稳定,有上升有下降,故A错误,不符合题意;甲品牌方便面在2018年到2019年期间只是增长率下降,不能得出销售量在下降,故B错误,不符合题意;在2017到2018年期间,甲品牌方便面销售量高于乙品牌,C正确,符合题意;根据折线统计图的变化趋势,不能预测在2020~2021年期间,甲品牌的销售量高于乙品牌,故D错误,不符合题意.故选:C.9.(4分)下列命题:①过一点有且只有一条直线与已知直线平行;②垂直于同一条直线的两条直线互相平行;③相等的角是对顶角;④平行于同一条直线的两条直线互相平行.其中是真命题有()A.1个B.2个C.3个D.4个【分析】根据平行公理、平行线的判定定理、对顶角的概念判断即可.【解答】解:①过直线外一点有且只有一条直线与已知直线平行,故本小题说法是假命题;②在同一平面内,垂直于同一条直线的两条直线互相平行,故本小题说法是假命题;③相等的角不一定是对顶角,故本小题说法是假命题;④平行于同一条直线的两条直线互相平行,本小题说法是真命题;故选:A.10.(4分)已知x>y,xy<0,a为任意有理数,下列式子一定正确的是()A.﹣x>﹣y B.a2x>a2y C.﹣x+a<﹣y+a D.x>﹣y【分析】根据已知求出x>0,y<0,再根据不等式的性质逐个判断即可.【解答】解:∵x>y且xy<0,∴x>0,y<0,∴A、﹣x<﹣y,故本选项不符合题意;B、当a=0时,a2x=a2y,即a2x>a2y错误,故本选项不符合题意;C、∵x>y,∴﹣x<﹣y,∴﹣x+a<﹣y+a,故本选项符合题意;D、根据题意不能判断x和﹣y的大小,故本选项不符合题意;故选:C.11.(4分)如图,把一张长方形纸条折叠成如图所示的形状,若已知∠2=65°,则∠1为()A.130°B.115°C.100°D.120°【分析】先根据翻折变换的性质求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠2=65°,∴∠3=180°﹣2∠2=180°﹣2×65°=50°,∵矩形的两边互相平行,∴∠1=180°﹣∠3=180°﹣50°=130°.故选:A.12.(4分)为庆祝建党100周年,更加深入了解党的光荣历史,我校团委计划组织全校共青团员到曾家岩周公馆、红岩村纪念馆、烈士墓渣滓洞一线开展红色研学之旅.计划统一乘车前往,若调配30座客车若干辆,则有8人没有座位;若调配36座客车,则用车数量将减少1辆,并空出4个座位.设计划调配30座客车x辆,全校共青团员共有y人,则根据题意可列出方程组为()A.B.C.D.【分析】根据“调配30座客车若干辆,则有8人没有座位;若调配36座客车,则用车数量将减少1辆,并空出4个座位”列出方程即可.【解答】解:设计划调配30座客车x辆,全校共青团员共有y人,根据题意得:,故选:A.二.填空题(共4小题,满分16分,每小题4分)13.(4分)比较大小:<6﹣(填“>”“<”或“=”).【分析】分别判断出、6﹣与4的大小关系,即可判断出、6﹣的大小关系.【解答】解:∵<,=4,∴<4;∵6﹣>6﹣2=4,∴<6﹣.故答案为:<.14.(4分)若关于x、y的方程组的解满足x+y=2k,则k的值为﹣.【分析】根据等式的性质,可得答案.【解答】解:②+①,得2x+2y=2k﹣3,∴x+y=k﹣,∵关于x,y的方程组的解满足x+y=2k,∴2k=k﹣,解得k=﹣.故答案为:﹣.15.(4分)若关于x的不等式组.只有4个整数解,则a的取值范围是.【分析】先解不等式组得到2﹣3a<x<21,再利用不等式组只有4个整数解,则x只能取17、18、19、20,所以16≤2﹣3a<17,然后解关于a的不等式组即可.【解答】解:,解①得x<2,解②得1x>2﹣3a,所以不等式组的解集为2﹣3a<x<21,因为不等式组只有4个整数解,所以16≤2﹣3a<17,所以﹣5<a≤﹣.故答案为:﹣5<a≤﹣.16.(4分)如图,平面直角坐标系中O是原点,等边△OAB的顶点A的坐标是(2,0),动点P从点O出发,以每秒1个单位长度的速度,沿O→A→B→O→A…的路线作循环运动,则第2021秒时,点P的坐标是(,).【分析】计算前面7秒结束时的各点坐标,得出规律,再按规律进行解答便可.【解答】解:由题意得,第1秒结束时P点的坐标为P1(1,0);第2秒结束时P点的坐标为P2(2,0);第3秒结束时P点的坐标为P3(2﹣1×cos60°,1×sin60°),即P3(,);第4秒结束时P点的坐标为P4(1,2×sin60°),即P4(1,);第5秒结束时P点的坐标为P5(,);第6秒结束时P点的坐标为P6(0,0);第7秒结束时P点的坐标为P7(1,0),与P1相同;……由上可知,P点的坐标按每6秒进行循环,∵2021÷6=336……5,∴第2021秒结束后,点P的坐标与P5相同为(,),故答案为:(,).三.解答题(共8小题,满分86分)17.(8分)(1)计算;(2)解方程组.【分析】(1)利用实数混合运算的法则计算即可;(2)利用代入法可解.【解答】解:(1)原式=9+(﹣3)+2+2﹣=10﹣;(2).①+②得:20x+20y=60.∴x+y=3 ③.由③得:y=3﹣x④,把④代入①得:11x+9(3﹣x)=36.解得:x=4.5.把x=4.5代入④得:y=﹣1.5.∴原方程组的解为:.18.(8分)按要求解下列不等式(组).(1)解关于x的不等式1﹣≤,并将解集用数轴表示出来.(2)解不等式组,将解集用数轴表示出来,并写出它的所有整数解.【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)1﹣≤,去分母得:6﹣2(2x﹣1)≤3(1+x),去括号得:6﹣4x+2≤3+3x,移项得:﹣4x﹣3x≤3﹣6﹣2,合并同类项得:﹣7x≤﹣5,系数化成1得:x≥,在数轴上表示为:;(2),解不等式①得:x≤1,解不等式②得:x>﹣3,所以不等式组的解集是﹣3<x≤1,在数轴上表示不等式组的解集为:,所以不等式组的整数解是﹣2,﹣1,0,1.19.(10分)已知:3a+21的立方根是3,4a﹣b﹣1的算术平方根是2,c的平方根是它本身.(1)求a,b,c的值;(2)求3a+10b+c的平方根.【分析】(1)根据立方根,算术平方根,平方根的概念即可求出答案;(2)根据(1)中所求a、b、c的值代入代数式3a+10b+c中即可求出答案.【解答】解:(1)根据题意可知,3a+21=27,解得a=2,4a﹣b﹣1=4,解得b=3,c=0,所以a=2,b=3,c=0;(2)因为3a+10b+c=3×2+10×3+0=36,36的平方根为±6.所以3a+10b+c的平方根为±6.20.(10分)填空,完成下列证明过程,并在括号中注明理由.如图,已知∠BEF+∠EFD=180°,∠AEG =∠HFD,求证:∠G=∠H.证明:∵∠BEF+∠EFD=180°,(已知).∴AB∥CD(同旁内角互补,两直线平行).∴∠AEF=∠EFD(两直线平行,内错角相等).又∵∠AEG=∠HFD,∴∠AEF﹣∠AEG=∠EFD﹣∠HFD,即∠GEF=∠HFE.∴EG∥FH(内错角相等,两直线平行).∴∠G=∠H.(两直线平行,内错角相等).【分析】根据平行线的判定得出AB∥CD,根据平行线的性质得出∠AEF=∠EFD,求出∠GEF=∠HFE,根据平行线的判定推出EG∥FH,根据平行线的性质得出答案即可.【解答】证明:∵∠BEF+∠EFD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行),∴∠AEF=∠EFD(两直线平行,内错角相等),又∵∠AEG=∠HFD,∴∠AEF﹣∠AEG=∠EFD﹣∠HFD,即∠GEF=∠HFE,∴EG∥FH(内错角相等,两直线平行),∴∠G=∠H(两直线平行,内错角相等),故答案为:已知,CD,同旁内角互补,两直线平行,∠AEF,两直线平行,内错角相等,∠GEF,∠HFE,EG,内错角相等,两直线平行,两直线平行,内错角相等.21.(12分)为了解某市市民对“垃圾分类知识”的知晓程度.某数学学习兴趣小组对市民进行随机抽样的问卷调查.调查结果分为“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”四个等级进行统计,并将统计结果绘制成如图两幅不完整的统计图(图1,图2).请根据图中的信息解答下列问题:(1)这次调查的市民人数为1000人,图2中,n=35;(2)补全图1中的条形统计图,并求在图2中“A.非常了解”所在扇形的圆心角度数;(3)据统计,2020年该市约有市民900万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有多少万人?据此,请你提出一个提升市民对“垃圾分类知识”知晓程度的办法.【分析】(1)从条形、扇形统计图中可以得到“C组”有200人,占调查总人数的20%,可求出调查人数;计算出“A组”所占的百分比,进而可求“B组”所占的百分比,确定n的值;(2)计算出“B组”的人数,即可补全条形统计图;“A.非常了解”所占整体的28%,其所对应的圆心角就占360°的28%,求出360°×28%即可;(3)样本中“D.不太了解”的占17%,估计全市900万人中,也有17%的人“不太了解”.【解答】解:(1)这次调查的市民人数为:200÷20%=1000(人);∵m%=×100%=28%,n%=1﹣20%﹣17%﹣28%=35%∴n=35;故答案为:1000,35;(2)B等级的人数是:1000×35%=350(人),补全统计图如图所示:“A.非常了解”所在扇形的圆心角度数为:360°×28%=100.8°;(3)根据题意得:“D.不太了解”的市民约有:900×17%=153(万人),提升市民对“垃圾分类知识”知晓程度的办法:市民通过网络等渠道增加对垃圾分类的了解,理解垃圾分类的重要意义.答:“D.不太了解”的市民约有153万人.提升市民对“垃圾分类知识”知晓程度的办法:市民通过网络等渠道增加对垃圾分类的了解,理解垃圾分类的重要意义.22.(12分)如图,△ABC的三个顶点坐标为:A(﹣3,1),B(1,﹣2),C(2,2),△ABC内有一点P (m,n)经过平移后的对应点为P1(m﹣1,n+2),将△ABC做同样平移得到△A1B1C1.(1)画出平移后的三角形A1B1C1;(2)写出A1、B1、C1三点的坐标;(3)求三角形A1B1C1的面积.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)根据点的位置确定坐标即可.(3)利用分割法求解即可.【解答】解:(1)如图,三角形A1B1C1即为所求作.(2)A1(﹣4,3),B1(0,0),C1(1,4).(3)三角形A1B1C1的面积=4×5﹣×1×5﹣×3×4﹣×1×4=9.5.23.(12分)某商店购进便携榨汁杯和酸奶机进行销售,其进价与售价如表:进价(元/台)售价(元/台)200250便携榨汁杯酸奶机160200(1)第一个月,商店购进这两种电器共30台,用去5600元,并且全部售完,这两种电器赚了多少钱?(2)第二个月,商店决定用不超过9000元的资金采购便携榨汁杯和酸奶机共50台,且便携榨汁杯的数量不少于酸奶机的,这家商店有哪几种进货方案?说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案赚钱最多?【分析】(1)设购进x台便携榨汁杯,y台酸奶机,根据总价=单价×数量,结合商店购进这两种电器30台且共用去5600元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进m台便携榨汁杯,则购进(50﹣m)台酸奶机,根据“购进便携榨汁杯的数量不少于酸奶机的,且总费用不超过9000元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出各进货方案;(3)利用总利润=每台的利润×销售数量,分别求出3种进货方案可获得的利润,比较后即可得出结论.【解答】解:(1)设购进x台便携榨汁杯,y台酸奶机,依题意得:,解得:,∴(250﹣200)x+(200﹣160)y=(250﹣200)×20+(200﹣160)×10=1400(元).答:销售这两种电器赚了1400元.(2)设购进m台便携榨汁杯,则购进(50﹣m)台酸奶机,依题意得:,解得:≤m≤25.又∵m为整数,∴m可以取23,24,25,∴这家商店有3种进货方案,方案1:购进23台便携榨汁杯,27台酸奶机;方案2:购进24台便携榨汁杯,26台酸奶机;方案3:购进25台便携榨汁杯,25台酸奶机.(3)方案1获得的利润为(250﹣200)×23+(200﹣160)×27=2230(元);方案2获得的利润为(250﹣200)×24+(200﹣160)×26=2240(元);方案3获得的利润为(250﹣200)×25+(200﹣160)×25=2250(元).∵2230<2240<2250,∴方案3赚钱最多.24.(14分)如图,射线PE分别与直线AB,CD相交于E,F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=n∠EMF.(1)如图1,当n=1时.①试证明AB∥CD;②点G为射线MA(不与M重合)上一点,H为射线MF(不与M,F重合)上一点,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论;(2)如图2,∠PEM=∠PME,∠PFM+∠PNF=70°.若∠EMF=20°时,直接写出n的值为.【分析】(1)①当n=1时.∠PFM=∠EMF,因为FM平分∠PFN,可得∠EMF=∠MFN,利用内错角相等,两直线平行可得结论;②分H在线段MF上和H在MF的延长线上两种情形解答即可;(2)利用已知,根据三角形的外角等于和它不相邻的两个内角之和求出∠EFM的度数即可得出结论.【解答】解:(1)①依题意,当n=1时.∠PFM=∠EMF.∵FM平分∠PFN,∴∠EFM=∠MFN.∴∠MFN=∠EMF.∴AB∥CD.②当H在线段MF上时,∠GHF+∠FMN=180°;当H在线段MF的延长线上时,∠GHF=∠FMN.理由:∵AB∥CD,∴∠PNF=∠PME.∵∠MGH=∠PNF,∴∠MGH=∠PME.∴GH∥PN.如图,当H在线段MF上时,∵GH∥PN,∴∠GHM=∠FMN.∵∠GHF+∠GHM=180°,∴∠GHF+∠FMN=180°.如图,当H在线段MF的延长线上时,∵GH∥PN,∴∠GHM=∠FMN.∴∠GHF=∠FMN.(2)∵∠PEM是△EFM的外角,∴∠PEM=∠EFM+∠EMF.∵∠EMF=20°,∴∠PEM=∠EFM+20°.∵∠PMF是△NFM的外角,∴∠PMF=∠MFN+∠FNM.∴∠PME+∠EMF=∠MFN+∠FNM.∴∠PME+20°=∠MFN+∠FNM.∵∠PEM=∠PME,∴∠EFM+20°+20°=∠MFN+∠FNM.∵∠PFM+∠PNF=70°,∠PFM=∠MFN,∴∠EFM+20°+20°=70°.∴∠EFM=30°.∴∠PFM=∠EMF.故答案为:.。
2020-2021学年河北省邯郸市广平县七年级(下)期末数学试卷
![2020-2021学年河北省邯郸市广平县七年级(下)期末数学试卷](https://img.taocdn.com/s3/m/9833ff2c5022aaea988f0f76.png)
2020-2021学年河北省邯郸市广平县七年级(下)期末数学试卷一、选择题(本大题共14个小题,每小題3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在等式x2•□=x9中,“□”所表示的代数式为()A.x6B.﹣x6C.(﹣x)7D.x72.(3分)如图,点C到直线AB的距离是指()A.线段AC的长度B.线段CD的长度C.线段BC的长度D.线段BD的长度3.(3分)下列计算正确的是()A.1﹣1=﹣1B.10=0C.(﹣1)﹣1=1D.(﹣1)0=1 4.(3分)如图,数轴上表示的数的范围是()A.﹣2<x<4B.﹣2<x≤4C.﹣2≤x<4D.﹣2≤x≤4 5.(3分)下列等式从左到右的变形,属于因式分解的是()A.a2﹣b2=(a+b)(a﹣b)B.a(x﹣y)=ax﹣ayC.x2+2x+1=x(x+2)+1D.(x+1)(x+3)=x2+4x+36.(3分)由﹣2x<6,得x>﹣3,其根据是()A.不等式的两边都加上(或都减去)同一个数或同一个整式,不等号方向不变B.不等式的两边都乘以(或都除以)同一个正数,不等号的方向不变C.不等式的两边都乘以(或都除以)同一个负数,不等号的方向改变D.移项7.(3分)解方程组时,把①代入②,得()A.2y﹣15y+2=10B.2y﹣3y+2=10C.2y﹣15y+10=10D.2y﹣15y﹣10=108.(3分)平面内有三条直线a、b、c,下列说法:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c,其中正确的是()A.只有①B.只有②C.①②都正确D.①②都不正确9.(3分)如图,∠MON的度数可能是()A.50°B.60°C.70°D.120°10.(3分)若(x+3)(x﹣5)=x2+mx﹣15,则m的值为()A.5B.2C.﹣5D.﹣211.(3分)如图,△ABC的角平分线AD,中线BE交于点O,则结论:①AO是△ABE的角平分线;②BO是△ABD的中线.其中()A.①、②都正确B.①、②都不正确C.①正确②不正确D.①不正确,②正确12.(3分)用加减法解方程组时,若要求消去y,则应()A.①×3+②×2B.①×3﹣②×2C.①×5+②×3D.①×5﹣②×3 13.(3分)已知甲、乙、丙均为含x的整式,且其一次项的系数皆为正整数.若甲与乙相乘的积为x2﹣4,乙与丙相乘的积为x2﹣2x,则甲与丙相乘的积为()A.2x+2B.x2+2x C.2x﹣2D.x2﹣2x14.(3分)如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC和∠ABC的角平分线,它们相交于点O,∠AOB=125°,则∠CAD的度数为()A.20°B.30°C.45°D.50°二、填空题(本大题共3个小题,15-16小题各3分,17小题每空2分,共10分)15.(3分)若是方程x+ay=0的一个解,则a的值是.16.(3分)把命题“互补两角的和是180°”,改写成“如果⋯,那么⋯”的形式:.17.(4分)一个正方体集装箱的棱长为0.4m.(1)用科学记数法表示这个集装箱的体积是m3;(2)若有一个小立方块的棱长为1×10﹣3m,则把集装箱装满需要这样的小立方块的个数为.(用科学记数法表示)三、解答题(本大题共7个小题,满分48分,解答题应写出必要的解题步骤或文字说明)18.(6分)某木材市场上木棒规格与价格如下表:规格1m2m3m4m5m6m价格101520253035(元/根)小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3m和5m的木棒,还需要到某木材市场上购买一根.(1)有几种规格木棒可供小明的爷爷选择?(2)选择哪一种规格木棒最省钱?19.(4分)如图,经过平移,四边形ABCD的顶点A移到点A′,作出平移后的四边形.20.(6分)如图,是一道例题及部分解答过程,其中A、B是两个关于x,y的二项式.请仔细观察上面的例题及解答过程,完成下列问题:(1)直接写出多项式A和B,并求出该例题的运算结果;(2)求多项式A与B的平方差.21.(6分)嘉淇准备完成题目:解一元一次不等式组,发现常数“□”印刷不清楚.(1)他把“□”猜成5,请你解一元一次不等式组;(2)张老师说:我做一下变式,若的解集是x<3,请求常数“□”的取值范围.22.