七年级下学期数学期末考试

合集下载

河北省石家庄市新华区2023-2024学年七年级下学期期末数学试题(含答案)

河北省石家庄市新华区2023-2024学年七年级下学期期末数学试题(含答案)

2023—2024学年第二学期期末学业质量监测七年级数学(冀教版)注意事项:1.本试卷共6页,满分100分,考试时长90分钟。

2.答卷前将密封线左侧的项目填写清楚。

3.答案须用黑色字迹的签字笔书写。

一、精心选择(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项只有一项是正确的)1.如图,CF,CE,CD分别是△ABC的中线、角平分线、高,下列线段中,长度最短的是()A.CF B.CE C.CD D.CB2.2−3可以表示为()A.2×2×2B.(−2)×(−2)×(−2)C.2÷2÷2D.12×2×23.如图.∠1与∠2是()A.同位角B.内错角C.同旁内角D.对顶角4.我国陆地上风能储量约为253,000兆瓦,将253,000用科学记数法表示为2.53×10n,则n的值为()A.4B.5C.6D.−55.一款晾衣架的示意图如图所示,支架OP=OQ=30cm(连接处的长度忽略计),则点P,Q之间的距离可以是()A.50cm B.65cm C.70cm D.80cm6.下列运算中,结果正确的是()A.a4⋅a3=a12B.(a3)2=a6C.a6÷a2=a3D.(−3x)2=−9x27.数轴上表示数m,n的点的位置如图所示,则下列结论不正确的是()A.m−n<0B.m+1<n−1C.−3m<−3n D.m2<n28.如图,将长方形纸片按如图方式折叠,已知∠DQP=50∘,则∠CPM=()A.40∘B.50∘C.60∘D.80∘9.等式“☐a2−b2=−(2a−b)(2a+b)”中的“□”表示的数是()A.4B.−4C.16D.−1610.如图,已知直线m平移后得到直线n,∠1=108∘,∠2=35∘.则∠3的度数为()A.98∘B.103∘C.107∘D.143∘11.【问题】已知关于x,y的方程组{3x+5y=4k−2x−3y=2的解满足2x+y=3.求k的值.嘉嘉同学有如下两种解题思路和部分步骤:Ⅰ.将方程组中的两个方程相加并整理,可得到2x+y=2k,再求k的值;Ⅱ.解方程组{2x+y=3,x−3y=2,得到{x=117,y=−17.再代入3x+5y=4k−2中,可求k的值.下列判断正确的是()A.Ⅰ的解题思路不正确B.Ⅱ的解题思路不正确C.Ⅱ的解题思路正确,求解不正确D.Ⅰ与Ⅱ的解题思路与求解都正确12.阅读下面的数学问题:如图,在△ABC中,AE⊥BC于点E,CD⊥AB于点D,AE,CD交于点P,AQ平分∠CAE,CQ平分∠ACD.甲、乙两人经过研究,分别得到如下结论:甲:∠APC+∠ABC=180∘;乙:∠AQC+12∠ABC=180∘.其中判断正确的是()A.甲、乙两人的结论都正确B.甲、乙两人的结论都错误C.甲的结论错误,乙的结论正确D.甲的结论正确,乙的结论错误二、准确填空(本大题共4个小题,每小题3分,共12分.其中16小题第一个空2分,第二个空1分)13.写出一个满足不等式x−6>0的x的整数值为 .14.整式a2−a和(a−1)2的公因式为 .15.命题“若△ABC中的∠A:∠B:∠C=1:2:3,则△ABC是直角三角形”是 .(填“真命题”或“假命题”)16.几何验证:如图1,可验证公式(a+b)2=a2+2ab+b2.(1)公式应用:若m+n=5,mn=6,则m2+n2的值为;,则S1+S2的(2)拓展延伸:如图2,四边形ACDE和四边形BCFG是两个正方形,若DF=6,S△ACF=92值为 .图2三、细心解答(本大题共8个小题,共52分.解答应写出文字说明、说理过程或演算步骤)17.(本小题满分5分)小明在解方程组{x−3y=3,①2x−5y=4②的过程如下:解:由①×2,得2x−6y=6③,…………第一步②−③,得−y=−2,…………第二步得y=2.…………第三步把y=2代入①,得x=9,…………第四步所以原方程组的解为{x=9,y=2.(1)小明的解题过程从第步开始出现错误;(2)请你写出正确的解方程组的过程.18.(本小题满分5分)已知不等式组{2(x−1)≥−3,①4x−2<1+3x.②(1)解该不等式组,并把解集在下面的数轴上表示出来;(2)写出该不等式组的所有正整数解.19.(本小题满分6分)如图,△ABC的顶点都在正方形网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC向左平移7个单位长度得到△A′B′C′.(1)在网格中画出△A′B′C′及A′B′边上的中线C′H和高线C′G;(2)直接写出线段BC所扫过的面积.20.(本小题满分6分)已知A=(a+2b)(a−b)−a5÷a3−(2b)2.(1)先化简A,再求当a=1,b=−3时,A的值;(2)若a=6b,求A的值.21.(本小题满分6分)如图,△ABC中,∠A=70∘,∠ABC=75∘,点D为线段AC上的点(不与点A,C重合),点E在AB的延长线上,连接DE,∠E=40∘,DF平分∠ADE.(1)求∠C的度数;(2)说明BC//DF的理由.22.(本小题满分7分)有三个连续奇数,最小的奇数为2n−1(n为正整数).(1)用含n的代数式表示另外两个奇数;(2)判断这三个奇数的平方和是否是12的倍数.若是,请说明理由;若不是,请写出被12除的余数是多少.23.(本小题满分8分)某校欲租用租赁公司的甲、乙两种型号的大巴车共8辆(两种车型都要租用),将部分师生送去植物园游玩,相关的租车信息如下:信息一:若租用3辆甲型大巴、5辆乙型大巴,共可载客435人;若租用6辆甲型大巴、2辆乙型大巴,共可载客390人。