(8分)如图,BD∥EF,AE与BD交于点C,∠B=36°,∠A=72°,∠DEF=∠CEF,判断AB与DE是否平行,并说明理由.23.(8分)如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小长方形的周长是20cm且每块大正方形与每块小正方形的面积差为40cm2,求这张长方形纸板的面积是多少平方厘米?24.(10分)建设新农村,绿色好家园.为了减少冬季居民取暖带来的环境污染,国家特推出煤改电工程.某学校准备安装一批柜式空调(A型)和挂壁式空调(B型).经市场调查发现,3台A型空调和2台B型空调共需21000元;1台A型空调和4台B型空调共需17000元.(1)求A型空调和B型空调的单价.(2)为响应国家号召,有两家商场分别推出了优惠套餐.甲商场:A型空调和B型空调均打八折出售;乙商场:A型空调打九折出售,B型空调打七折出售.已知某学校需要购买A型空调和B型空调共16台,则该学校选择在哪家商场购买更划算?2020-2021学年河北省邯郸市广平县七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共14个小题,每小題3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在等式x2•□=x9中,“□”所表示的代数式为()A.x6B.﹣x6C.(﹣x)7D.x7【解答】解:∵x2•x7=x9,∴“□”所表示的代数式为x7,故选:D.2.(3分)如图,点C到直线AB的距离是指()A.线段AC的长度B.线段CD的长度C.线段BC的长度D.线段BD的长度【解答】解:根据题意,点C到直线AB的距离即点C到AB的垂线段的长度,已知CD⊥AB,则点C到直线AB的距离就是线段CD的长度.故选:B.3.(3分)下列计算正确的是()A.1﹣1=﹣1B.10=0C.(﹣1)﹣1=1D.(﹣1)0=1【解答】解:A、1﹣1=1,故此选项错误;B、10=1,故此选项错误;C、(﹣1)﹣1=﹣1,故此选项错误;D、(﹣1)0=1,故此选项正确.故选:D.4.(3分)如图,数轴上表示的数的范围是()A.﹣2<x<4B.﹣2<x≤4C.﹣2≤x<4D.﹣2≤x≤4【解答】解:由图示可看出,从﹣2出发向右画出的线且﹣2处是空心圆,表示x>﹣2;从4出发向左画出的线且4处是实心圆,表示x≤4,不等式组的解集是指它们的公共部分,所以这个不等式组的解集是﹣2<x≤45.(3分)下列等式从左到右的变形,属于因式分解的是()A.a2﹣b2=(a+b)(a﹣b)B.a(x﹣y)=ax﹣ayC.x2+2x+1=x(x+2)+1D.(x+1)(x+3)=x2+4x+3【解答】解:A、a2﹣b2=(a+b)(a﹣b),把一个多项式化为几个整式的积的形式,故此选项符合题意;B、a(x﹣y)=ax﹣ay,是整式的乘法,不是因式分解,故此选项不符合题意;C、x2+2x+1=x(x+2)+1,没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D、(x+1)(x+3)=x2+4x+3,是整式的乘法,不是因式分解,故此选项不符合题意;故选:A.6.(3分)由﹣2x<6,得x>﹣3,其根据是()A.不等式的两边都加上(或都减去)同一个数或同一个整式,不等号方向不变B.不等式的两边都乘以(或都除以)同一个正数,不等号的方向不变C.不等式的两边都乘以(或都除以)同一个负数,不等号的方向改变D.移项【解答】解:由﹣2x<6,得x>﹣3,其根据是:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.故选:C.7.(3分)解方程组时,把①代入②,得()A.2y﹣15y+2=10B.2y﹣3y+2=10C.2y﹣15y+10=10D.2y﹣15y﹣10=10【解答】解:解方程组时,把①代入②,得2y﹣5(3y﹣2)=10,即2y ﹣15y+10=10.故选:C.8.(3分)平面内有三条直线a、b、c,下列说法:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c,其中正确的是()A.只有①B.只有②C.①②都正确D.①②都不正确【解答】解:①若a∥b,b∥c,则a∥c,说法正确;②若a⊥b,b⊥c,则a⊥c,说法错误,应为同一平面内,若a⊥b,b⊥c,则a∥c;故选:A.9.(3分)如图,∠MON的度数可能是()A.50°B.60°C.70°D.120°【解答】解:由量角器的位置可判断ON与70°的刻度线接近平行,∴将量角器右移,使点O与量角器的中心点位置重合时,ON与70°刻度线接近重合,∴∠MON是70°,故选:C.10.(3分)若(x+3)(x﹣5)=x2+mx﹣15,则m的值为()A.5B.2C.﹣5D.﹣2【解答】解:(x+3)(x﹣5)=x2﹣5x+3x﹣15=x2﹣2x﹣15,∵(x+3)(x﹣5)=x2+mx﹣15,∴m=﹣2,故选:D.11.(3分)如图,△ABC的角平分线AD,中线BE交于点O,则结论:①AO是△ABE的角平分线;②BO是△ABD的中线.其中()A.①、②都正确B.①、②都不正确C.①正确②不正确D.①不正确,②正确【解答】解:AD是三角形ABC的角平分线,则是∠BAC的角平分线,所以AO是△ABE的角平分线,故①正确;BE是三角形ABC的中线,则E是AC是中点,而O不一定是AD的中点,故②错误.故选:C.12.(3分)用加减法解方程组时,若要求消去y,则应()A.①×3+②×2B.①×3﹣②×2C.①×5+②×3D.①×5﹣②×3【解答】解:用加减法解方程组时,若要求消去y,则应①×5+②×3,故选:C.13.(3分)已知甲、乙、丙均为含x的整式,且其一次项的系数皆为正整数.若甲与乙相乘的积为x2﹣4,乙与丙相乘的积为x2﹣2x,则甲与丙相乘的积为()A.2x+2B.x2+2x C.2x﹣2D.x2﹣2x【解答】解:∵甲与乙相乘的积为x2﹣4=(x+2)(x﹣2),乙与丙相乘的积为x2﹣2x=x (x﹣2),∴甲为x+2,乙为x﹣2,丙为x,则甲与丙相乘的积为x(x+2)=x2+2x,故选:B.14.(3分)如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC和∠ABC的角平分线,它们相交于点O,∠AOB=125°,则∠CAD的度数为()A.20°B.30°C.45°D.50°【解答】解:∵∠AOB=125°,∴∠OAB+∠OBA=55°,∵AE,BF分别是∠BAC和∠ABC的角平分线,它们相交于点O,∴∠BAC+∠ABC=2(∠OAB+∠OBA)=2×55°=110°,∴∠C=70°,∵AD是BC边上的高,∴∠ADC=90°,∴∠CAD=20°,即∠CAD的度数是20°.故选:A.二、填空题(本大题共3个小题,15-16小题各3分,17小题每空2分,共10分)15.(3分)若是方程x+ay=0的一个解,则a的值是2.【解答】解:把代入方程x+ay=0,得2﹣a=0,解得a=2.故答案为:2.16.(3分)把命题“互补两角的和是180°”,改写成“如果⋯,那么⋯”的形式:如果两个角互补,那么这两个角的和是180°.【解答】解:命题“互补两角的和是180°”,写成“如果⋯,那么⋯”的形式是:如果两个角互补,那么这两个角的和是180°,故答案为:如果两个角互补,那么这两个角的和是180°.17.(4分)一个正方体集装箱的棱长为0.4m.(1)用科学记数法表示这个集装箱的体积是 6.4×10﹣2m3;(2)若有一个小立方块的棱长为1×10﹣3m,则把集装箱装满需要这样的小立方块的个数为 6.4×106.(用科学记数法表示)【解答】解:(1)∵一个正方体集装箱的棱长为0.4m,∴这个集装箱的体积是:0.4×0.4×0.4=6.4×10﹣2(m3),答:这个集装箱的体积是6.4×10﹣2m3;故答案是:6.4×10﹣2;(2)∵一个小立方块的棱长为1×10﹣3m,∴6.4×10﹣3÷(1×10﹣3)3=6.4×106(个),即:需要6.4×106个这样的小立方块才能将集装箱装满.故答案是:6.4×106.三、解答题(本大题共7个小题,满分48分,解答题应写出必要的解题步骤或文字说明)18.(6分)某木材市场上木棒规格与价格如下表:规格1m2m3m4m5m6m价格101520253035(元/根)小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3m和5m的木棒,还需要到某木材市场上购买一根.(1)有几种规格木棒可供小明的爷爷选择?(2)选择哪一种规格木棒最省钱?【解答】解:(1)设第三根木棒的长度为xm,根据三角形的三边关系可得:5﹣3<x<5+3,解得2<x<8,x=3,4,5,6共4种,∴有4种规格木棒可供小明的爷爷选择;(2)根据木棒的价格可得选3m最省钱.19.(4分)如图,经过平移,四边形ABCD的顶点A移到点A′,作出平移后的四边形.【解答】解:如图:四边形A′B′C′D′即为所求.20.(6分)如图,是一道例题及部分解答过程,其中A、B是两个关于x,y的二项式.请仔细观察上面的例题及解答过程,完成下列问题:(1)直接写出多项式A和B,并求出该例题的运算结果;(2)求多项式A与B的平方差.【解答】解:(1)A=2x﹣3y,B=2x+3y,原式=4x﹣6y﹣6x﹣9y=﹣2x﹣15y.(2)A2﹣B2=(2x﹣3y)2﹣(2x+3y)2=(2x﹣3y+2x+3y)(2x﹣3y﹣2x﹣3y)=4x⋅(﹣6y)=﹣24xy.21.(6分)嘉淇准备完成题目:解一元一次不等式组,发现常数“□”印刷不清楚.(1)他把“□”猜成5,请你解一元一次不等式组;(2)张老师说:我做一下变式,若的解集是x<3,请求常数“□”的取值范围.【解答】解:(1),由①得:x<3;由②得:x<﹣5,则不等式组的解集为x<﹣5;(2)设“□”为a,则不等式x﹣1<2的解集为x<3,不等式x+a<0的解集是x<﹣a,∵不等式组的解集是x<3,∴﹣a≥3,即a≤﹣3.∴常数“□”的取值范围为不大于﹣3.22.(8分)如图,BD∥EF,AE与BD交于点C,∠B=36°,∠A=72°,∠DEF=∠CEF,判断AB与DE是否平行,并说明理由.【解答】解:AB与DE平行,理由如下:∵∠B=36°,∠A=72°,∴∠ACB=∠DCE=180°﹣36°﹣72°=72°,又∵BD∥EF,∴∠DEF=∠CDE,又∵∠DEF=∠CEF,若设∠DEF=α,则∠CDE=α,∠CED=2α,∴在△CED中,∠DCE+∠CDE+CED=180°,即,72°+α+2α=180°,∴α=36°,∴∠CED=2×36°=72°,又∵∠CED=∠A=72°,∴AB∥DE(内错角相等,两直线平行).23.(8分)如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为(2m+n)(m+2n);(2)若每块小长方形的周长是20cm且每块大正方形与每块小正方形的面积差为40cm2,求这张长方形纸板的面积是多少平方厘米?【解答】解:(1)由图形可知,2m2+5mn+2n2=(2m+n)(m+2n),故答案为(2m+n)(m+2n);(2)∵m2﹣n2=40,∴(m+n)(m﹣n)=40,∵m+n=20÷2=10,∴m﹣n=4,解得m=7,n=3,∴2m+n=17,m+2n=13,∴纸板的面积(2m+n)(m+2n)=17×13=221(平方厘米).答:纸板的面积为221平方厘米.24.(10分)建设新农村,绿色好家园.为了减少冬季居民取暖带来的环境污染,国家特推出煤改电工程.某学校准备安装一批柜式空调(A型)和挂壁式空调(B型).经市场调查发现,3台A型空调和2台B型空调共需21000元;1台A型空调和4台B型空调共需17000元.(1)求A型空调和B型空调的单价.(2)为响应国家号召,有两家商场分别推出了优惠套餐.甲商场:A型空调和B型空调均打八折出售;乙商场:A型空调打九折出售,B型空调打七折出售.已知某学校需要购买A型空调和B型空调共16台,则该学校选择在哪家商场购买更划算?【解答】解:(1)设A型空调的单价为x元,B型空调的单价为y元,依题意得:,解得:.答:A型空调的单价为5000元,B型空调的单价为3000元.(2)设购买A型空调m(0≤m≤16,且m为整数)台,则购买B型空调(16﹣m)台,设在甲商场购买共需w甲元,在乙商场购买共需w乙元,根据题意得:w甲=5000×0.8m+3000×0.8(16﹣m)=1600m+38400;w乙=5000×0.9m+3000×0.7(16﹣m)=2400m+33600.当w甲>w乙时,16000m+38400>2400m+33600,解得:m<6;当w甲=w乙时,16000m+38400=2400m+33600,解得:m=6;当w甲<w乙时,16000m+38400<2400m+33600,解得:m>6.答:当0≤m<6时,选择乙商场购买更划算;当m=6时,选择甲、乙两商场所需费用一样;当6<m≤16时,选择甲商场购买更划算.。
2020-2021学年河北省沧州市任丘市七年级(下)期末数学试卷(解析版)
![2020-2021学年河北省沧州市任丘市七年级(下)期末数学试卷(解析版)](https://img.taocdn.com/s3/m/6c93ed3d0508763230121212.png)
2020-2021学年河北省沧州市任丘市七年级(下)期末数学试卷一、正确选择.(本大题10个小题,每小题2分,共20分)1.关于x,y的方程组的解为()A.B.C.D.2.下列命题是真命题的()A.两点之间直线最短B.如果ab>0,那么a>0,b>0C.内错角相等,两直线平行D.若|a|=1,则a=13.如图,AB∥CD,点O在AB上,OE平分∠BOD,若∠CDO=100°,则∠BOE的度数为()A.30°B.40°C.50°D.60°4.已知三条线段长分别为2cm、4cm、acm,若这三条线段首尾顺次联结能围成一个三角形,那么a的取值可以是()A.1cm B.2cm C.4cm D.7cm5.下列现象中,()是平移.A.“天问”探测器绕火星运动B.篮球在空中飞行C.电梯的上下移动D.将一张纸对折6.据国家邮政局统计,2021年农历除夕和初一两天,全国快递处理超130 000 000件,与去年同期相比增长223%,快递的春节“不打烊”服务确保了广大用户能够顺利收到年货,欢度佳节.将130 000 000用科学记数法表示应为()A.1.3×107B.13×107C.1.3×108D.0.13×1097.下列运算中,正确的是()A.a5+a5=a10B.3a3•2a2=6a6C.a6÷a2=a3D.(﹣3ab)2=9a2b28.下列关系式中,不含有x=﹣1这个解的是()A.2x+1=﹣1B.2x+1>﹣1C.﹣2x+1≥3D.﹣2x﹣1≤3 9.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2C.﹣a<﹣b D.2a>3b10.笔记本4元/本,钢笔5元/支,某同学购买笔记本和钢笔恰好用去162元,那么最多购买钢笔()支.A.28B.29C.30D.31二、准确填空.(本大题10个小题,每小题3分,共30分)11.若方程(m﹣4)x|m|﹣3=3y n+1+4是二元一次方程,则m=,n=.12.已知x、y满足方程组,则x+y的值为.13.如图,直线AB和CD相交于O点,OM⊥AB,∠BOD:∠COM=1:3,则∠AOD的度数为度.14.如图,直线l1,l2被l3所截,下列条件:①∠1=∠2;②∠3=∠4;③l1∥l2,其中能判断AC∥BD的条件是.15.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=80°,∠BCD=40°,则∠BED的度数为.16.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=39°,则∠2的度数是.17.已知a m=6,a n=3,则a m+n=.18.“x与5的差不小于x的3倍”用不等式表示为.19.若关于x的不等式的非负整数解只有3个,则m的取值范围是.20.因式分解:ax2﹣a=.三、解答题.(本大题7个小题,共70分)21.一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)22.如图,∠AGF=∠ABC,∠1+∠2=180°,(1)求证;BF∥DE.(2)如果DE垂直于AC,∠2=150°,求∠AFG的度数.23.欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;乐乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x﹣6.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.24.根据题意,完成下列问题.(1)若2m=8,2n=32,求22m﹣n的值;(2)已知2x+3y﹣3=0,求4x•8y的值;(3)已知2x+2•5x+2=103x﹣3,求x的值.25.如图所示,AD⊥BC,EF⊥BC,∠BEF=∠ADG.试说明DG∥AB.把说明的过程填写完整.解:∵AD⊥BC,EF⊥BC(已知),∴∠EFB=∠ADB=90°(),∴EF∥AD(),∴∠BEF=(两直线平行,同位角相等).∵∠BEF=∠ADG(已知),∴(等量代换).∴DG∥AB().26.关于x的不等式组.(1)若不等式组的解集是1<x<2,求a的值;(2)若不等式组无解,求a的取值范围.27.(1)简便计算:992﹣108×92;(2)因式分解:2x3﹣8x2+8x.参考答案一、正确选择.(本大题10个小题,每小题2分,共20分)1.关于x,y的方程组的解为()A.B.C.D.【分析】利用加减消元法求解即可.解:,①﹣②,得x=﹣4,把x=﹣4代入②,得﹣4+y=3,解得y=7.故方程组的解为.故选:A.2.下列命题是真命题的()A.两点之间直线最短B.如果ab>0,那么a>0,b>0C.内错角相等,两直线平行D.若|a|=1,则a=1【分析】利用线段的性质、不等式的性质、平行线的判定及绝对值的意义分别判断后即可确定正确的选项.解:A、两点之间线段最短,故原命题错误,是假命题,不符合题意;B、如果ab>0,那么a>0,b>0或a<0,b<0,故原命题错误,是假命题,不符合题意;C、内错角相等,两直线平行,正确,是真命题,符合题意;D、若|a|=1,则a=±1,故原命题错误,是假命题,不符合题意,故选:C.3.如图,AB∥CD,点O在AB上,OE平分∠BOD,若∠CDO=100°,则∠BOE的度数为()A.30°B.40°C.50°D.60°【分析】根据平行线的性质可得∠BOD=100°,利用角平分线的性质可得∠BOE=50°.解:∵AB∥CD,∠CDO=100°,∴∠BOD=100°,∵OE平分∠BOD,∴∠BOE=50°.故选:C.4.已知三条线段长分别为2cm、4cm、acm,若这三条线段首尾顺次联结能围成一个三角形,那么a的取值可以是()A.1cm B.2cm C.4cm D.7cm【分析】根据三角形的三边关系确定a的取值范围即可求解.解:依题意有4﹣2<a<4+2,解得:2<a<6.只有选项C在范围内.故选:C.5.下列现象中,()是平移.A.“天问”探测器绕火星运动B.篮球在空中飞行C.电梯的上下移动D.将一张纸对折【分析】要根据平移的性质,判断是否是平移现象,平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形).解:A.“天问”探测器绕火星运动不是平移;B.篮球在空中飞行不是平移;C.电梯的上下移动是平移;D.将一张纸对折不是平移;故选:C.6.据国家邮政局统计,2021年农历除夕和初一两天,全国快递处理超130 000 000件,与去年同期相比增长223%,快递的春节“不打烊”服务确保了广大用户能够顺利收到年货,欢度佳节.将130 000 000用科学记数法表示应为()A.1.3×107B.13×107C.1.3×108D.0.13×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:130000000=1.3×108.故选:C.7.下列运算中,正确的是()A.a5+a5=a10B.3a3•2a2=6a6C.a6÷a2=a3D.(﹣3ab)2=9a2b2【分析】根据同底数幂的乘除法,幂的乘方与积的乘方的计算方法逐项计算即可.解:A.a5+a5=2a5,因此选项A不符合题意;B.3a3•2a2=6a5,因此选项B不符合题意;C.a6÷a2=a4,因此选项C不符合题意;D.(﹣3ab)2=9a2b2,因此选项D符合题意;故选:D.8.下列关系式中,不含有x=﹣1这个解的是()A.2x+1=﹣1B.2x+1>﹣1C.﹣2x+1≥3D.﹣2x﹣1≤3【分析】把x=﹣1代入各个不等式,满足不等式成立时,它就是该不等式的解.解:当x=﹣1时,2x+1=﹣1,﹣2x+1=3≥3,﹣2x﹣1=1≤3,所以x=﹣1满足选项A、C、D,因为﹣1不大于﹣1,所以x=﹣1不满足B.故选:B.9.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2C.﹣a<﹣b D.2a>3b【分析】根据不等式的性质即可得到a>b,a+2>b+2,﹣a<﹣b.解:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选:D.10.笔记本4元/本,钢笔5元/支,某同学购买笔记本和钢笔恰好用去162元,那么最多购买钢笔()支.A.28B.29C.30D.31【分析】设该同学购买钢笔x支,笔记本y本,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各购买方案,取x的最大值即可得出结论.解:设该同学购买钢笔x支,笔记本y本,依题意得:5x+4y=162.∵x,y均为正整数,∴或或或或或或或,∴x的最大值为30.故选:C.二、准确填空.(本大题10个小题,每小题3分,共30分)11.若方程(m﹣4)x|m|﹣3=3y n+1+4是二元一次方程,则m=﹣4,n=0.【分析】二元一次方程就是只含有两个未知数,并且未知数的项的次数是1的整式方程,依据定义即可求解.解:根据题意,得|m|﹣3=1且n+1=1且m﹣4≠0,解得m=﹣4,n=0.故答案为:﹣4,0.12.已知x、y满足方程组,则x+y的值为5.【分析】将两式相加即可.解:两式相加得3x+3y=15,x+y=5.故答案为:5.13.如图,直线AB和CD相交于O点,OM⊥AB,∠BOD:∠COM=1:3,则∠AOD的度数为157.5度.【分析】先根据OM⊥AB,得∠BOM=90°,再∠BOD:∠COM=1:3,可求出∠DOB,再根据平角关系,即可得出∠AOD的度数.解:∵OM⊥AB,∴∠BOM=90°,∴∠BOD+∠COM=90°,∵∠BOD:∠COM=1:3,∴∠BOD=22.5°,∵∠AOB=180°,∴∠AOD=∠AOB﹣∠BOD=157.5°.故答案为:157.5.14.如图,直线l1,l2被l3所截,下列条件:①∠1=∠2;②∠3=∠4;③l1∥l2,其中能判断AC∥BD的条件是①.【分析】根据同位角相等,两直线平行即可判断AC∥BD.解:①∵∠1=∠2,∴AC∥BD(同位角相等,两直线平行).故答案为:①.15.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=80°,∠BCD=40°,则∠BED的度数为60°.【分析】先根据角平分线的定义,得出∠ABE=∠CBE=∠ABC,∠ADE=∠CDE=∠ADC,再根据三角形内角和定理,推理得出∠BAD+∠BCD=2∠E,进而求得∠E的度数.解:∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠CBE=∠ABC,∠ADE=∠CDE=∠ADC,∵∠ABE+∠BAD=∠E+∠ADE,∠BCD+∠CDE=∠E+∠CBE,∴∠ABE+∠BAD+∠BCD+∠CDE=∠E+∠ADE+∠E+∠CBE,∴∠BAD+∠BCD=2∠E,∵∠BAD=80°,∠BCD=40°,∴∠E=(∠BAD+∠BCD)=(80°+40°)=60°.故答案为:60°.16.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=39°,则∠2的度数是21°.【分析】过B作BC∥l1,可得∠2=∠ABC,由平行公理可得BC∥l2,根据平行线的性质可得∠1+∠2=∠ABD,结合直角三角板的特性可求解.解:如图,过B作BC∥l1,∴∠2=∠ABC,∵l2∥l1,∴BC∥l2,∴∠CBD=∠1,∴∠1+∠2=∠ABC+∠CBD=∠ABD,由题意知:∠ABD=60°,∴∠1+∠2=60°,∵∠1=39°,∴∠2=60°﹣39°=21°,故答案为21°.17.已知a m=6,a n=3,则a m+n=18.【分析】根据同底数幂的乘法底数不变指数相加,可得答案.解:a m+n=a m•a n=6×3=18,故答案为:18.18.“x与5的差不小于x的3倍”用不等式表示为x﹣5≥3x.【分析】根据x与5的差不小于x的3倍,可知x与5的差大于等于x的3倍,从而可以用相应的不等式表示出来.解:“x与5的差不小于x的3倍”用不等式表示为x﹣5≥3x,故答案为:x﹣5≥3x.19.若关于x的不等式的非负整数解只有3个,则m的取值范围是<m≤1.【分析】首先确定不等式组的解集,先利用含m的式子表示,根据非负整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.解:解不等式,得:x<3m,∵关于x的不等式的非负整数解只有3个,∴不等式的非负整数解为0、1、2,则2<3m≤3,解得:<m≤1,故答案为:<m≤1.20.因式分解:ax2﹣a=a(x+1)(x﹣1).【分析】首先提公因式a,再利用平方差进行二次分解即可.解:原式=a(x2﹣1)=a(x+1)(x﹣1).故答案为:a(x+1)(x﹣1).三、解答题.(本大题7个小题,共70分)21.一家商店进行门店升级需要装修,装修期间暂停营业,若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所需费用最少?(3)装修完毕第二天即可正常营业,且每天仍可盈利200元(即装修前后每天盈利不变),你认为商店应如何安排施工更有利?说说你的理由.(可用(1)(2)问的条件及结论)【分析】(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据“若请甲乙两个装修组同时施工,8天可以完成,需付费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据所需总费用=每天应付钱数×工作天数,分别求出单独请甲、乙两组完成所需费用,比较后即可得出结论;(3)根据损失总钱数=每天盈利×装修时间+装修队所需费用,分别求出单独请甲、乙两组及请甲乙两组同时完成所损失的总钱数,比较后即可得出结论.解:(1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,根据题意得:,解得:.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组所需费用为:300×12=3600(元),单独请乙组所需费用为:140×24=3360(元),∵3600>3360,∴单独请乙组所需费用最少.(3)商店请甲乙两组同时装修,才更有利,理由如下:单独请甲组完成,损失钱数为:200×12+3600=6000(元),单独请乙组完成,损失钱数为:200×24+3360=8160(元),请甲乙两组同时完成,损失钱数为:200×8+3520=5120(元).∵8160>6000>5120,∴商店请甲乙两组同时装修,才更有利.22.如图,∠AGF=∠ABC,∠1+∠2=180°,(1)求证;BF∥DE.(2)如果DE垂直于AC,∠2=150°,求∠AFG的度数.【分析】(1)根据∠AGF=∠ABC可得出BC∥GF,进而可得出∠AFG=∠C,再根据角的计算可得出∠1=∠CDE,由此即可得出∠CED=∠CFB,根据“同位角相等,两直线平行”即可得出BF∥DE;(2)根据DE⊥AC、BF∥DE即可得出∠AFB=90°,再结合∠1+∠2=180°、∠2=150°以及∠AFB=∠AFG+∠1即可算出∠AFG的度数.【解答】(1)证明:∵∠AGF=∠ABC,∴BC∥GF,∴∠AFG=∠C.∵∠1+∠2=180°,∠CDE+∠2=180°,∴∠1=∠CDE.∵∠CED=180°﹣∠C﹣∠CDE,∠CFB=180°﹣∠AFD﹣∠1,∴∠CED=∠CFB,∴BF∥DE.(2)解:∵DE⊥AC,BF∥DE,∴∠AFB=∠AED=90°,∵∠1+∠2=180°,∠2=150°,∴∠1=30°.∵∠AFB=∠AFG+∠1=90°,∴∠AFG=60°.23.欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;乐乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x﹣6.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.【分析】(1)根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为6x2﹣13x+6,可知(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,于是2b﹣3a=﹣13①;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣x﹣6,可知常数项是﹣6,可知(2x+a)(x+b)=2x2﹣x﹣6,可得到2b+a=﹣1②,解关于①②的方程组即可求出a、b的值;(2)把a、b的值代入原式求出整式乘法的正确结果.解:(1)根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为6x2﹣13x+6,那么(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,可得2b﹣3a=﹣13 ①乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣x﹣6,可知(2x+a)(x+b)=2x2﹣x﹣6即2x2+(2b+a)x+ab=2x2﹣x﹣6,可得2b+a=﹣1 ②,解关于①②的方程组,可得a=3,b=﹣2;(2)正确的式子:(2x+3)(3x﹣2)=6x2+5x﹣624.根据题意,完成下列问题.(1)若2m=8,2n=32,求22m﹣n的值;(2)已知2x+3y﹣3=0,求4x•8y的值;(3)已知2x+2•5x+2=103x﹣3,求x的值.【分析】(1)直接利用同底数幂的除法运算法则以及幂的乘方运算法则将原式变形,进而得出答案;(2)直接利用同底数幂的乘法运算法则以及幂的乘方运算法则将原式变形进,而得出答案;(3)直接利用同底数幂的乘法运算法则以及积的乘方运算法则将原式变形进,而得出答案.解:(1)∵2m=8,2n=32,∴22m﹣n=(2m)2÷2n=82÷32=64÷32=2;∴22m﹣n的值为2;(2)∵2x+3y﹣3=0,∴2x+3y=3,∴4x⋅8y=22x⋅23y=22x+3y=23=8;∴4x⋅8y的值为8;(3)∵2x+2⋅5x+2=10x+2,∴10x+2=103x﹣3,∴x+2=3x﹣3,∴,∴x的值为.25.如图所示,AD⊥BC,EF⊥BC,∠BEF=∠ADG.试说明DG∥AB.把说明的过程填写完整.解:∵AD⊥BC,EF⊥BC(已知),∴∠EFB=∠ADB=90°(垂直的定义),∴EF∥AD(同位角相等,两直线平行),∴∠BEF=∠BAD(两直线平行,同位角相等).∵∠BEF=∠ADG(已知),∴∠ADG=∠BAD(等量代换).∴DG∥AB(内错角相等,两直线平行).【分析】根据垂直的定义得出∠EFB=∠ADB=90°,即可判定EF∥AD,则得出∠BEF =∠BAD,等量代换得出∠ADG=∠BAD,即可判定DG∥AB.解:∵AD⊥BC,EF⊥BC(已知),∴∠EFB=∠ADB=90°(垂直的定义),∴EF∥AD(同位角相等,两直线平行),∴∠BEF=∠BAD(两直线平行,同位角相等),∵∠BEF=∠ADG(已知),∴∠ADG=∠BAD(等量代换),∴DG∥AB(内错角相等,两直线平行).故答案为:垂直的定义;同位角相等,两直线平行;∠BAD;∠ADG=∠BAD;内错角相等,两直线平行.26.关于x的不等式组.(1)若不等式组的解集是1<x<2,求a的值;(2)若不等式组无解,求a的取值范围.【分析】(1)解不等式组中两个不等式后根据不等式组的解集可得关于a的方程,解之可得;(2)根据“大小小大无解了”可确定关于a的不等式,解之可得.解:(1)解不等式2x+1>3得:x>1,解不等式a﹣x>1得:x<a﹣1,∵不等式组的解集是1<x<2,∴a﹣1=2,解得:a=3;(2)∵不等式组无解,∴a﹣1≤1,解得:a≤2.27.(1)简便计算:992﹣108×92;(2)因式分解:2x3﹣8x2+8x.【分析】(1)把992﹣108×92写成(100﹣1)2﹣(100+8)(100﹣)的形式,再利用完全平方公式和平方差进行计算即可.(2)首先提取公因式2x,再进一步运用完全平方公式计算即可解答.解:(1)992﹣108×92=(100﹣1)2﹣(100+8)(100﹣8)=1002﹣200+1﹣1002+82=﹣200+1+64=﹣135;(2)原式=2x(x2﹣4x+4)=2x(x﹣2)2.。
2020-2021学年度第二学期学业水平检测试题七年级数学试卷及答案
![2020-2021学年度第二学期学业水平检测试题七年级数学试卷及答案](https://img.taocdn.com/s3/m/d2cef49cc850ad02df804143.png)
;
(5)求小明从姑妈家到织金洞的平均速度和小明爸爸驾车的平均速度。
七年级数学检测试卷 第 4 页(全卷共 4 页)
第二学期学业水平检测参考答案 七年级 数学
一、选择题。(共 15 小题,每小题 3 分,共 45 分,每小题四个答案中只有一个正确选项)
题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
30km/h;
………………………………………14 分
七年级数学检测试卷 第 7 页(全卷共 4 页)
即获得一等奖的人数约为 225 人 ………………10 分
25.证明:(1) ∵AB//DE,
∴ ∠ABC=∠DEF,
……………2 分
在△ABC 与△DEF 中
∠ABC=∠DEF
AB=DE
……………5 分
∠A=∠D
∴△ABC≌△DEF (ASA)
……………6 分
(2) ∵△ABC≌△DEF
∴BC=EF
逗留一段时间后继续坐车到织金洞,小明离家一段时间后,爸爸驾车沿相同的路线前往
织金洞.如图是他们离家路程 s(km)与小明离家时
间 t(h)的关系图,请根据图回答下列问题:
(1)图中自变量是
,因变量是
;
(2)小明家到织金洞的路程为
km,小明在姑
妈家逗留的时间为
h;
(3)小明出发
小时后爸爸驾车出发;
(4)图中 A 点表示
B.16
C.18
D.20
二、填空题(请.将.答.案.填.写.在.答.题.卷.相.应.的.位.置.上.,每小题 5 分,共 25 分)
七年级数学检测试卷 第 2 页(全卷共 4 页)
16. 圆周长公式 C=2πR 中,自变量是
2020-2021学年七年级下期末数学试卷附答案解析
![2020-2021学年七年级下期末数学试卷附答案解析](https://img.taocdn.com/s3/m/669d81e0ee06eff9aff80737.png)
第 1 页 共 16 页2020-2021学年七年级下学期期末考试数学试卷一.选择题(共10小题,满分30分)1.(3分)点P (a ,b )在第四象限,且|a |>|b |,那么点Q (a +b ,a ﹣b )在( )A .第一象限B .第二象限C .第三象限D .第四象限2.(3分)已知两个不等式的解集在数轴上如图表示,那么这个解集为( )A .x ≥﹣1B .x >1C .﹣3<x ≤﹣1D .x >﹣33.(3分)下列说法中,错误的是( )A .9的算术平方根是3B .√16平方根是±2C .27的平方根是±3D .立方根等于﹣1的实数是﹣14.(3分)下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .{x =1y =−1B .{x =2y =1C .{x =−1y =−2D .{x =4y =−15.(3分)如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD +∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)6.(3分)若√3的整数部分为x ,小数部分为y ,则√3x ﹣y 的值是( )A .1B .√3C .3√3−3D .37.(3分)为了解某中学七年级560名学生的身高情况,抽查了其中80名学生的身高进行统计分析.下面叙述正确的是( )A .560名学生是总体B .每名学生是总体的一个个体。
2020-2021学年第二学期七年级期末数学试卷及答案
![2020-2021学年第二学期七年级期末数学试卷及答案](https://img.taocdn.com/s3/m/ae46b8ab27284b73f3425043.png)
20.(5 分)先阅读材料,然后解方程组. 材料:善于思考的小军在解方程组
时,采用了如下方法:
解:将②变形,得 4x+10y+y=5
即 2(2x+5y)+y=5③
把①代入③,得 2×3+y=5,解得 y=﹣1.
把 y=﹣1 代入①,得 2x+5×(﹣1)=3,解得 x=4.
∴原方程组的解为
.
这种方法称为“整体代入法”.请用这种方法解方程组:
D.0
A. =±5
B.
=4
C.( )2=4 D.± =2
3.(3 分)若 a<b,则下列不等式中正确的是( )
A.a﹣3<b﹣3
B.a﹣b>0
C.
b
D.﹣2a<﹣2b
4.(3 分)下列说法正确的是( ) A.调查全国初中生每天体育锻炼所用时间的情况,适合采用全面调查 B.调查黄河某段的水质情况,适合采用抽样调查 C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查 D.为了了解一批袋装食品是否含有防腐剂,选择全面调查
D.
,故本选项不合题意.
故选:C.
3.(3 分)若 a<b,则下列不等式中正确的是( )
A.a﹣3<b﹣3
B.a﹣b>0
C.
b
D.﹣2a<﹣2b
【分析】根据不等式的性质 1,可判断 A、B;根据不等式的性质 2,可判断 C;根据不 等式的性质 3,可判断 D. 【解答】解:A、不等式的两边都减 3,不等式的方向不变,故 A 正确; B、不等式的两边都减 b,不等号的方向不变,故 B 错误; C、不等式的两边都乘以 ,不等号的方向不变,故 C 错误;
个大长方形的面积为
cm2.