江西省赣州市2023-2024学年七年级下学期期末数学试题(含答案)

江西省赣州市2023-2024学年七年级下学期期末数学试题(含答案)

2023-2024学年第二学期期末考试七年级数学试题卷说明:1.本试题卷共有六个大题,23个小题,满分120分,考试时间为120分钟。

2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效。

一、单项选择题(本大题6小题,每小题3分,共18分)1.皮影戏是中国民间古老的传统艺术,如图是孙悟空的皮影造型,在下面的四个图形中,能由该图经过平移得到的图形是()A .B .C .D .2.下列坐标中,在第四象限的点的坐标是( )A .B .C .D .3.为了解某校学生视力情况,下列收集数据的方式合理的是( )A .对该校男生进行调查B .抽取一个班的同学进行调查C .抽取该校各班学号为5的整数倍的同学进行调查D .对该校学生戴眼镜的同学进行调查4.杆秤是中国古老的称量工具,在我国已经使用了数千年.如图,是杆秤在称物时的状态,G 其中辞纽AB 和拴秤砣的细线CD 都是铅垂线.若,则的度数为()A .B .C .D .5.如图是两位同学在讨论一个一元一次不等式,根据对话中提供的信息,判断他们讨论的不等式可能是()A .B .C .D .6.如图,约定:上方相邻的左数与右数之差等于这两数下方箭头共同指向的数.有以下两个结论,结论I:(1,0)(1,1)(1,1)-(1,1)-1108∠=︒2∠72︒108︒62︒82︒26x <26x ->-3x -≤26x -≥-若m 的值为3,则y 的值为4;结论Ⅱ:不论m ,n 取何值,的值一定为3.下列说法正确的是()A .I ,Ⅱ都对B .I 对,Ⅱ不对C .I 不对,Ⅱ对D .I ,Ⅱ都不对二、填空题(本大题6小题,每小题3分,共18分)7.要说明命题“若,则”是假命题,可以举的反例是___________(写出一个值).8.如图,把面积为6的正方形ABCD 放到数轴上,使得正方形的一个顶点A 与重合,那么顶点B 在数轴上表示的数是___________.9.某样本的样本容量为48,样本中最大值是108,最小值是5.取组距为10,则该样本可以分为___________组.10.已知是二元一次方程的一个解,则代数式的值为___________.11.如图,动点P 按图中箭头所示方向依次运动,第1次从点运动到点,第2次运动到点,第3次运动到点,…,若在x 轴上方时,每运动一次需要1秒,在x 轴下方时,每运动一次需要2秒,按这样的运动规律,动点P 第50秒时运动到点___________.12.已知平面直角坐标系下,点A ,C 的坐标为,点B 在坐标轴上.若的面积为3,则点B 的坐标为___________.三、解答题(本大题共5小题,每小题6分,共30分)13.(本题满分6分,每小题3分)x y -21a >1a >a =1-2x a y b =⎧⎨=⎩2570x y -+=9810a b -+(1,0)-(0,1)(1,0)(2,2)-(1,2),(3,0)A C -ABC △(1;(2)解方程组:.14.解不等式组,并将解集在数轴上表示出来.15.如图,,点E 在AC 上,连接DE ,请仅用无刻度直尺按要求完成以下作图(保留作图痕迹).(1)在图1中.以点A 为顶点作一个与相等的角.(2)在图2中,在CD 的上方,作一个与相等的角.16.根据下表回答问题:x1616.116.216.316.416.516.616.716.8256259.21262.44265.69268.96272.25275.56278.89282.24(1)275.56的平方根是_________________________________;(2的整数部分为a ,求的立方根.17.如图,在平面直角坐标系中,已知点,点是内一点,经过平移后得到,P 的对应点为.