三、解答题(本大题共 7 个小题,共 55 分.解答应写出文字说明,证明过程或演算步骤) 16.(8 分)(1)计算: +| ﹣3|﹣ + ;
2020-2021学年天津市河北区七年级(下)期末数学试卷(学生版+解析版)
![2020-2021学年天津市河北区七年级(下)期末数学试卷(学生版+解析版)](https://img.taocdn.com/s3/m/489e55ad336c1eb91b375dd9.png)
2020-2021学年天津市河北区七年级(下)期末数学试卷一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列方程组中是二元一次方程组的是( ) A .{x −y =42x +y =3B .{2x −y =42x +y =1C .{2x −y =52y +z =1D .{x +y =5x 2+y 2=122.(3分)下列调查中,调查方式选择合理的是( ) A .为了了解某一品牌家具的甲醛含量,选择全面调查 B .为了了解神舟飞船的设备零件的质量情况,选择抽样调查 C .为了了解一批袋装食品是否含有防腐剂,选择全面调查 D .为了了解某公园全年的游客流量,选择抽样调查3.(3分)一个容量为80的样本,最大值为50,最小值为9,取组距为10,则可以分成( ) A .4组B .5组C .9组D .10组4.(3分)下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)在同一平面内,两条直线的位置关系只有相交,平行两种;(4)不相交的两条直线叫做平行线. A .1个B .2个C .3个D .4个5.(3分)下列计算正确的是( ) A .√−83=−2B .√(−3)2=−3C .√4=±2D .√−1=−16.(3分)在平面直角坐标系中,点(﹣1,m 2+1)一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限7.(3分)已知点P (2m +4,m ﹣1),点Q (2,5),直线PQ ∥y 轴,点P 的坐标是( ) A .(2,2)B .(16,5)C .(2,﹣2)D .(﹣2,5)8.(3分)若关于x 的不等式组{−12(x −a)>0x −1≥2x−13至多有2个整数解,且关于y 的方程y =6a−1的解为整数,则符合条件的所有整数a 的和为( ) A .﹣3B .1C .7D .8二、填空题:本大题共8小题,每小题3分,共24分.9.(3分)把方程5x﹣2y=3改写成用含x的式子表示y的形式是:.10.(3分)关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是.11.(3分)已知a>b,则−12a+c−12b+c(填>、<或=).12.(3分)关于x、y的方程3x+2y=7的正整数解为.13.(3分)已知x=2,y=0与x=﹣3,y=5都是方程y=kx+b的解,则k+b的值为.14.(3分)解方程组{x+y+z=12x+2y−z=63x−y+z=10时,消去字母z,得到含有未知数x,y的二元一次方程组是.15.(3分)商店以每辆300元的进价购入121辆自行车,并以每辆330元的价格销售.两个月后自行车的销售款已超过这批自行车的进货款,这时至少已售出多少辆自行车.设售出自行车x辆,则用不等式表示为.16.(3分)若方程组{x−(c+3)xy=3x a−2−y b+3=4是关于x,y的二元一次方程组,则代数式a+b+c的值是.三、解答题:本大题共6小题,共52分,解答应写出文字说明,演算步骤或证明过程.17.(8分)解不等式组:{x−3(x−2)≥4①1+2x3≥x−1②,并在数轴上表示它的解集.请结合解题过程,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.18.(8分)某校征求家长对某一事项的意见,随机抽取该校部分家长,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该事项的态度,将结果绘制成两幅不完整的统计图,根据图中提供的信息,解决下列问题:(Ⅰ)这次共抽取了名家长进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是;(Ⅱ)将条形统计图补充完整;(Ⅲ)该学校共有2000名学生家长,估计该学校家长表示“支持”的(A类,B类的和)人数大约有多少人?19.(8分)甲、乙两人相距6km,两人同时出发相向而行,1小时相遇,同时出发同向而行,甲3小时可追上乙.两人的平均速度各是多少?20.(8分)如图,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)试说明:AB∥CD;(2)若∠2=35°,求∠BFC的度数.21.(10分)如图,在平面直角坐标系中,点A坐标为(0,3),点B坐标为(2,﹣1).(Ⅰ)点C在第一象限内,AC∥x轴,将线段AB进行适当的平移得到线段DC,点A的对应点为点D,点B的对应点为点C,连接AD,若三角形ACD的面积为12,求线段AC 的长;(Ⅱ)在(Ⅰ)的条件下,连接OD,P为y轴上一个动点,若使三角形P AB的面积等于三角形AOD的面积,求此时点P的坐标.22.(10分)为鼓励同学们积极参加体育锻炼,学校计划拿出不超过2400元的资金购买一批篮球和排球,已知篮球和排球的单价比为5:1,单价和为90元.(Ⅰ)篮球和排球的单价分别是多少元?(Ⅱ)若要求购买的篮球和排球共40个,且购买的篮球数量多于28个,有哪几种购买方案?如果你是校长,从节约资金的角度来谈谈你会选择哪种方案并说明理由.2020-2021学年天津市河北区七年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列方程组中是二元一次方程组的是( ) A .{x −y =42x +y =3B .{2x −y =42x +y =1C .{2x −y =52y +z =1D .{x +y =5x 2+y 2=12【解答】解:A 、这个方程组符合二元一次方程组的定义,故此选项符合题意; B 、2x −y =4是分式方程,故此选项不符合题意;C 、有三个未知数,是三元一次方程组,故此选项不符合题意;D 、第二个方程是x 2+y 2=12二次的,故此选项不符合题意. 故选:A .2.(3分)下列调查中,调查方式选择合理的是( ) A .为了了解某一品牌家具的甲醛含量,选择全面调查 B .为了了解神舟飞船的设备零件的质量情况,选择抽样调查 C .为了了解一批袋装食品是否含有防腐剂,选择全面调查 D .为了了解某公园全年的游客流量,选择抽样调查【解答】解:A .为了了解某一品牌家具的甲醛含量,适合抽样调查,故选项A 不符合题意;B .为了了解神舟飞船的设备零件的质量情况,意义重大,适合普查,故选项B 不符合题意;C .为了了解一批袋装食品是否含有防腐剂,适合抽样调查,故选项C 不符合题意;D .为了了解某公园全年的游客流量,适合抽样调查,故选项D 符合题意; 故选:D .3.(3分)一个容量为80的样本,最大值为50,最小值为9,取组距为10,则可以分成( ) A .4组B .5组C .9组D .10组【解答】解:(50﹣9)÷10=4.1>4,故分成5组较好. 故选:B .4.(3分)下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)在同一平面内,两条直线的位置关系只有相交,平行两种;(4)不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个【解答】解:(1)经过直线外一点,有且只有一条直线与这条直线平行,原来的说法错误;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直,原来的说法错误;(3)在同一平面内,两条直线的位置关系只有相交,平行两种,原来的说法正确;(4)在同一平面内,不相交的两条直线叫做平行线,原来的说法错误.故说法中错误的个数是3个.故选:C.5.(3分)下列计算正确的是()3=−2B.√(−3)2=−3C.√4=±2D.√−1=−1 A.√−83=−2,因此选项A正确;【解答】解:√−8√(−3)2=|﹣3|=3,因此选项B不正确;√4=2,因此选项C不正确;√−1无意义,因此选项D不正确;故选:A.6.(3分)在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:因为点(﹣1,m2+1),横坐标﹣1<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选:B.7.(3分)已知点P(2m+4,m﹣1),点Q(2,5),直线PQ∥y轴,点P的坐标是()A.(2,2)B.(16,5)C.(2,﹣2)D.(﹣2,5)【解答】解:∵点P(2m+4,m﹣1),点Q(2,5),直线PQ∥y轴,∴2m+4=2,且m﹣1≠5,∴m=﹣1,∴P(2,﹣2),故选:C .8.(3分)若关于x 的不等式组{−12(x −a)>0x −1≥2x−13至多有2个整数解,且关于y 的方程y =6a−1的解为整数,则符合条件的所有整数a 的和为( ) A .﹣3B .1C .7D .8【解答】解:不等式组{−12(x −a)>0x −1≥2x−13整理得{x <a x ≥2,∵不等式组至多2个整数解, ∴a ≤4,∵关于y 的方程y =6a−1的解为整数, ∴a =﹣5,﹣2,﹣1,0,2,3,4,7, ∴整数a 为﹣5,﹣2,﹣1,0,2,3,4,∴符合条件的所有整数a 的和为﹣5﹣2﹣1+0+2+3+4=1. 故选:B .二、填空题:本大题共8小题,每小题3分,共24分.9.(3分)把方程5x ﹣2y =3改写成用含x 的式子表示y 的形式是: y =5x−32. 【解答】解:5x ﹣2y =3, 移项得:﹣2y =3﹣5x , 系数化1得:y =−3−5x 2=5x−32. 故答案为:y =5x−32. 10.(3分)关于x 的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是 ﹣1≤x <3 .【解答】解:根据数轴可知:不等式组的解集是﹣1≤x <3, 故答案为:﹣1≤x <3.11.(3分)已知a >b ,则−12a +c < −12b +c (填>、<或=). 【解答】解:∵a >b ,∴−12a <−12b ,∴−12a +c <−12b +c .12.(3分)关于x 、y 的方程3x +2y =7的正整数解为 {x =1y =2 .【解答】解:∵3x +2y =7, ∴y =7−3x2, ∵要求的是正整数解, ∴x =1,或x =2,∴当x =1时,y =2;当x =2时,y =12,此时y 不是正整数,故不符合题意. 故答案为:{x =1y =2.13.(3分)已知x =2,y =0与x =﹣3,y =5都是方程y =kx +b 的解,则k +b 的值为 1 . 【解答】解:把x =2,y =0与x =﹣3,y =5代入方程y =kx +b 得: {0=2k +b 5=−3k +b , 解得{k =−1b =2,则k +b =1, 故答案为:1.14.(3分)解方程组{x +y +z =12x +2y −z =63x −y +z =10时,消去字母z ,得到含有未知数x ,y 的二元一次方程组是 {2x +3y =184x +y =16 .【解答】解:{x +y +z =12①x +2y −z =6②3x −y +z =10③,①+②得出2x +3y =18④, ②+③得出4x +y =16⑤,由④和⑤组成方程组{2x +3y =184x +y =16.故答案为:{2x +3y =184x +y =16.15.(3分)商店以每辆300元的进价购入121辆自行车,并以每辆330元的价格销售.两个月后自行车的销售款已超过这批自行车的进货款,这时至少已售出多少辆自行车.设售出自行车x 辆,则用不等式表示为 330x >300×121 .【解答】解:设两个月后自行车的销售款已超过这批自行车的进货款,已售出x 辆自行车,由题意得:330x >300×121,故答案为:330x >300×121. 16.(3分)若方程组{x −(c +3)xy =3x a−2−y b+3=4是关于x ,y 的二元一次方程组,则代数式a +b +c 的值是 ﹣2或﹣3 .【解答】解:若方程组{x −(c +3)xy =3x a−2−y b+3=4是关于x ,y 的二元一次方程组,则c +3=0,a ﹣2=1,b +3=1, 解得c =﹣3,a =3,b =﹣2. 所以代数式a +b +c 的值是﹣2. 或c +3=0,a ﹣2=0,b +3=1, 解得c =﹣3,a =2,b =﹣2. 所以代数式a +b +c 的值是﹣3.综上所述,代数式a +b +c 的值是﹣2或﹣3. 故答案为:﹣2或﹣3.三、解答题:本大题共6小题,共52分,解答应写出文字说明,演算步骤或证明过程. 17.(8分)解不等式组:{x −3(x −2)≥4①1+2x 3≥x −1②,并在数轴上表示它的解集.请结合解题过程,完成本题的解答. (Ⅰ)解不等式①,得 x ≤1 ; (Ⅱ)解不等式②,得 x ≤4 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来: (Ⅳ)原不等式组的解集为 1≤x ≤4 .【解答】解:{x −3(x −2)≥4①1+2x 3≥x −1②,(Ⅰ)解不等式①,得x ≤1; (Ⅱ)解不等式②,得x ≤4;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为x≤1.故答案为:(Ⅰ)x≤1;(Ⅱ)x≤4;(Ⅳ)x≤1.18.(8分)某校征求家长对某一事项的意见,随机抽取该校部分家长,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该事项的态度,将结果绘制成两幅不完整的统计图,根据图中提供的信息,解决下列问题:(Ⅰ)这次共抽取了60名家长进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是18°;(Ⅱ)将条形统计图补充完整;(Ⅲ)该学校共有2000名学生家长,估计该学校家长表示“支持”的(A类,B类的和)人数大约有多少人?【解答】解:(Ⅰ)9÷15%=60(人),360°×360=18°,故答案为:60,18°;(Ⅱ)“A非常支持”的人数为:60﹣3﹣9﹣36=12(人),补全条形统计图如下:(Ⅲ)2000×12+3660=1600(人),答:该学校共有2000名学生家长中表示“支持”的(A 类,B 类的和)人数大约有1600人.19.(8分)甲、乙两人相距6km ,两人同时出发相向而行,1小时相遇,同时出发同向而行,甲3小时可追上乙.两人的平均速度各是多少?【解答】解:设甲的速度是x 千米/小时,乙的速度是y 千米/小时,{x +y =63x −3y =6, 解得:{x =4y =2. 答:甲的速度是4千米/时,乙的速度是2千米/时.20.(8分)如图,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1+∠2=90°.(1)试说明:AB ∥CD ;(2)若∠2=35°,求∠BFC 的度数.【解答】证明:(1)∵BE 、DE 平分∠ABD 、∠BDC ,∴∠1=12∠ABD ,∠2=12∠BDC ;∵∠1+∠2=90°,∴∠ABD +∠BDC =180°;∴AB ∥CD ;(同旁内角互补,两直线平行)解:(2)∵DE 平分∠BDC ,∴∠2=∠FDE ;∵∠1+∠2=90°,∴∠BED =∠DEF =90°;∴∠3+∠FDE =90°;∴∠2+∠3=90°.∵∠2=35°,∴∠3=55°,∴∠BFC =180°﹣55°=125°.21.(10分)如图,在平面直角坐标系中,点A 坐标为(0,3),点B 坐标为(2,﹣1).(Ⅰ)点C 在第一象限内,AC ∥x 轴,将线段AB 进行适当的平移得到线段DC ,点A 的对应点为点D ,点B 的对应点为点C ,连接AD ,若三角形ACD 的面积为12,求线段AC 的长;(Ⅱ)在(Ⅰ)的条件下,连接OD ,P 为y 轴上一个动点,若使三角形P AB 的面积等于三角形AOD 的面积,求此时点P 的坐标.【解答】解:(Ⅰ)如图1中,连接BC .∵AB =CD ,AB ∥CD ,∴四边形ABCD 是平行四边形,∴S △ACD =S △ACB =12,∴12•AC •(3+1)=12, ∴AC =6.(Ⅱ)如图2中,连接OD .设P (0,m ).由(Ⅰ)可知C (6,3),D (4,7),由题意12•|m ﹣3|•2=12×3×4, 解得m =9或﹣3,∴P (0,9)或(0,﹣3).22.(10分)为鼓励同学们积极参加体育锻炼,学校计划拿出不超过2400元的资金购买一批篮球和排球,已知篮球和排球的单价比为5:1,单价和为90元.(Ⅰ)篮球和排球的单价分别是多少元?(Ⅱ)若要求购买的篮球和排球共40个,且购买的篮球数量多于28个,有哪几种购买方案?如果你是校长,从节约资金的角度来谈谈你会选择哪种方案并说明理由.【解答】解:(1)设排球单价为x 元,则篮球单价为5x 元,则依题意得x +5x =90,解得:x =15,∴5x =75,∴篮球和排球单价分别为75元和15元;(2)设篮球为m 个,则排球为(40﹣m )个,依题意得{m >2875m +15(40−m)≤2400, 解得:28<m ≤30,因为m 为非负整数,所以m 值为29,30∴方案有两种:方案①篮球购买29个,排球购买11个,所需资金为:75×29+15×11=2340(元);方案②篮球购买30个,排球购买10个,所需资金为:75×30+15×10=2400(元),∵2340<2400,∴从节约资金的角度,应该选方案①:购进篮球29个,排球11个.。
河北省2023七年级下学期数学期末考试试卷(II)卷
![河北省2023七年级下学期数学期末考试试卷(II)卷](https://img.taocdn.com/s3/m/37f681ab1b37f111f18583d049649b6648d709fd.png)
河北省2023七年级下学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2021八上·涟源期末) 下列说法中,正确的个数为()①无限小数都是无理数:②无限不循环小数都是无理数;③无理数都是无限小数:④无理数也有负数;⑤无理数分为正无理数、零、负无理数.A . 1个B . 2个C . 3个D . 4个2. (2分) (2018八上·兰州期末) 已知P(0,a)在y轴的负半轴上,则Q()在()A . y轴的左边,x轴的上方B . y轴的右边,x轴的上方C . y轴的左边,x轴的下方D . y轴的右边,x轴的下方3. (2分) (2021七下·深圳月考) 下列四个图形中,∠1与∠2是对顶角的是()A .B .C .D .4. (2分) (2018七下·浦东期中) 所有和数轴上的点组成一一对应的数组成()A . 整数B . 有理数C . 无理数D . 实数5. (2分)吸烟有害健康,被动吸烟也有害健康.如果要了解人们被动吸烟的情况,则最合适的调查方式是()A . 普查B . 抽样调查C . 在社会上随机调查D . 在学校里随机调查6. (2分)不等式1+x<0的解集在数轴上表示正确的是()A .B .C .D .7. (2分) (2020七下·长沙期末) 在平面直角坐标系.将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A . (2,4)B . (1,5)C . (1,-3)D . (-5,5)8. (2分) (2021七下·恩平期末) 某班主任把本班学生上学方式的调查结果绘制成如图,则乘公交车上学的学生人数在扇形统计图中对应的扇形所占的圆心角的度数为()A . 54°B . 60°C . 108°D . 120°9. (2分)已知方程组,且﹣1<x﹣y<0,则m的取值范围是()A . ﹣1<m<﹣B . 0<m<C . 0<m<1D . <m<110. (2分)一个长方形的长的2倍比宽的5倍还多1cm,宽的3倍又比长多1cm,求这个长方形的长与宽.设长为xcm,宽为ycm,则下列方程组中正确的是()A .B .C .D .11. (2分)(2017·平顶山模拟) 如图,在平行四边形ABCD中,以点A为圆心,一定长为半径作圆弧,分别交AD、AB于点E、F;再分别以点E、F为圆心,大于 EF的长为半径作弧,两弧交于点G;作射线AG,交边CD 于点H.若AB=6,AD=4,则四边形ABCH的周长与三角形ADH的周长之差为()A . 4B . 5C . 6D . 712. (2分)设n=9+99+…+99…9(99个9).则n的十进制表示中,数码1有()个.A . 50B . 90C . 99D . 100二、填空题 (共5题;共5分)13. (1分) (2021七下·东城期末) “两条直线被第三条直线所截,内错角相等”是命题.(填“真”或“假”)14. (1分)数学表达式中:①a2≧0②5p﹣6q<0 ③x﹣6=1 ④7x+8y⑤﹣1<0 ⑥x≠3不等式是(填序号)。
2020-2021七年级数学下期末模拟试卷(含答案)(1)
![2020-2021七年级数学下期末模拟试卷(含答案)(1)](https://img.taocdn.com/s3/m/01bc18da680203d8ce2f24ab.png)
当y=7时,x=6.
所以有两种方案.
故答案为2.
本题考查理解题意的能力,关键是根据题意列出二元一次方程然后根据解为整数确定值从而得出结果.
17.25【解析】【分析】【详解】设需安排x名工人加工大齿轮安排y名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能
(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;
(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系;
结论应用
(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,则∠CFG等于______(用含α的式子表示).
解析:2
【解析】
设甲种运动服买了x套,乙种买了y套,根据,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x,y必需为整数可求出解.
解:设甲种运动服买了x套,乙种买了y套,
20x+35y=365
x= ,
∵x,y必须为正整数,
∴ >0,即0<y< ,
A.0B.-πC. D.-4
10.不等式4-2x>0的解集在数轴上表示为()
A. B. C. D.
11.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()
A.16cmB.18cmC.20cmD.21cm
12.关于 , 的方程组 的解满足 ,则 的值为()
【点睛】
2020-2021学年七年级(下)期末数学试卷(解析版)
![2020-2021学年七年级(下)期末数学试卷(解析版)](https://img.taocdn.com/s3/m/8b65437fcc22bcd127ff0c7a.png)
2020-2021学年七年级(下)期末数学试卷(解析版)一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共30分)1.下列各式不能成立的是()A.(x2)3=x6B.x2•x3=x5C.(x﹣y)2=(x+y)2﹣4xy D.x2÷(﹣x)2=﹣1【考点】4C:完全平方公式;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】根据同底数幂的乘法运算以及幂的乘方运算和完全平方公式求出即可.【解答】解:A.(x2)3=x6,故此选项正确;B.x2•x3=x 2+3=x5,故此选项正确;C.(x﹣y)2=(x+y)2﹣4xy=x2+y2﹣2xy,故此选项正确;D.x2÷(﹣x)2=1,故此选项错误;故选:D.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算和完全平方公式的应用,熟练掌握其运算是解决问题的关键.2.给出下列图形名称:(1)线段;(2)直角;(3)等腰三角形;(4)平行四边形;(5)长方形,在这五种图形中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】P3:轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称可得答案.【解答】解:(1)线段;(2)直角;(3)等腰三角形;(5)长方形是轴对称图形,共4个,故选:D.【点评】此题主要考查了轴对称图形,关键是找出图形的对称轴.3.在下列多项式的乘法中,可用平方差公式计算的是()A.(2+a)(a+2)B.(a+b)(b﹣a)C.(﹣x+y)(y﹣x) D.(x2+y)(x ﹣y2)【考点】4F:平方差公式.【分析】根据平方差公式的定义进行解答.【解答】解:A、(2+a)(a+2)=(a+2)2,是完全平方公式,故本选项错误;B、(a+b)(b﹣a)=b2﹣(a)2,符合平方差公式,故本选项正确;C、(﹣x+y)(y﹣x)=(y﹣x)2,是完全平方公式,故本选项错误;D、(x2+y)(x﹣y2)形式不符合平方差公式,故本选项错误.故选B.【点评】本题考查了平方差公式,要熟悉平方差公式的形式.4.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则()A.P1>P2B.P1<P2C.P1=P2 D.以上都有可能【考点】X5:几何概率.【分析】先根据甲和乙给出的图形,先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【解答】解:由图甲可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P1是,由图乙可知,黑色方砖3块,共有9块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P2是,∵>,∴P1>P2;故选A.【点评】本题考查的是几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.5.在同一平面内,如果两条直线被第三条直线所截,那么()A.同位角相等B.内错角相等C.不能确定三种角的关系D.同旁内角互补【考点】J6:同位角、内错角、同旁内角.【分析】根据平行线的性质定理即可作出判断.【解答】解:A、两条被截直线平行时,同位角相等,故选项错误;B、两条被截直线平行时,内错角相等,故选项错误;C、正确;D、两条被截直线平行时,同旁内角互补,故选项错误.故选C.【点评】本题主要考查了平行线的性质定理,注意定理的条件:两直线平行.6.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A.1个B.2个C.3个D.4个【考点】E6:函数的图象.【分析】观察图象,结合题意,明确横轴与纵轴的意义,依次分析选项可得答案.【解答】解:读图可得,在x=40时,速度为0,故(1)(4)正确;AB段,y的值相等,故速度不变,故(2)正确;x=30时,y=80,即在第30分钟时,汽车的速度是80千米/时;故(3)错误;故选C.【点评】解决本题的关键是读懂图意,明确横轴与纵轴的意义.7.如图,AB∥ED,则∠A+∠C+∠D=()A.180°B.270°C.360°D.540°【考点】JA:平行线的性质.【分析】首先过点C作CF∥AB,由AB∥ED,即可得CF∥AB∥DE,然后根据两直线平行,同旁内角互补,即可求得∠1+∠A=180°,∠2+∠D=180°,继而求得答案.【解答】解:过点C作CF∥AB,∵AB∥ED,∴CF∥AB∥DE,∴∠1+∠A=180°,∠2+∠D=180°,∴∠A+∠ACD+∠D=∠A+∠1+∠2+∠D=360°.故选C.【点评】此题考查了平行线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握两直线平行,同旁内角互补定理的应用.8.已知一个正方体的棱长为2×102毫米,则这个正方体的体积为()A.6×106立方毫米B.8×106立方毫米C.2×106立方毫米D.8×105立方毫米【考点】47:幂的乘方与积的乘方.【分析】正方体的体积=棱长的立方,代入数据,然后根据积的乘方,把每一个因式分别乘方,再把所得的幂相乘计算即可.【解答】解:正方体的体积为:(2×102)3=8×106立方毫米.故选B.【点评】考查正方体的体积公式和积的乘方的性质,熟记体积公式和积的乘方的性质是解题的关键.9.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是()A.①②④B.①②③C.②③④D.①③【考点】KF:角平分线的性质;KD:全等三角形的判定与性质.【分析】过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠AED=∠AEF+∠FED=∠BEC=90°,即可判断出正确的结论.【解答】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.故选A.【点评】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.也考查了三角形全等的判定与性质.10.如图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是()A.B.C.D.【考点】P9:剪纸问题.【分析】严格按照图中的方法亲自动手操作一下,即可得到所得图形应既关于过原长方形两长边中点的连线对称,也关于两短边中点的连线对称,展开即可得到答案.【解答】解:由折叠可得最后展开的图形应既关于过原长方形两长边中点的连线对称,也关于两短边中点的连线对称,并且关于长边对称的两个剪去部分是不相连的,各选项中,只有选项D符合.故选D.【点评】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.解决本题的关键是根据折叠确定所得图形的对称轴.二、填空题(本大题共6个小题,每题3分,共计18分)11.任意翻一下2016年的日历,翻出1月6日是不确定事件,翻出4月31日是确定事件.(填“确定”或“不确定”)【考点】X1:随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:任意翻一下2016年的日历,翻出1月6日是随机事件,即不确定事件,翻出4月31日是不可能事件,即确定事件,故答案为:不确定;确定.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.等腰三角形一边长为8,另一边长为5,则此三角形的周长为18或21.【考点】KH:等腰三角形的性质.【分析】本题应分为两种情况8为底或5为底,还要注意是否符合三角形三边关系.【解答】解:当8为腰,5为底时;8﹣5<8<8+5,能构成三角形,此时周长=8+8+5=21;当8为底,5为腰时;8﹣5<5<8+5,能构成三角形,此时周长=5+5+8=18;故答案为18或21.【点评】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.13.若x2+6x+b2是一个完全平方式,则b的值是±3.【考点】4E:完全平方式.【分析】利用完全平方公式的结构特征计算即可求出b的值.【解答】解:∵x2+6x+b2是一个完全平方式,∴b=±3,故答案为:±3【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有①②③(填序号)【考点】KN:直角三角形的性质.【分析】根据有一个角是直角的三角形是直角三角形进行分析判断.【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∠C=90°,则该三角形是直角三角形;②∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=90°,则该三角形是直角三角形;③∠A=90°﹣∠B,则∠A+∠B=90°,∠C=90°.则该三角形是直角三角形;④∠A=∠B=∠C,则该三角形是等边三角形.故能确定△ABC是直角三角形的条件有①②③.【点评】此题要能够结合已知条件和三角形的内角和定理求得角的度数,根据直角三角形的定义进行判定.15.如图,已知C,D两点在线段AB上,AB=10cm,CD=6cm,M,N分别是线段AC,BD 的中点,则MN=8cm.【考点】ID:两点间的距离.【分析】结合图形,得MN=MC+CD+ND,根据线段的中点,得MC=AC,ND=DB,然后代入,结合已知的数据进行求解.【解答】解:∵M、N分别是AC、BD的中点,∴MN=MC+CD+ND=AC+CD+DB=(AC+DB)+CD=(AB﹣CD)+CD=×(10﹣6)+6=8.故答案为:8.【点评】此题考查的知识点是两点间的距离,关键是利用线段的中点结合图形,把要求的线段用已知的线段表示.16.一辆小车由静止开始从光滑的斜面上向下滑动,通过观察记录小车滑动的距离s(m)与时间t(s)的数据如下表:时间t(s) 1 2 3 4距离s(m) 2 8 18 32 …则写出用t表示s的关系式s=2t2.【考点】E3:函数关系式.【分析】根据物理知识列出函数表达式s=at2,代入数据计算即可得到关系式.【解答】解:设t表示s的关系式为s=at2,则s=a×12=2,解得a=2,∴s=2t2.故t表示s的关系式为:s=2t2.故答案为:2t2.【点评】本题考查了由实际问题列函数关系式,关键是掌握两个变量的关系.三、解答题(本大题共8个题,共72分.解答题要写出过程.)17.(15分)计算(1)简便计算:(2)计算:2a3b2•(﹣3bc2)3÷(﹣ca2)(3)先化简再求值:[(3x+2y)(3x﹣2y)﹣(x+2y)(5x﹣2y)]÷4x,其中x=,y=2.【考点】4J:整式的混合运算—化简求值.【分析】(1)把15、16分别写成(16﹣)与(16+)的形式,利用平方差公式计算.(2)先乘方,再按整式的乘除法法则进行运算.(3)先计算左括号里面的,再算除法.最后代入求值.【解答】解:(1)原式=(16﹣)×(16+)=162﹣()2=255(2)原式=2a3b2×(﹣27b3c6)÷(﹣ca2)=54a3﹣2b2+3c6﹣1=54ab5c5(3)原式=[(9x2﹣4y2)﹣(5x2+8xy﹣4y2)]÷4x=(4x2﹣8xy)÷4x=x﹣2y当x=,y=2时原式=﹣4=﹣【点评】本题考查了整式的乘方、乘除、加减运算及乘法公式.解题过程中注意运算顺序.平方差公式:两个数的和与这两个数的差的积等于这两个数的平方差.18.(5分)“西气东输”是造福子孙后代的创世纪工程.现有两条高速公路和A、B两个城镇(如图),准备建立一个燃气中心站P,使中心站到两条公路距离相等,并且到两个城镇距离相等,请你画出中心站位置.【考点】N4:作图—应用与设计作图.【分析】到两条公路的距离相等,则要画两条公路的夹角的角平分线,到A,B两点的距离相等又要画线段AB的垂直平分线,两线的交点就是点P的位置.【解答】解:如图所示,.【点评】本题主要考查了角平分线的性质及垂直平分线的性质.解题的关键是理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.19.(8分)如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为.【考点】X5:几何概率.【分析】(1)根据题意先得出奇数的个数,再根据概率公式即可得出答案;(2)根据概率公式设计如:自由转动的转盘停止时,指针指向大于2的区域,答案不唯一.【解答】解:(1)根据题意可得:转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6,有3个扇形上是奇数.故自由转动转盘,当它停止转动时,指针指向奇数区的概率是=.(2)答案不唯一.如:自由转动的转盘停止时,指针指向大于2的区域.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.(7分)如图,已知∠1=∠2,∠3=∠4,∠E=90°,试问:AB∥CD吗?为什么?解:∵∠1+∠3+∠E=180°180°∠E=90°已知∴∠1+∠3=90°∵∠1=∠2,∠3=∠4已知∴∠1+∠2+∠3+∠4=180°∴AB∥CD同旁内角互补,两直线平行.【考点】J9:平行线的判定;K7:三角形内角和定理.【分析】第一空利用三角形内角和定理即可求解;第二利用已知条件即可;第三空利用等式的性质即可求解;第四空利用已知条件即可;第五孔利用等式的性质即可;第六空利用平行线的判定方法即可求解.【解答】解:∵∠1+∠3+∠E=180°∠E=90°(已知),∴∠1+∠3=90°,∵∠1=∠2,∠3=∠4 (已知),∴∠1+∠2+∠3+∠4=180°,∴AB∥CD (同旁内角互补两直线平行).故答案为:180°、90°已知、已知、180°、同旁内角互补两直线平行.【点评】此题主要考查了平行线的判定及三角形的内角和定理,解题的关键是利用三角形内角和定理得到同旁内角互补解决问题.21.(7分)星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?【考点】E6:函数的图象.【分析】(1)利用图中的点的横坐标表示时间,纵坐标表示离家的距离,进而得出答案;(2)休息是路程不在随时间的增加而增加;(3)往返全程中回来时候速度最快,用距离除以所用时间即可;(4)用玲玲全称所行的路程除以所用的时间即可.【解答】解:观察图象可知:(1)玲玲到达离家最远的地方是在12时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)玲玲郊游过程中,各时间段的速度分别为:9~10时,速度为10÷(10﹣9)=10千米/时;10~10.5时,速度约为(17.5﹣10)÷(10.5﹣10)=15千米/小时;10.5~11时,速度为0;11~12时,速度为(30﹣17.5)÷(12﹣11)=12.5千米/小时;12~13时,速度为0;13~15时,在返回的途中,速度为:30÷(15﹣13)=15千米/小时;可见骑行最快有两段时间:10~10.5时;13~15时.两段时间的速度都是15千米/小时.速度为:30÷(15﹣13)=15千米/小时;(4)玲玲全程骑车的平均速度为:(30+30)÷(15﹣9)=10千米/小时.【点评】本题是一道函数图象的基础题,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,因此本题实际上是考查同学们的识图能力.22.(10分)把两个含有45°角的直角三角板如图放置,点D在AC上,连接AE、BD,试判断AE与BD的关系,并说明理由.【考点】KD:全等三角形的判定与性质.【分析】可通过全等三角形将相等的角进行转换来得出结论.本题中我们可通过证明△AEC 和BCD全等得出∠FAD=∠CBD,根据∠CBD+∠CDB=90°,而∠ADF=∠BDC,因此可得出∠AFD=90°,进而得出结论.那么证明三角形AEC和BCD就是解题的关键,两直角三角形中,EC=CD,AC=BC,两直角边对应相等,因此两三角形全等.【解答】解:BF⊥AE,理由如下:由题意可知:△ECD和△BCA都是等腰Rt△,∴EC=DC,AC=BC,∠ECD=∠BCA=90°,在△AEC和△BDC中EC=DC,∠ECA=∠DCB,AC=BC,∴△AEC≌△BDC(SAS).∴∠EAC=∠DBC,AE=BD,∵∠DBC+∠CDB=90°,∠FDA=∠CDB,∴∠EAC+∠FDA=90°.∴∠AFD=90°,即BF⊥AE.故可得AE⊥BD且AE=BD.【点评】本题考查了全等三角形的判定与性质,解答本题首先要大致判断出两者的关系,然后通过全等三角形来将相等的角进行适当的转换,从而得出所要得出的角的度数.23.(8分)暑假期间某中学校长决定带领市级“三好学生”去北京旅游,甲旅行社承诺:“如果校长买全票一张,则学生可享受半价优惠”;乙旅行社承诺:“包括校长在内所有人按全票的6折优惠”.若全票价为240元(1)设学生数为x,甲、乙旅行社收费分别为y甲(元)和y乙(元),分别写出两个旅行社收费的表达式.(2)当学生人数为多少时,两旅行社收费相同?【考点】E3:函数关系式.【分析】(1)由题意不难得出两家旅行社收费的函数关系式,(2)若求解那个更优惠,可先令两个式子相等,得到一个数值,此时两家都一样进而求解即可.【解答】解:(1)y甲=240+120x;y乙=240×60%(x+1);(2)240+120x=240×60%(x+1)解得x=4,所以当有4名学生时,两家都可以.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.24.(12分)如图1,线段BE上有一点C,以BC,CE为边分别在BE的同侧作等边三角形ABC,DCE,连接AE,BD,分别交CD,CA于Q,P.(1)找出图中的所有全等三角形.(2)找出一组相等的线段,并说明理由.(3)如图2,取AE的中点M、BD的中点N,连接MN,试判断三角形CMN的形状,并说明理由.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】(1)根据全等三角形的判定,可得答案;(2)根据全等三角形的判定与性质,可得答案;(3)根据全等三角形的判定与性质,可得CM=CN,根据等边三角形的判定,可得答案.【解答】解:(1)△BCD≌△ACE;△BPC≌△AQC;△DPC≌△EQC(2)BD=AE.理由:等边三角形ABC、DCE中,∵∠ACB=∠ACD=∠DCE=60°,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE.(3)等边三角形.理由:由△BCD≌△ACE,∴∠1=∠2,BD=AE.∵M是AE的中点、N是BD的中点,∴DN=EM,又DC=CE.在△DCN和△ECM中,,∴△DCN≌△ECM(SAS),∴CN=CM,∠NCD=∠MCE,∠MCE+∠DCM=60°.∴∠NCD+∠DCM=60°,即∠NCM=60°,又∵CM=CN,∴△CMN为等边三角形.【点评】本题考查了全等三角形的判定与性质,解(1)的关键是全等三角形的判定,解(2)的关键是全等三角形的判定;解(3)的关键是利用全等三角形的判定与性质得出CN=CM,∠NCD=∠MCE,∠MCE+∠DCM=60°.,又利用了等边三角形的判定.。
2020-2021学年河北省保定市定州市七年级(下)期末数学试卷(解析版)
![2020-2021学年河北省保定市定州市七年级(下)期末数学试卷(解析版)](https://img.taocdn.com/s3/m/3ae98037ce2f0066f43322df.png)