(1)在图中画出,并写出点的坐标;|2|+-3,21x y x x y -=⎧⎨-=-⎩2332423x xx x <+⎧⎪--⎨≤⎪⎩AB CD ∥C ∠D ∠2x ==42a -(3,3),(5,1),(2,0)A B C ---(,)P a b ABC △ABC △111,A B C △1(4,3)P a b +-111A B C △111,,A B C(2)己知D 是上一点,,直接写出CD 的最小值是___________.四、解答题(本大题共3小题,每小题8分,共24分)18.某中学为了了解学生放假期间运动锻炼的情况,从本校学生中随机抽取了部分学生调查了他们寒假期间平均一周运动时长1(单位:小时),将收集到的数据进行整理分成四组:A .,B .,C .,D ,,并绘制了如下两幅不完整的统计图.若假期平均每周运动时间不少于8小时为达标.根据以上信息,解答下列问题:(1)本次调查共抽取了___________名学生?扇形统计图中A 组所对应的圆心角为___________度;(2)将条形统计图补充完整;(3)若该校有学生2400人,试估计该校寒假平均一周运动时长不达标的学生人数;(4)暑假将至,根据以上调查结果,请对该校学生的暑假运动锻炼提出合理化建议.19.如图,直线CD ,EF 交于点O ,OA ,O B 分别平分和,且.(1)求证:;(2)若,求的度数.20.阅读理解:请阅读下面求含绝对值的不等式和的解集过程.对于含绝对值的不等式,从图1的数轴上看:大于而小于3的数的绝对值小于3,所以的解集;对于含绝对值的不等式,从图2的数轴上看:小于或大于3的数的绝对值大于3,所以的解集为或.1AA 15AA =0t 4≤<48t ≤<812t ≤<1216t ≤<COE ∠DOE ∠3OGB ∠=∠1290∠+∠=︒332∠=∠1∠||3x <||3x >||3x <3-||3x <33x -<<||3x >3-||3x >3x <-3x >图1图2问题解决:(1)含绝对值的不等式的解集为___________;(2)己知关于x ,y 的二元一次方程的解满足,其中m 是正数,求m 的取值范围.五、解答题(本大题共2小题,每小题9分,共18分)21.根据以下素材,请完成任务.养成健康饮水的习惯素材1:健康饮水知识一1.人体每天所需水分为1500-2000毫升.如果等到渴了再喝水,身体可能已经处于缺水状态.建议大家应养成主动饮水的习惯,把每天所需的水分安排在一天内喝完.2.推荐喝温开水或茶水,少喝或不喝含糖饮料,不能用饮料代替白水.3.饮水不足、过多均不利益身体健康,缺水后可能会引起供血量减少,血液粘性增加:喝的过量也会增加心、肾的患病风险.素材2:健康饮水知识二科学证明,健康饮水的适宜温度大约在.喝水的时候要注意避免喝过冷或过热的水,如果患者长期喝冷水,可能会刺激胃肠道,从而引起腹泻、腹痛等胃肠道不适症状.如果喝过热的水,容易造成食道口腔黏膜的损伤以及胃部损伤,引起炎症反应,出现溃疡等情况.素材3如上图,某校的饮水机有温水、开水两个按钮,温水和开水共用一个出水口.已知温水的温度为,流速为;开水的温度为,流速.小贴士:若接水过程中不计热量损失,温度热量可以用下列公式转化:温水体积×温水温度+开水体积×开水温度=混合后体积×混合后温度问题解决任务一小健同学先接了一会儿温水,又接了一会儿开水,得到一杯温度为的水(不计热量损失),求小健同学分别接温水和开水的时间;任务二如果小康同学先用水杯接了开水,为了身体的健康,小康同学至少要接多长时间温水才能达到饮用的适宜温度?22.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 的坐标为,点C 的坐标为,且a ,b 满足,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着折线线路运动一周停止.||2x >1x y m +=--||2x y +≤35C ~40C ︒︒30C ︒20ml /s 100C ︒15ml /s 280ml 35C ︒3s (,0)a (0,)b 2(6)|8|0a b -+-=O C B A O ----(1)求点B 的坐标;(2)在移动过程中,当点P 到y 轴的距离为4个单位长度时,求点P 移动的时间;(3)当点P 在的线路上移动时,是否存在点P 使的面积是12,若存在,直接写出点P 的坐标;若不存在,请说明理由.