2020-2021学年河北省保定市定州市七年级(下)期末数学试卷一、选择题(共12个小题;每小题3分,共36分).1.16的算术平方根是()A.4B.±4C.8D.±82.在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.要调查实验中学八年级周日的睡眠时间,选取调查对象最合适的是()A.选取一个班级的学生B.选取50名男生C.选取50名女生D.随机选取50名八年级学生4.下列各式中,正确的是()A.B.C.D.5.已知a<b,下列不等式中,变形正确的是()A.a﹣3>b﹣3B.3a﹣1>3b﹣1C.﹣3a>﹣3b D.>6.不等式组的解集是()A.﹣2≤x≤3B.x<﹣2,或x≥3C.﹣2<x<3D.﹣2<x≤3 7.如图,直线a∥b,直线l分别与直线a,b相交于点P,Q,PA垂直于l于点P.若∠1=64°,则∠2的度数为()A.26°B.30°C.36°D.64°8.在平面直角坐标系中,将点A(m,m+9)向右平移4个单位长度,再向下平移2个单位长度,得到点B,若点B在第二象限,则m的取值范围是()A.﹣11<m<﹣4B.﹣7<m<﹣4C.m<﹣7D.m>﹣49.已知面积为8的正方形的边长为x,那么下列对x的大小的估计正确的是()A.1<x<3B.2<x<3C.3<x<4D.4<x<5 10.小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物4393第二次购物66162若小明需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元11.数学活动课上,张老师要将全班40名学生恰当的分成4人小组或6人小组,则分组方案有()A.1种B.2种C.3种D.4种12.利用两块长方体木块测量一张桌子的高度.首先按图1方式放置,再交换两木块的位置,按图2方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.比较大小0.5.14.已知关于x,y的二元一次方程组的解为,则a+2b的值是.15.已知A(1,0),B(0,2),点P在x轴上,且△PAB面积是5,则点P的坐标是.16.某商店以每辆250元的进价购入200辆自行车,并以每辆275元的价格销售,两个月后自行车的销售款已超过这批自行车的进货款,这时至少已售出辆自行车.17.如图,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在点C′、D′的位置上,EC交AD于G,已知∠EFG=56°,那么∠BEG=.18.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17,则不等式x⊕4<2的解集为.三、解答下列各题(本题有8个小题共66分)19.(1)解方程组:(2)解方程组20.完成下列各题.(1)计算:;(2)解不等式:.并在数轴上表示解集.21.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.22.如图,已知∠A=∠C,AB∥DC,试说明∠E=∠F的理由.23.如图所示,△ABC在方格中,方格纸中每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为、、;(3)若直线BC上有一点P,使△PAC的面积是△ABC面积的2倍,求出P点的坐标.24.小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的,写出题中被墨水污染的条件和第一个方程,并求解这道应用题.应用题:小东在某商场看中的一台电视和一台空调在“五一”前共需要5500元,由于该商场开展“五一”促销活动,同样的电视打八折销售,于是小东在促销期间购买了同样的电视一台,空调两台,共花费7200元,求“五一”前同样的电视和空调每台各多少元?解:设“五一”前同样的电视每台x元,空调每台y元,根据题意,得.被墨水污染的条件是:.被墨水污染的第一个方程是:.25.已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.(1)若∠O=40°,求∠ECF的度数;(2)求证:CG平分∠OCD;(3)当∠O为多少度时,CD平分∠OCF,并说明理由.26.(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用(注:户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?参考答案一、选择题(本大题共12个小题;每小题3分,共36分在每小题给出的四个选项中,只有一项是符合题目要求的)1.16的算术平方根是()A.4B.±4C.8D.±8【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,直接利用此定义即可解决问题.解:∵4的平方是16,∴16的算术平方根是4.故选:A.2.在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用第二象限内点的符号特点进而得出答案.解:点(﹣3,2)所在的象限在第二象限.故选:B.3.要调查实验中学八年级周日的睡眠时间,选取调查对象最合适的是()A.选取一个班级的学生B.选取50名男生C.选取50名女生D.随机选取50名八年级学生【分析】利用样本的代表性即可作出判断.解:随机抽样是简单和最基本的抽样方法,抽样时要注意样本的代表性和广泛性,选取该校一个班级的学生、选取该校50名男生、选取该校50名男生,这些对象都缺乏代表性和广泛性,得到的结果也缺乏准确性,故选D.4.下列各式中,正确的是()A.B.C.D.【分析】利用二次根式的性质=|a|和立方根的性质=a进行计算即可.解:A、=3,故原题计算错误;B、=,故原题计算错误;C、==3,故原题计算错误;D、=﹣2,故原题计算正确;故选:D.5.已知a<b,下列不等式中,变形正确的是()A.a﹣3>b﹣3B.3a﹣1>3b﹣1C.﹣3a>﹣3b D.>【分析】根据不等式的性质解答即可.解:A、不等式a<b的两边同时减去3,不等式仍成立,即a﹣3<b﹣3,故本选项错误;B、不等式a<b的两边同时乘以3再减去1,不等式仍成立,即3a﹣1<3b﹣1,故本选项错误;C、不等式a<b的两边同时乘以﹣3,不等式的符号方向改变,即﹣3a>﹣3b,故本选项正确;D、不等式a<b的两边同时除以3,不等式仍成立,即<,故本选项错误;故选:C.6.不等式组的解集是()A.﹣2≤x≤3B.x<﹣2,或x≥3C.﹣2<x<3D.﹣2<x≤3【分析】先求出各个不等式的解集,再求出这些不等式解集的公共部分即可.解:解不等式①,得:x>﹣2,解不等式②,得:x≤3,所以不等式组的解集是:﹣2<x≤3.故选:D.7.如图,直线a∥b,直线l分别与直线a,b相交于点P,Q,PA垂直于l于点P.若∠1=64°,则∠2的度数为()A.26°B.30°C.36°D.64°【分析】先根据平行线的性质,即可得到∠3的度数,再根据垂直的定义,即可得到∠2的度数.解:∵a∥b,∠1=64°,∴∠3=64°,又∵PA垂直于l于点P,∴∠2=90°﹣∠3=26°,故选:A.8.在平面直角坐标系中,将点A(m,m+9)向右平移4个单位长度,再向下平移2个单位长度,得到点B,若点B在第二象限,则m的取值范围是()A.﹣11<m<﹣4B.﹣7<m<﹣4C.m<﹣7D.m>﹣4【分析】首先根据平移表示出B点坐标,再根据B点所在象限列出不等式组,再解即可.解:∵点A(m,m+9)向右平移4个单位长度,再向下平移2个单位长度,得到点B,∴B(m+4,m+7),∵点B在第二象限,∴,解得:﹣7<m<﹣4,故选:B.9.已知面积为8的正方形的边长为x,那么下列对x的大小的估计正确的是()A.1<x<3B.2<x<3C.3<x<4D.4<x<5【分析】根据正方形的面积公式,求得正方形的边长,再进一步根据数的平方进行估算.解:根据题意,得正方形的边长是,∵4<8<9,∴2<<3,∴2<x<3.故选:B.10.小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物4393第二次购物66162若小明需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元【分析】设商品A的标价为x元,商品B的标价为y元,由题意得等量关系:①4个A 的花费+3个B的花费=93元;②6个A的花费+6个B的花费=162元,根据等量关系列出方程组,再解即可.解:设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为12元,商品B的标价为15元;所以3×12+2×15=66元,故选:C.11.数学活动课上,张老师要将全班40名学生恰当的分成4人小组或6人小组,则分组方案有()A.1种B.2种C.3种D.4种【分析】设分成4人小组x组,6人小组y组,根据总人数共40人,即可得出关于x,y 的二元一次方程,结合x,y均为非负整数,即可得出分组方案的个数.解:设分成4人小组x组,6人小组y组,依题意得:4x+6y=40,∴x=10﹣y.又∵x,y均为非负整数,∴或或或,∴共有4种分组方案.故选:D.12.利用两块长方体木块测量一张桌子的高度.首先按图1方式放置,再交换两木块的位置,按图2方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm【分析】设长方体长xcm,宽ycm,桌子的高为acm,由图象建立方程组求出其解就可以得出结论.解:设长方体长xcm,宽ycm,桌子的高为acm,由题意,得,解得:2a=152,∴a=76.故选:D.二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.比较大小>0.5.【分析】首先计算出,再比较即可.解:=1,1>0.5,故答案为:>.14.已知关于x,y的二元一次方程组的解为,则a+2b的值是2.【分析】首先把x、y的值代入方程组,再把两个方程相减可得答案.解:把代入得,①﹣②得:a+2b═3﹣1=2,故答案为:2.15.已知A(1,0),B(0,2),点P在x轴上,且△PAB面积是5,则点P的坐标是(﹣4,0)或(6,0).【分析】根据B点的坐标可知AP边上的高为2,而△PAB的面积为5,点P在x轴上,说明AP=5,已知点A的坐标,可求P点坐标.解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又∵△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故答案为(﹣4,0)或(6,0).16.某商店以每辆250元的进价购入200辆自行车,并以每辆275元的价格销售,两个月后自行车的销售款已超过这批自行车的进货款,这时至少已售出182辆自行车.【分析】设两个月售出x辆自行车,根据两个月后自行车的销售款已超过这批自行车的进货款,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其中的最小整数值即可得出结论.解:设两个月售出x辆自行车,依题意,得:275x>250×200,解得:x>181,又∵x为正整数,∴x的最小值为182.故答案为:182.17.如图,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在点C′、D′的位置上,EC交AD于G,已知∠EFG=56°,那么∠BEG=68°.【分析】根据平行线的性质求得∠CEF的度数,然后根据折叠的性质可得∠FEG=∠CEF,进而求得∠BEG的度数.解:∵长方形ABCD中,AD∥BC,∴∠CEF=∠EFG=56°,∴∠CEF=∠FEG=56°,∴∠BEG=180°﹣∠CEF﹣∠FEG=180°﹣56°﹣56°=68°.故答案是:68°.18.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17,则不等式x⊕4<2的解集为x<﹣5.【分析】根据新定义规定的运算规则列出不等式,解不等式即可得.解:根据题意得:2x+12<2,解得:x<﹣5.故答案是:x<﹣5.三、解答下列各题(本题有8个小题共66分)19.(1)解方程组:(2)解方程组【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.解:(1),把①代入②得:3y+12+y=16,解得:y=1,把y=1代入①得:x=5,则方程组的解为;(2),①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:y=﹣,则方程组的解为.20.完成下列各题.(1)计算:;(2)解不等式:.并在数轴上表示解集.【分析】(1)先利用算术平方根,立方根,有理数的乘方运算进行化简,然后再算加减;(2)先去分母,然后去括号,移项,合并同类项,系数化1求不等式的解集,然后再将不等式的解集表示在数轴上.解:(1)原式=﹣2﹣=﹣1;(2)去分母,得:2(x﹣2)≥3(3x﹣1)﹣12,去括号,得:2x﹣4≥9x﹣3﹣12,移项,得:2x﹣9x≥﹣3﹣12+4,合并同类项,得:﹣7x≥﹣11,系数化1,得:x≤,不等式的解集表示在数轴上为:21.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有500人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是54度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.【分析】(1)利用C的人数÷所占百分比可得被调查的学生总数;(2)利用总人数减去其它各项的人数=A的人数,再补图即可;(3)计算出B所占百分比,再用360°×B所占百分比可得答案;(4)首先计算出样本中喜欢健美操的学生所占百分比,再利用样本估计总体的方法计算即可.解:(1)140÷28%=500(人),故答案为:500;(2)A的人数:500﹣75﹣140﹣245=40(人);补全条形图如图:(3)75÷500×100%=15%,360°×15%=54°,故答案为:54;(4)245÷500×100%=49%,3600×49%=1764(人).22.如图,已知∠A=∠C,AB∥DC,试说明∠E=∠F的理由.【分析】根据平行线的性质定理和判定定理,即可解答.解:因为AB∥CD(已知),所以∠C=∠ABF(两直线平行,同位角相等).因为∠A=∠C(已知),所以∠A=∠ABF(等量代换).所以DA∥BC(内错角相等,两直线平行),所以∠E=∠F(两直线平行,内错角相等).23.如图所示,△ABC在方格中,方格纸中每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A1B1C1.(1)在图中画出△A1B1C1;(2)点A1,B1,C1的坐标分别为(0,4)、(﹣1,1)、(3,1);(3)若直线BC上有一点P,使△PAC的面积是△ABC面积的2倍,求出P点的坐标.【分析】(1)首先确定A、B、C三点向上平移3个单位长度,再向右平移2个单位长度后对应点的位置,再连接即可;(2)根据平面直角坐标写出坐标即可;(3)设P(m,﹣2),则PC=|1﹣m|,再根据三角形的面积公式得△ABC面积为×4×3=6,S△PBC=×PC×3=12,解得|1﹣m|=8,进而可得m的值,写出P的坐标即可.【解答】】解:(1)如图所示:(2)由图可得:A1(0,4)、B1(﹣1,1);C1(3,1),故答案为:(0,4)、(﹣1,1)、(3,1);(3)设P(m,﹣2),则PC=|1﹣m|,∵△ABC面积为×4×3=6,∴S△PBC=×PC×3=12,解得|1﹣m|=8,∴m=﹣7或9,∴P点的坐标为(﹣7,﹣2)或(9,﹣2).24.小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的,写出题中被墨水污染的条件和第一个方程,并求解这道应用题.应用题:小东在某商场看中的一台电视和一台空调在“五一”前共需要5500元,由于该商场开展“五一”促销活动,同样的电视打八折销售,于是小东在促销期间购买了同样的电视一台,空调两台,共花费7200元,求“五一”前同样的电视和空调每台各多少元?解:设“五一”前同样的电视每台x元,空调每台y元,根据题意,得.被墨水污染的条件是:同样的空调每台降价400元.被墨水污染的第一个方程是:x+y=5500.【分析】根据方程②可找出(y﹣400)表示每台空调在“五一”促销活动中的售价,进而可得出被墨水污染的条件为同样的空调每台降价400元,根据小东在某商场看中的一台电视和一台空调在“五一”前共需要5500元,可得出x+y=5500.解:∵设“五一”前同样的电视每台x元,空调每台y元,方程②为0.8x+2(y﹣400)=7200,∴(y﹣400)表示每台空调在“五一”促销活动中的售价,∴被墨水污染的条件是:同样的空调每台降价400元.∵小东在某商场看中的一台电视和一台空调在“五一”前共需要5500元,∴被墨水污染的第一个方程是:x+y=5500.故答案为:同样的空调每台降价400元;x+y=5500.25.已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.(1)若∠O=40°,求∠ECF的度数;(2)求证:CG平分∠OCD;(3)当∠O为多少度时,CD平分∠OCF,并说明理由.【分析】(1)根据平行线的性质,得到∠ACE=40°,根据平角的定义以及角平分线的定义,即可得到∠ACF=70°,进而得出∠ECF的度数;(2)根据∠DCG+∠DCF=90°,∠GCO+∠FCA=90°,以及∠ACF=∠DCF,运用等角的余角相等,即可得到∠GCO=∠GCD,即CG平分∠OCD;(3)当∠O=60°时,根据平行线的性质,得出∠DCO=∠O=60°,再根据角平分线的定义,即可得到∠DCF=60°,据此可得∠DCO=∠DCF.解:(1)∵DE∥OB,∴∠O=∠ACE,(两直线平行,同位角相等)∵∠O=40°,∴∠ACE=40°,∵∠ACD+∠ACE=180°,(平角定义)∴∠ACD=140°,又∵CF平分∠ACD,∴∠ACF=70°,(角平分线定义)∴∠ECF=70°+40°=110°;(2)证明:∵CG⊥CF,∴∠FCG=90°,∴∠DCG+∠DCF=90°,又∵∠AOC=180°,(平角定义)∴∠GCO+∠FCA=90°,∵∠ACF=∠DCF,∴∠GCO=∠GCD,(等角的余角相等)即CG平分∠OCD.(3)结论:当∠O=60°时,CD平分∠OCF.当∠O=60°时,∵DE∥OB,∴∠DCO=∠O=60°.∴∠ACD=120°.又∵CF平分∠ACD,∴∠DCF=60°,∴∠DCO=∠DCF,即CD平分∠OCF.26.(列方程(组)及不等式解应用题)水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用(注:户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【分析】(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,然后根据等量关系即可列出方程求出答案.(2)设该用户7月份可用水t立方米(t>10),根据题意列出不等式即可求出答案.解:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元解得:答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元.(2)设该用户7月份可用水t立方米(t>10)10×2.45+(t﹣10)×4.9+t≤64解得:t≤15答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米。
【精品】人教版数学七年级下学期《期末检测试题》有答案解析
![【精品】人教版数学七年级下学期《期末检测试题》有答案解析](https://img.taocdn.com/s3/m/e2b710aecf84b9d529ea7a91.png)
2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、选择题:(共10小题,满分30分,每小题3分)1. 如图,若A B ∥C D ,则∠A 、∠E 、∠D 之间的是( )A . ∠A +∠E +∠D =180°B . ∠A +∠E -∠D =180°C . ∠A -∠E +∠D =180° D . ∠A +∠E +∠D =270°2. 在平面内,将一个直角三角板按如图所示摆放在一组平行线上,若155∠=︒,则2∠的度数是()A . 35°B . 40°C . 45°D . 50°3. 若x 3x x 则x 的值为( )A . 1B . 0C . 0或1D . 0或±1 4. 若m 、n 满足()21150m n --m n +的平方根是( )A . 4±B . 2±C . 4D . 25. 将点()2,24P m m ++向右平移1个单位长度得到点Q ,且点Q 在y 轴上,那么点Q 坐标是( )A . ()2,0-B . ()1,0C . ()0,2-D . ()0,1 6. 若方程组23529x y ax ay -=⎧⎨-=⎩的解x 与y 互为相反数,则a 的值等于( ) A . 1 B . 2 C . 3 D . 47. 若2334a b x y +与634a b x y -的和是单项式,则a b +=( ) A . 3- B . 0 C . 3 D . 68. 如图所示为一个不等式组的解集,则对应的不等式组是( )A . 42x x ≥-⎧⎨<⎩B . 42x x <-⎧⎨<⎩C . 42x x >-⎧⎨≥⎩D . 42x x ≤-⎧⎨>⎩ 9. 不等式组104x x x +≥⎧⎨->⎩的所有整数解的和是( ) A . 0 B . 1 C . 2 D . 310. 某县举办老、中、青三个年龄段五公里竞走活动,其人数比为2:3:5,如图所示的扇形统计图表示 上述分布情况,已知老人有160人,则下列说法不正确的是( )A . 老年所占区域的圆心角是72︒B . 参加活动的总人数是800人C . 中年人比老年人多80D . 老年人比青年人少160人 二、填空题(共5小题,满分15分,每小题3分)11. 已知OA OC ⊥,过点O 作射线OB ,且30AOB ∠=︒,则BOC ∠的度数为__________.12. 若x 、y ()21310x y x +--=,则25y x -的平方根是__________. 13. 点P 在第四象限,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是_______. 14. 333的值为__________. 15. 要使342x -的值不小于35x +,则满足条件的x 最小整数是__________. 三、解答题 (共8小题,满分75分)16. (1)计算:()220191423--(2)解方程组425x y x y -=⎧⎨+=⎩17. 求满足不等式组()328 131322x xx x⎧--≤⎪⎨--⎪⎩<的所有整数解.18. (每个学生必选且只能选一门课程)班主任想要了解全班同学对哪门课程感兴趣,就在全班进行调查,将获得的数据整理绘制成如图下所示两幅不完整的统计图.学习感兴趣的课程情况条形统计图:学习感兴趣的课程情况扇形统计图:根据统计图信息,解答下列问题.(1)全班共有________名学生,m值是________(2)据以上信息,补全条形统计图.(3)扇形统计图中,“数学”所在扇形的圆心角是________度.19. 如图,已知//DC FP,12∠=∠,30FED∠=︒,80AG F∠=︒,FH平分EFG(1)说明://DC AB;(2)求PFH∠的度数.20. 如图,BED B D∠=∠+∠,猜想AB与CD有怎样位置关系,并说明理由.21. 甲、乙二人在一环形场地上从A 点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程(组)求解)22. 小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?23. 如图1,将一副直角三角板放在同一条直线A B 上,其中∠ONM=30°,∠OC D =45°.(1)观察猜想:将图1中的三角尺OCD 沿AB 的方向平移至图2的位置,使得O 与点N 重合,CD 与MN 相交于点E ,则CEN ∠=________;(2)操作探究:将图1中三角尺OCD 绕点O 按顺时针方向旋转,使一边OD 在MON ∠的内部,如图3,且OD 恰好平分MON ∠,CD 与MN 相交于点E ,求CEN ∠的度数;(3)深化拓展:将图1的三角尺OCD 绕点O 按顺时针方向旋转一周,在旋转的过程中,当边OC 旋转________度时,边CD 恰好与边MN 平行.(直接写出结果)参考答案一、选择题:(共10小题,满分30分,每小题3分)1. 如图,若A B ∥C D ,则∠A 、∠E、∠D 之间的是( )A . ∠A +∠E+∠D =180°B . ∠A +∠E-∠D =180°C . ∠A -∠E+∠D =180° D . ∠A +∠E+∠D =270°【答案】B【解析】【分析】作EF∥A B ,则EF∥C D ∥A B ,根据平行线的性质即可求解.【详解】作EF∥A B ,则EF∥C D ∥A B ,∴∠A +∠A EF=180°,∠D =∠D EF,又∠A ED =∠A EF+∠D EF,故∠A +∠E-∠D =180°选B .【点睛】此题主要考查平行线的性质,解题的关键是熟知平行线的性质.∠=︒,则2∠的度数是() 2. 在平面内,将一个直角三角板按如图所示摆放在一组平行线上,若155A . 35°B . 40°C . 45°D . 50°【答案】A【解析】【分析】直接利用平行线的性质结合已知直角得出∠2的度数.【详解】解:如图由题意可得:∠1=∠3=55°∠2=∠4=90°-55°=35°故选:A【点睛】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.3. 若x3x x则x的值为( )A . 1B . 0C . 0或1D . 0或±1【答案】C【解析】【分析】根据平方根和立方根性质判断即可.3x x且x≥0,∴x=0或1.【点睛】此题主要考查了平方根和立方根,掌握它们的性质是解题的关键.4. 若m、n满足()21150+的平方根是( )--m nm nA . 4±B . 2±C . 4D . 2【答案】B【解析】【分析】根据非负数的性质列式求出m、n,根据平方根的概念计算即可.【详解】由题意得,m-1=0,n-15=0,解得,m=1,n=15,=4,4的平方根的±2,故选B .【点睛】考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键. 5. 将点()2,24P m m ++向右平移1个单位长度得到点Q ,且点Q 在y 轴上,那么点Q 的坐标是( )A . ()2,0-B . ()1,0C . ()0,2-D . ()0,1 【答案】C【解析】【分析】将点P (m+2,2m+4)向右平移1个单位长度后点Q 的坐标为(m+3,2m+4),根据点Q 在y 轴上知m+3=0,据此知m=-3,再代入即可得.【详解】解:将点P (m+2,2m+4)向右平移1个单位长度后点Q 的坐标为(m+3,2m+4),∵点Q (m+3,2m+4)在y 轴上,∴m+3=0,即m=-3,则点Q 的坐标为(0,-2),故答案为(0,-2).【点睛】此题主要考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.掌握点的坐标的变化规律是解题的关键.同时考查了y 轴上的点横坐标为0的特征. 6. 若方程组23529x y ax ay -=⎧⎨-=⎩的解x 与y 互为相反数,则a 的值等于( ) A . 1B . 2C . 3D . 4【答案】C【解析】【分析】根据x 与y 互为相反数,得到x+y=0,与方程组第一个方程联立求出x 与y 的值,代入第二个方程求出A 的值即可. 【详解】根据题意得:2350x y x y -=⎧⎨+=⎩①② ①+②×3得:5x=5,解得:x=1,把x=1代入②得:y=-1,把x=1,y=-1代入29ax ay -=得:A +2A =9,解得:A =3,故选C .【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.7. 若2334a b x y +与634a b x y -的和是单项式,则a b +=( ) A . 3-B . 0C . 3D . 6 【答案】C【解析】【分析】根据同类项的定义可得方程组263a b a b +=⎧⎨-=⎩,解方程组即可求得A 、B 的值,即可求得A +B 的值. 【详解】∵2334a b x y +与643a b x y -是同类项, ∴263a b a b +=⎧⎨-=⎩, 解得30a b =⎧⎨=⎩, ∴A +B =3.故选C .【点睛】本题考查了同类项的定义及二元一次方程组的解法,根据同类项的定义得到方程组263a b a b +=⎧⎨-=⎩是解决问题的关键.8. 如图所示为一个不等式组的解集,则对应的不等式组是( )A . 42x x ≥-⎧⎨<⎩B . 42x x <-⎧⎨<⎩C . 42x x >-⎧⎨≥⎩D . 42x x ≤-⎧⎨>⎩【答案】A【解析】【分析】根据数轴上表示的解集确定出所求即可.【详解】解:数轴上表示的解集对应的不等式组是42xx≥-⎧⎨<⎩,故选A .【点睛】此题考查了在数轴上表示不等式的解集,弄清不等式组表示解集的方法是解本题的关键.9. 不等式组104xx x+≥⎧⎨->⎩的所有整数解的和是( )A . 0B . 1C . 2D . 3【答案】A【解析】【分析】分别求出各不等式的解集,再求出其公共解集即为此不等式组的解集,在此解集范围内得出符合条件的x 的整数值即可.【详解】解:104xx x+≥⎧⎨->⎩①②,解不等式①得x≥-1.解不等式②得x<2,所以原不等式组的解集为-1≤x<2,所以原不等式组的整数解为:-1,0,1,则所有整数解的和=-1+0+1=0.【点睛】本题考查的是解一元一次不等式组,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).10. 某县举办老、中、青三个年龄段五公里竞走活动,其人数比为2:3:5,如图所示的扇形统计图表示上述分布情况,已知老人有160人,则下列说法不正确的是( )A . 老年所占区域的圆心角是72︒B . 参加活动的总人数是800人C . 中年人比老年人多80D . 老年人比青年人少160人【答案】D【解析】【分析】 因为某县举办老、中、青三个年龄段五公里竞走活动,其人数比为2:5:3,即老年的人数是总人数的212355=++,利用来老年为160人,即可求出三个地区的总人数,进而求出青年的人数,分别判断即可. 【详解】解:A 、老年的人数是总人数的212355=++,老年所占区域的圆心角是1360725︒︒⨯=,故此选项正确,不符合题意;B 、参加活动的总人数是11608005÷=,故此选项正确,不符合题意; C 、中年人数是380024010⨯=,老年人数是160,中年人比老年人多80,故此选项正确,不符合题意; D 、青年人数是480040010⨯=,老年人比青年人少400-160=240人,故此选项错误,符合题意. 故选D .【点睛】此题主要考查了扇形图的应用,先求出总体的人数,再分别乘以各部分所占的比例,即可求出各部分的具体人数是解题关键.二、填空题(共5小题,满分15分,每小题3分)11. 已知OA OC ⊥,过点O 作射线OB ,且30AOB ∠=︒,则BOC ∠的度数为__________.【答案】60︒或120︒【解析】【分析】根据角的和差,分两种情况讨论可得答案.【详解】OA ⊥OC ,∴∠A OC =90°.分两种情况讨论:①OB 在∠A OC 的外部,如图1,∠B OC =A OC +∠A OB =30°+90°=120°;②OB 在∠A OC 的内部,如图2,∠B OC =∠A OC ﹣∠A OB =90°﹣30°=60°.故答案为60〫或120〫.【点睛】本题考查了垂线,利用角的和差是解题的关键,又利用了垂线的定义.12. 若x 、y ()21310x y x +--=,则25y x -的平方根是__________. 【答案】3±【解析】【分析】先由x 、y 2x 1(y 3x 1)0+--=得出x+1=0,y-3x-1=0,从而求出x 、y 的值,然后再代入y 2-5x 求出平方根即可得出答案.【详解】解:∵x 、y 2x 1(y 3x 1)0+--=,∴x+1=0,y-3x-1=0,∴x=-1,y=2,则y 2-5x=9,y 2-5x 的平方根是±3.【点睛】本题考查了二次根式,完全平方的性质,此题比较简单,解题的关键是求出x 、y 的值,再代值计算.13. 点P 在第四象限,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是_______.【答案】(2,4)-【解析】【分析】设点P 的坐标为(,)a b ,首先根据点到x,y 轴的距离求出,a b ,然后根据第四象限内点的坐标的特点求出A ,B 的值,进而可确定P 点的坐标.【详解】设点P 的坐标为(,)a b ,∵点P 距离x 轴4个单位长度,距离y 轴2个单位长度,∴2,4==a b , ∴2,4a b =±=± .∵点P 在第四象限,∴0,0a b >< ,∴2,4a b ==-,∴点P 的坐标为(2,4)-.故答案为:(2,4)-.【点睛】本题主要考查点到x,y 轴的距离及每个象限内点的坐标的特点,掌握每个象限内点的坐标的特点是解题的关键.14. 333⎛+ ⎪⎝⎭的值为__________. 【答案】4【解析】【分析】先去括号相乘然后再相加即可.【详解】解:333⎛+ ⎪⎝⎭=3+1=4.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.15. 要使342x -的值不小于35x +,则满足条件的x 最小整数是__________. 【答案】7【解析】【分析】根据代数式342x -的值不小于3x+5的值,即可得出关于x 的一元一次不等式,解不等式即可得出x 的取值范围,取期内最小的整数,此题得解.【详解】解:由已知得:342x -≥3x+5,解得:13x2,13672<<,∴x的最小整数为7.故答案为7.【点睛】本题考查了一元一次不等式的整数解,解题的关键是根据代数式342x-的值不小于3x+5的值找出关于x的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,熟练掌握一元一次不等式的解法是关键.三、解答题 (共8小题,满分75分)16. (1)计算:201912-(2)解方程组425x yx y-=⎧⎨+=⎩【答案】(1)1(2)31xy=⎧⎨=-⎩.【解析】【分析】(1)根据乘方的意义,二次根式的性质,绝对值的性质,可得答案;(2)根据代入消元法,可得方程组的解.【详解】解:(1)原式=-1+4-((2)425 x yx y-=⎧⎨+=⎩①②②代入①得x+2x=9,解得x=3,把x=3代入②得y=-1.故方程组的解31 xy=⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组和实数的混合运算,(2)中利用代入消元法是解题关键.17. 求满足不等式组()328131322x xx x⎧--≤⎪⎨--⎪⎩<的所有整数解.【答案】不等式组的解集:-1≤x<2,整数解为:-1,0,1.【解析】分析:先求出不等式组的解集,然后在解集中找出所有的整数即可.详解:解不等式x-3(x-2)≤8,得:x≥-1,解不等式12x-1<3-32x,得:x<2,则不等式组的解集为-1≤x<2,所以不等式组的整数解为-1、0、1.点睛:本题主要考查了一元一次不等式组的解法,难度一般,关键是会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.18. (每个学生必选且只能选一门课程)班主任想要了解全班同学对哪门课程感兴趣,就在全班进行调查,将获得的数据整理绘制成如图下所示两幅不完整的统计图.学习感兴趣的课程情况条形统计图:学习感兴趣的课程情况扇形统计图:根据统计图信息,解答下列问题.(1)全班共有________名学生,m值是________(2)据以上信息,补全条形统计图.(3)扇形统计图中,“数学”所在扇形的圆心角是________度.【答案】(1)50,18;(2)见解析;(3)108.【解析】【分析】(1)根据统计图化学对应数据和百分比可以求得这次调查的学生数,进而求得m的值;(2)根据(1)中的结果和条形统计图中的数据可以求得选择数学的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得“数学”所对应的圆心角度数.【详解】解:(1)在这次调查中一共抽取了:10÷20%=50(名)学生, m%=9÷50×100%=18%,故答案为50,18;(2)选择数学的有;50-9-5-8-10-3=15(名),补全的条形统计图如右图所示:(3)扇形统计图中,“数学”所对应的圆心角度数是:1536010850︒︒⨯=, 故答案为108.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.19. 如图,已知//DC FP ,12∠=∠,30FED ∠=︒,80AG F ∠=︒,FH 平分EFG(1)说明://DC AB ;(2)求PFH ∠的度数.【答案】(1)见解析;(2)25PFH ∠=︒.【解析】【分析】(1)由D C ∥FP 知∠3=∠2=∠1,可得D C ∥A B ;(2)由(1)利用平行线的判定得到A B ∥PF ∥C D ,根据平行线的性质得到∠A GF=∠GFP ,∠D EF=∠EFP ,然后利用已知条件即可求出∠PFH 的度数.【详解】解:(1)∵D C ∥FP ,∴∠3=∠2,又∵∠1=∠2,∴∠3=∠1,∴D C ∥A B ;(2)∵D C ∥FP ,D C ∥A B ,∠D EF=30°,∴∠D EF=∠EFP=30°,A B ∥FP ,又∵∠A GF=80°,∴∠A GF=∠GFP=80°,∴∠GFE=∠GFP+∠EFP=80°+30°=110°,又∵FH 平分∠EFG , 1GFH GFE 552︒∴∠=∠=, ∴∠PFH=∠GFP-∠GFH=80°-55°=25°.【点睛】此题主要考查了平行线的性质与判定,首先利用同位角相等两直线平行证明直线平行,然后利用平行线的性质得到角的关系解决问题.20. 如图,BED B D ∠=∠+∠,猜想AB 与CD 有怎样的位置关系,并说明理由.【答案】//AB CD ,见解析.【解析】【分析】延长B E 交C D 于F ,通过三角形外角的性质可证明∠B =∠EFD ,则能证明A B ∥C D .【详解】解:延长B E 交C D 于F .∵∠B ED =∠B +∠D ,∠B ED =∠EFD +∠D ,∴∠B =∠EFD ,∴A B ∥C D .【点睛】本题主要考查三角形外角的性质及两直线平行的判定,可围绕截线找同位角、内错角和同旁内角. 21. 甲、乙二人在一环形场地上从A 点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程(组)求解)【答案】乙的速度为150米/分,甲的速度为375米/分,环形场地的周长为900米.【解析】【分析】由“4分钟后两人首次相遇”,可知跑步4分钟后,甲比乙多跑一圈,即可得到相等关系;设乙的速度为x 米/分,则甲的速度是2.5x 米/分,根据等量关系列出方程进行求解,即可得到乙和甲的速度;然后由乙跑了4分钟之后还差300米便可跑完一整圈,即可求出场地的周长.【详解】设乙的速度为x m/min ,则甲的速度为2.5x m/min.由题意,得2.5x ×4-4x =4x +300.解得x =150.所以2.5x =2.5×150=375,4x +300=4×150+300=900.答:乙的速度为150米/分,甲的速度为375米/分,环形场地的周长为900米.22. 小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?【答案】小明至少答对18道题才能获得奖品.【解析】 试题分析:设小明答对x 道题,根据“共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品”,列出不等式,解不等式即可. 试题解析: 设小明答对x 道题,根据题意得, 6x-2(25-x)>90解这个不等式得,,∵x 为非负整数∴x 至少为18 答:小明至少答对18道题才能获得奖品.考点:一元一次不等式的应用.23. 如图1,将一副直角三角板放在同一条直线A B 上,其中∠ONM=30°,∠OC D =45°.(1)观察猜想:将图1中的三角尺OCD 沿AB 的方向平移至图2的位置,使得O 与点N 重合,CD 与MN 相交于点E ,则CEN ∠=________;(2)操作探究:将图1中的三角尺OCD 绕点O 按顺时针方向旋转,使一边OD 在MON ∠的内部,如图3,且OD 恰好平分MON ∠,CD 与MN 相交于点E ,求CEN ∠的度数;(3)深化拓展:将图1的三角尺OCD 绕点O 按顺时针方向旋转一周,在旋转的过程中,当边OC 旋转________度时,边CD 恰好与边MN 平行.(直接写出结果)【答案】(1)105°;(2)150°;(3)75°或255°【解析】【分析】(1)根据三角形的内角和定理可得∠C EN=180°-∠D C N-∠MNO ,代入数据计算即可得解; (2)根据角平分线的定义求出∠D ON=45°,利用内错角相等两直线平行求出C D ∥A B ,再根据两直线平行,同旁内角互补求解即可;(3)当C D 在A B 上方时,C D ∥MN ,设OM 与C D 相交于F ,根据两直线平行,同位角相等可得∠OFD =∠M=60°,然后根据三角形的内角和定理列式求出∠MOD ,即可得解;当C D 在A B 的下方时,C D ∥MN ,设直线OM 与C D 相交于F ,根据两直线平行,内错角相等可得∠D FO=∠M=60°,然后利用三角形的内角和定理求出∠D OF ,再求出旋转角即可.【详解】解:(1)在△C EN 中,∠C EN=180°-∠D C N-∠MNO =180°-45°-30°=105°;(2)∵OD 平分∠MON,∴∠D ON=12∠MPN=12×90°=45°,∴∠D ON=∠D =45°,∴C D ∥A B ,∴∠C EN=180°﹣∠MNO=180°﹣30°=150°;(3)如图1,C D 在A B 上方时,设OM与C D 相交于F,∵C D ∥MN,∴∠OFD =∠M=60°,在△OD F中,∠MOD =180°-∠D -∠OFD ,=180°-45°-60°,=75°,当C D 在A B 的下方时,设直线OM与C D 相交于F,∵C D ∥MN,∴∠D FO=∠M=60°,在△D OF中,∠D OF=180°-∠D -∠D FO=180°-45°-60°=75°,∴旋转角为75°+180°=255°,综上所述,当边OC 旋转75°或255°时,边C D 恰好与边MN平行.故答案为:75或255.【点睛】本题考查了旋转的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,熟记各性质并熟悉三角板的度数特点是解题的关键.。
河北省石家庄市赵县2021-2022学年七年级下学期期末数学试题
![河北省石家庄市赵县2021-2022学年七年级下学期期末数学试题](https://img.taocdn.com/s3/m/9acf5cc64793daef5ef7ba0d4a7302768e996fcb.png)
河北省石家庄市赵县2021-2022学年七年级下学期期末数学试题学校:___________姓名:___________班级:___________考号:___________A .(0,2π)B .(2π,0)C .(π,0)D .(0,π) 7.以下问题,不适合用全面调查的是( )A .旅客上飞机前的安检B .学校招聘教师,对应聘人员的面试C .了解全校学生的课外读书时间D .了解全国中学生的用眼卫生情况 8.如图,点O 为直线AB 上一点,OC ⊥OD .如果∠1=35°,那么∠2的度数是( )A .35°B .45°C .55°D .65° 9.某整数的两个不同平方根是21a -与2a -+,则这个数是( )A .1B .3C .-3D .910.在平面直角坐标系内有一点P ,已知点P 到x 轴的距离为2,到y 轴的距离为4,则点P 的坐标不可能是( )A .(-2,-4)B .(4,2)C .(-4,2)D .(4,-2) 11.某校学生来自甲、乙、丙三个地区,其人数比为3:4:3,如图所示的扇形图表示上述分布情况.若来自甲地区有180人,则该校学生总数为( )A .720人B .450人C .600人D .360人 12.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a 、b 、c 对应的密文a+1,2b+4,3c+9,例如明文1,2,3,对应的密文为2,8,18,如果接收方收到密文7,18,15,则解密得到的明文为( )A .6,5,2B .6,5,7C .6,7,2D .6,7,613.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( )A .a <-2B .a ≤-2C .a >-2D .a ≥-2 14.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .8374y x y x -=⎧⎨-=⎩B .8374y x x y -=⎧⎨-=⎩C .8374x y y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩ 15.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( )A .1个B .2个C .3个D .4个 16.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点'(1,1)P y x -++叫做点P 伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1234,,,,,,n A A A A A L L ,若点1A 的坐标为(3,1),则点2020A 的坐标为( ) A .(0,4) B .(3,1)- C .(0,2)- D .(3,1)三、解答题48②若25,40A C =︒=︒∠∠,则AEC ∠=.③猜想图1中EAB ∠、ECD ∠、AEC ∠的关系,并证明你的结论.(2)拓展应用:如图2,//AB CD ,线段MN 把ABDC 这个封闭区域分为I 、II 两部分(不含边界),点E 是位于这两个区域内的任意一点,请直接写出EMB ∠、END ∠、MEN ∠的关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省最新七年级(下)期末数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.用分数表示4﹣2的结果是()A.B.C.D.2.计算x2y3÷(xy)2的结果是()A.xy B.xC.yD.xy23.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣54.已知是二元一次方程2x+my=1的一个解,则m的值为()A.3 B.﹣5 C.﹣3 D.55.不等式2x﹣1≤4的最大整数解是()A.0 B.1 C.D.26.下列命题是假命题的是()A.同旁内角互补B.垂直于同一条直线的两条直线平行C.对顶角相等D.同角的余角相等7.