六、解答题(本大题共12分)23.我们定义:如图1,直线a ,b 被直线c 所战(a ,b ,c 不交于同一点),若直线a ,c 所成的四个角中有一个角与直线b ,c 所成的四个角中的一个角相等,如,则称直线c 是直线a ,b 的等角线.【初步感知】(1)如图2,在图①,②,③中,直线c 是直线a ,b 的等角线的是___________(填序号);【探究应用】(2)如图3,点E ,F 分别为长方形ABCD 的边AD ,BC 的点,且点E 不与点A ,D 重合,点F 不与点B ,C 重合,将长方形ABCD 沿EF 折叠后,点D ,C 分别落在点的位置,的延长线交直线BC 于点G .图3 备用图①直线AB ,EF ,中,直线___________是直线与直线BC 的等角线,并请说明理由;②直线与直线BC 交于点G ,随着折痕EF 的变动,当直线EG 是直线AB ,BC 的等角线时,求的度数(提示:三角形的内角和为).C B A --OBP △12∠=∠,D C ''ED 'C D ''ED 'ED 'AED '∠180︒2023-2024学年第二学期期末考试七年级数学参考答案及评分标准一、选择题(本大题6小题,每小题3分,共18分)1.B 2.C 3.C 4.A 5.D 6.C二、填空题(本大题6小题,每小题3分,共18分)7.(答案不唯一);8;9.11;10.23;11.; 12.或或三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解:原式3分(2)解:把①代入②得:.解得:.将代入①得.解得:.原方程组的解为3分14.解:解不等式①得:. 1分解不等式②得:. 2分在数轴上表示不等式①、②的解集4分不等式组的鲜集为.6分15.解:(1)如图,或即为所求.3分2-1(330),(00),(60),(0,6)-232=+-+3=- 3.21.x y x x y -=⎧⎨-=-⎩①②213x -=2x =2x =23y -=1y =-∴2,1.x y =⎧⎨=-⎩23,32423x x x x <+⎧⎪⎨--≤⎪⎩①②3x <1x ≥-∴13x -≤<FAB ∠FAC ∠或(2)如图,即为所求.(或为所求)6分或16.解:(1),16.1,1.67; 3分(2)由.故.则,125的立方根为:5.6分17.解:(1)如图,三角形为所求. 1分A ,B ,C 的对应点的坐标为; 4分(2). 6分四、解答题(本大题共3小题,每小题8分,共24分)F ∠GFH ∠16.6±16.716.8<<167168∴<<167a =4216742125a -=-=111,,A B C 111(1,0),(1,2),(2,3)A B C ---9518.解:(1)120,18; 2分(2)补全条形统计图如图:4分(3)(人),答:该校2400名学生中一周在家运动时长不达标的学生人数为840人; 6分(4)在家加长运动时间,努力提高身体素质.(言之有理即可) 8分19.解:(1)OA ,OB 分别平分和,...2分,. 3分..4分(2)解:平分,,.设,则.,即,解得6分.8分20.解:(1)根据绝对值的定义得:或.故答案为:或; 3分(2),, 5分,6362400840120+⨯= COE ∠DOE ∠11,22AOC COE BOE DOE ∴∠-∠∠=∠180COE DOE ∠+∠=︒ ()1111180902222AOC BOE COE DOE COE DOE ∴∠+∠=∠+∠=∠+∠=⨯︒=3OGB ∠=∠ AB CD ∴∥12AOC BOD ∴∠=∠∠=∠,1290∴∠+∠=︒OB DOE ∠AB CD ∥122BOD BOG DOG ∴∠=∠=∠=∠2x ∠=3323x ∠=∠=3180DOG ∠+∠=︒ 32180x x +=︒36x =︒236∴∠=︒1903654∴∠=︒-︒=︒2x >2x <-2x >2x <-||2x y +≤ 22x y ∴-≤+≤1,x y m +=--,解得,又m 是正数,.8分五、解答题(本大题共2小题,每小题9分,共18分)21.