把2x2y﹣8xy+8y分解因式,正确的是()A.2(x2y﹣4xy+4y)B.2y(x2﹣4x+4)C.2y(x﹣2)2D.2y(x+2)28.如图,不能判断l1∥l2的条件是()A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠39.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有()A.4个B.3个C.2个D.1个10.如图,两个正方形边长分别为a、b,如果a+b=ab=6,则阴影部分的面积为()A.6 B.9 C.12 D.18二、填空题(本大题共8小题,每小题3分,共24分)11.计算:(3x﹣1)(x﹣2)=______.12.若a+b=﹣2,a﹣b=4,则a2﹣b2=______.13.已知:x a=4,x b=2,则x a+b=______.14.一个n边形的内角和是1260°,那么n=______.15.若正有理数m使得是一个完全平方式,则m=______.16.如图,直线a∥b,把三角板的直角顶点放在直线b上,若∠1=60°,则∠2的度数为______.17.如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE,若∠A+∠B=105°,则∠FEC=______°.18.如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE中点,且S△ABC=4平方厘米,则S△BEF的值为______.三、解答题(本大题共10小题,共76分.解答时应写出必要的计算或说明过程)19.解方程组.20.先化简,再求值:(x+3)2+(x+2)(x﹣2)﹣2x2,其中x=﹣1.21.解不等式组,并把它的解集在数轴上表示出来.22.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.23.如图,在△ABC中,点E在BC上,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.24.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.(1)请在图中画出平移后的′B′C′;(2)△ABC的面积为______;(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)25.已知3x﹣2y=6.(1)把方程写成用含x的代数式表示y的形式;(2)若﹣1<y≤3,求x的取值范围.(3)若﹣1<x≤3,求y的最大值.26.(10分)(2016春•张家港市期末)如图,在△ABC中,∠BAC的平分线交BC于点D.(1)如图1,若∠B=62°,∠C=38°,AE⊥BC于点E,求∠EAD的度数;(2)如图2,若点F是AD延长线上的一点,∠BAF、∠BDF的平分线交于点G,∠B=x°,∠C=y°(x>y),求∠G的度数.27.(10分)(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.28.(10分)(2016春•张家港市期末)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2016年5月1日起对居民生活用电试行新的“阶梯电价”收费,具体收费标准如表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分 a超过150千瓦时,但不超过300千瓦时的部分 b超过300千瓦时的部分a+0.52016年5月份,该市居民甲用电200千瓦时,交费170元;居民乙用电400千瓦时,交费400元.(1)求上表中a、b的值:(2)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价每千瓦时不超过0.85元?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.用分数表示4﹣2的结果是()A.B.C.D.【考点】负整数指数幂.【分析】根据负整数指数幂的运算方法:a﹣p=,求出用分数表示4﹣2的结果是多少即可.【解答】解:∵4﹣2==,∴用分数表示4﹣2的结果是.故选:D.【点评】此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.2.计算x2y3÷(xy)2的结果是()A.xy B.xC.yD.xy2【考点】整式的除法.【分析】单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.根据法则即可求出结果.【解答】解:x2y3÷(xy)2,=x2y3÷x2y2,=x2﹣2y3﹣2,=y.故选C.【点评】本题考查单项式除以单项式运算.(1)单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式;(2)单项式除法的实质是有理数除法和同底数幂除法的组合.3.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.已知是二元一次方程2x+my=1的一个解,则m的值为()A.3 B.﹣5 C.﹣3 D.5【考点】二元一次方程的解.【分析】将代入2x+my=1,即可转化为关于m的一元一次方程,解答即可.【解答】解:将代入2x+my=1,得4﹣m=1,解得m=3.故选:A.【点评】此题考查了二元一次方程的解,对方程解的理解,直接代入方程求值即可.5.不等式2x﹣1≤4的最大整数解是()A.0 B.1 C.D.2【考点】一元一次不等式的整数解.【分析】解不等式求得x的范围,再该范围内可得其最大整数解.【解答】解:移项、合并,得:2x≤5,系数化为1,得:x≤2.5,∴不等式的最大整数解为2,故选:D.【点评】本题主要考查解不等式的能力,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的整数解.可以借助数轴进行数形结合,得到需要的值,进而非常容易的解决问题.6.下列命题是假命题的是()A.同旁内角互补B.垂直于同一条直线的两条直线平行C.对顶角相等D.同角的余角相等【考点】命题与定理.【分析】利用平行线的性质、对顶角的性质及余角的定义分别判断后即可确定正确的选项.【解答】解:A、同旁内角互补,错误,是假命题,符合题意;B、垂直于同一直线的两条直线平行,正确,是真命题,不符合题意;C、对顶角相等,正确,是真命题,不符合题意;D、同角的余角相等,正确,是真命题,不符合题意;故选A.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及余角的定义等知识,难度不大.7.把2x2y﹣8xy+8y分解因式,正确的是()A.2(x2y﹣4xy+4y)B.2y(x2﹣4x+4)C.2y(x﹣2)2D.2y(x+2)2【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式2Y,进而利用完全平方公式分解因式即可.【解答】解:2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2.故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用公式是解题关键.8.如图,不能判断l1∥l2的条件是()A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠3【考点】平行线的判定.【分析】根据题意,结合图形对选项一一分析,排除错误答案.【解答】解:A、∠1=∠3正确,内错角相等两直线平行;B、∠2+∠4=180°正确,同旁内角互补两直线平行;C、∠4=∠5正确,同位角相等两直线平行;D、∠2=∠3错误,它们不是同位角、内错角、同旁内角,故不能推断两直线平行.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.9.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有()A.4个B.3个C.2个D.1个【考点】平行线的性质;余角和补角.【分析】先根据∠CED=90°,EF⊥CD可得出∠EDF+∠DEF=90°,∠EDF+∠DCE=90°,再由平行线的性质可知∠DCE=∠AEC,故∠AEC+∠EDF=90°,由此可得出结论.【解答】解:∵∠CED=90°,EF⊥CD,∴∠EDF+∠DEF=90°,∠EDF+∠DCE=90°.∵AB∥CD,∴∠DCE=∠AEC,∴∠AEC+∠EDF=90°.故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.10.如图,两个正方形边长分别为a、b,如果a+b=ab=6,则阴影部分的面积为()A.6 B.9 C.12 D.18【考点】整式的混合运算.【分析】阴影部分面积等于两个正方形面积之和减去两个直角三角形面积,求出即可.【解答】解:∵a+b=ab=6,∴S=a2+b2﹣a2﹣b(a+b)=(a2+b2﹣ab)=[(a+b)2﹣3ab]=×(36﹣18)=9,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11.计算:(3x﹣1)(x﹣2)= 3x2﹣7x+2 .【考点】多项式乘多项式.【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=3x2﹣6x﹣x+2=3x2﹣7x+2,故答案为:3x2﹣7x+2【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.12.若a+b=﹣2,a﹣b=4,则a2﹣b2= ﹣8 .【考点】因式分解-运用公式法.【分析】原式利用平方差公式分解后,将各自的值代入计算即可求出值.【解答】解:∵a+b=﹣2,a﹣b=4,∴a2﹣b2=(a+b)(a﹣b)=﹣8.故答案为:﹣8.【点评】此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.13.已知:x a=4,x b=2,则x a+b= 8 .【考点】同底数幂的乘法.【分析】原式逆用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵x a=4,x b=2,∴x a+b=x a•x b=8.故答案为:8.【点评】此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.14.一个n边形的内角和是1260°,那么n= 9 .【考点】多边形内角与外角.【分析】根据多边形的内角和公式:(n﹣2).180 (n≥3)且n为整数)可得方程:(n﹣2)×180=1260,再解方程即可.【解答】解:由题意得:(n﹣2)×180=1260,解得:n=9,故答案为:9.【点评】此题主要考查了多边形的内角和公式,关键是掌握内角和公式.15.若正有理数m使得是一个完全平方式,则m= .【考点】完全平方式.【分析】根据完全平方式的结构解答即可【解答】解:∵是一个完全平方式,且m为正数,∴m=2×=.故答案为:.【点评】本题是完全平方公式的应用,掌握完全平方式的结构是解题的关键.16.如图,直线a∥b,把三角板的直角顶点放在直线b上,若∠1=60°,则∠2的度数为30°.【考点】平行线的性质.【分析】先由直线a∥b,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【解答】解:已知直线a∥b,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°﹣60°﹣90°=30°.故答案为:30°.【点评】此题考查了学生对平行线性质的应用,关键是由平行线性质得出同位角相等求出∠3.17.如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE,若∠A+∠B=105°,则∠FEC= 30 °.【考点】平行线的性质.【分析】根据三角形的内角和得到∠C=75°,根据平行线的性质得到∠AED=∠C=75°,由折叠的想知道的∠DEF=∠AED=75°,于是得到结论.【解答】解:∵∠A+∠B=105°,∴∠C=75°,∵BC∥DE,∴∠AED=∠C=75°,∵把△ABC沿线段DE折叠,使点A落在点F处,∴∠DEF=∠AED=75°,∴∠FEC=180°﹣∠AED﹣∠DEF=30°,故答案为:30.【点评】此题考查了折叠的性质以及平行线的性质.此题比较简单,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.18.如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE中点,且S△ABC=4平方厘米,则S△BEF的值为1cm2.【考点】三角形的面积.【分析】根据等底等高的三角形的面积相等可知,三角形的中线把三角形分成面积相等的两个三角形,然后求解即可.【解答】解:∵D是BC的中点,∴S△ABD=S△ACD=S△ABC=×4=2cm2,∵E是AD的中点,∴S△BDE=S△CDE=×2=1cm2,∴S△BEF=(S△BDE+S△CDE)=×(1+1)=1cm2.故答案为:1cm2.【点评】本题考查了三角形的面积,熟记三角形的中线把三角形分成面积相等的两个三角形是解题的关键.三、解答题(本大题共10小题,共76分.解答时应写出必要的计算或说明过程)19.解方程组.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②×3得:7x=56,即x=8,把x=8代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.先化简,再求值:(x+3)2+(x+2)(x﹣2)﹣2x2,其中x=﹣1.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,平方差公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+6x+9+x2﹣4﹣2x2=6x+5,当x=﹣1时,原式=﹣6+5=﹣1.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.解不等式组,并把它的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上即可【解答】解:,解不等式①得x≥﹣2,解不等式②得x<4,故不等式组的解为:﹣2≤x<4,把解集在数轴上表示出来为:【点评】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.22.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【考点】完全平方公式.【分析】(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.【解答】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.【点评】本题考查了整式的混合运算和完全平方公式的应用,题目是一道比较典型的题目,难度适中.23.如图,在△ABC中,点E在BC上,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.【考点】平行线的判定与性质.【分析】(1)根据垂直定义求出∠CDF=∠EFB=90°,根据平行线的判定推出即可;(2)根据平行线的性质得出∠2=∠DCB,求出∠1=∠DCB,根据平行线的判定得出BC∥DG,根据平行线的性质得出∠3=∠ACB即可.【解答】解:(1)CD平行于EF,理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF;(2)∵CD∥EF,∴∠2=∠DCB,∵∠1=∠2,∴∠1=∠DCB,∴BC∥DG,∴∠3=∠ACB,∵∠3=115°,∴∠ACB=115°.【点评】本题考查了平行线的性质和判定的应用,能正确运用性质和判定进行推理是解此题的关键,难度适中.24.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.(1)请在图中画出平移后的′B′C′;(2)△ABC的面积为 3 ;(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)【考点】作图-平移变换.【分析】(1)根据图形平移的性质画出平移后的△A′B′C′即可;(2)根据三角形的面积公式即可得出结论;(3)设AB边上的高为h,根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示;(2)S△ABC=×3×2=3.故答案为:3;(3)设AB边上的高为h,则AB•h=3,即×5.4h=3,解得h≈1.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.25.已知3x﹣2y=6.(1)把方程写成用含x的代数式表示y的形式;(2)若﹣1<y≤3,求x的取值范围.(3)若﹣1<x≤3,求y的最大值.【考点】解二元一次方程.【分析】(1)把x看做已知数求出y即可;(2)把表示出的y代入已知不等式求出x的范围即可;(3)把表示出的x代入已知不等式求出y的范围即可.【解答】解:(1)方程3x﹣2y=6,解得:y=;(2)由题意得:﹣1<≤3,解得:<x≤4;(3)由题意得:x=,代入不等式得:﹣1<≤3,解得:﹣<y≤,则y的最大值为.【点评】此题考查了解二元一次方程,把一个未知数看做已知数表示出另一个未知数是解本题的关键.26.(10分)(2016春•张家港市期末)如图,在△ABC中,∠BAC的平分线交BC于点D.(1)如图1,若∠B=62°,∠C=38°,AE⊥BC于点E,求∠EAD的度数;(2)如图2,若点F是AD延长线上的一点,∠BAF、∠BDF的平分线交于点G,∠B=x°,∠C=y°(x>y),求∠G的度数.【考点】三角形内角和定理.【分析】(1)先根据三角形内角和定理求出∠BAC的度数,再由角平分线的性质求出∠BAD的度数,由直角三角形的性质求出∠BAE的度数,根据∠EAD=∠BAD﹣∠BAE即可得出结论;(2)首先利用三角形内角和定理可求出∠BAC的度数,进而可求出∠BAD的度数,由题意可知∠BAG=∠BAC,再利用已知条件和三角形外角和定理即可求出∠G的度数.【解答】解:(1)∵在△ABC中,∠B=62°,∠C=38°,∴∠BAC=180°﹣62°﹣38°=80°.∵∠BAC的平分线交BC于点D,∴∠BAD=∠BAC=40°.∵AE⊥BC于点E,∴∠AEB=90°,∴∠BAE=90°﹣62°=28°,∴∠EAD=∠BAD﹣∠BAE=40°﹣28°=12°;(2)∵∠B=x°,∠C=y°,∴∠BAC=180°﹣x°﹣y°,∵∠BAC的平分线交BC于点D,∴∠BAD=∠BAC=(180°﹣x°﹣y°),AG平分∠BAD,∴∠BAG=∠BAD=(180°﹣x°﹣y°),∵∠BDF=∠BAD+∠B,∴∠G=∠BDF﹣∠GAD=x°,【点评】本题考查角平分线的定义、三角形外角的性质及三角形的内角和定理.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;三角形的外角通常情况下是转化为内角来解决.27.(10分)(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.【考点】等腰三角形的性质;二元一次方程组的解;三角形三边关系.【分析】(1)先解方程组用含a的代数式表示x,y的值,再代入有关x,y的不等关系得到关于a的不等式求解即可;(2)根据绝对值的定义即可得到结论;(3)首先用含m的式子表示x和y,由于x、y的值是一个等腰三角形两边的长,所以x、y可能是腰也可能是底,依次分析即可解决,注意应根据三角形三边关系验证是否能组成三角形.【解答】解:(1)解得∴,∵若关于x、y的二元一次方程组的解都为正数,∴a>1;(2)∵a>1,∴|a+1|﹣|a﹣1|=a+1﹣a+1=2;(3)∵二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,这个等腰三角形的周长为9,∴2(a﹣1)+a+2=9,解得:a=3,∴x=2,y=5,不能组成三角形,∴2(a+2)+a﹣1=9,解得:a=2,∴x=1,y=5,能组成等腰三角形,∴a的值是2.【点评】主要考查了方程组的解的定义和不等式的解法.理解方程组解的意义用含m的代数式表示出x,y,找到关于x,y的不等式并用a表示出来是解题的关键.28.(10分)(2016春•张家港市期末)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2016年5月1日起对居民生活用电试行新的“阶梯电价”收费,具体收费标准如表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分 a超过150千瓦时,但不超过300千瓦时的部分 b超过300千瓦时的部分a+0.52016年5月份,该市居民甲用电200千瓦时,交费170元;居民乙用电400千瓦时,交费400元.(1)求上表中a、b的值:(2)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价每千瓦时不超过0.85元?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)利用居民甲用电200千瓦时,交电费170元;居民乙用电400千瓦时,交电费400元,列出方程组并解答;(2)根据当居民月用电量0≤x≤150时,0.8x≤0.85x,当居民月用电量x满足150<x≤300时,150×0.8+x ﹣150≤0.85x,当居民月用电量x满足x>300时,150×0.8+300×1+(x﹣300)×1.3≤0.85x,分别得出即可.【解答】解:(1)依题意得出:,解得:.故:a=0.8;b=1.(2)设试行“阶梯电价”收费以后,该市一户居民月用电x千瓦时,其当月的平均电价每千瓦时不超过0.85元.当居民月用电量0<x≤150时,0.8x≤0.85x,故x≥0,当居民月用电量x满足150<x≤300时,150×0.8+x﹣150≤0.85x,解得:150≤x≤200,当居民月用电量x满足x>300时,150×0.8+300×1+(x﹣300)×1.3≤0.85x,解得:x≤,不符合题意.综上所述,试行“阶梯电价”后,该市一户居民月用电量不超过200千瓦时时,其月平均电价每千瓦时不超过0.85元.【点评】此题主要考查了一次函数的应用以及分段函数的应用,根据自变量取值范围不同得出x的取值是解题关键.。