解:任务一:设小健同学分别接温水和开水的时间分别为,由愿意得.3分解得答:小健同学生接温水的时间为,接开水的时间为, 5分(2)任务二:设小康同学接温水为,由题意得7分解得.答:小康同学接温水的时间至少为13.55,才能达到饮用的适宜温度. 9分22.解:(1),,,四边形OABC 是长方形.,轴,轴,;3分(2)设点P 移动的时间为t 秒,点P 到y 轴的距离为4个单位长度,点P 在OA 边上或BC 边上,当点P 在BC 边上,则,解得;5分当点P 在OA 边上,则,212m ∴-≤--≤31m -≤≤01m ∴<≤s s x y ,201528030201001528035x y x y +=⎧⎨⨯+⨯=⨯⎩1343x y =⎧⎪⎨=⎪⎩13s 4s 3s a 3020100153(4520)40a a ⨯+⨯⨯≤+⨯135a ≥.2(6)|8|0a b -+-= 60,80a b ∴-=-=6,8a b ∴==(6,0),(0,8)A C ∴ 90OAB OCB ∴∠=∠=︒BA x ∴⊥BC y ⊥(6,8)B ∴ ∴284t -=6t =242(68)t +-+解得.综上所述,点P 移动的时间为6秒或12秒.7分(3)存在:P 点的坐标为或.9分六、解答题(本大题共12分)23.解:(1)①③;2分(2)①EF ,理由:3分由折叠性质可:,四边形是ABCD 长方形.,直线EF 是直线ED 与BC 的等角线. 7分②如图,设直线AB 与EG 的延长线得交点为H ,当直线EG 是直线AB 、BC 的等角线时,山折叠性质可知:,四边形是ABCD 长方形,.,直线EG 是直线AB 、BC 的等角线,..10分如图,设直线AB 与GE 的延长线得交点为H.12t =(3,8)(6,4)DEF D EF '∠=∠ AD BC ∴∥DEF EFG∴∠=∠DEF EFG∴∠=∠∴DEF D EF '∠=∠ 90AD BC A ABC HBG ∴∠=∠=∠=︒∥,AEG BGH EGF ∴∠=∠=∠ 45BGH BHG ∴∠=∠=︒45AED BGH '∴∠=∠-︒当直线EG 是直线AB 、BC 的等角线时.由折叠性质可知:,四边形是ABCD 长方形.,,直线EG 是直线AB 、BC 的等角线,,.的度数为:,. 12分DEF D EF '∠=∠ 90AD BC BAD ABC ∠-∠=︒∥,AEH BGE ∠=∠ 45BGH BHG ∴∠=∠=︒180135AED BGH '∴∠=︒-∠=︒AED '∴∠45︒135︒。

七年级下学期期末考试数学试卷(带答案)

七年级下学期期末考试数学试卷(带答案)

七年级下学期期末考试数学试卷(带答案)一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个图形中,不是轴对称图形的为()A. B.C. D.2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、π是变量,R为常量C.V、R是变量,、π为常量D.以上都不对3.下列事件中是不可能事件的是()A.从一副扑克牌中任抽一张牌恰好是“红桃”B.在装有白球和黑球的袋中摸球,摸出了红球C.2022年大年初一早晨艳阳高照D.从两个班级中任选三名学生,至少有两名学生来自同一个班级4.新型冠状病毒(2019﹣nCoV)是目前已知的第7种可以感染人的冠状病毒,经研究发现,它的单细胞的平均直径约为0.000000203米,该数据用科学记数法表示为()A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.0.203×10﹣65.已知a,b,c分别为三角形的三边长,则化简|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|的结果为()A.a+b+c B.﹣a+b﹣3c C.a+2b﹣c D.﹣a+b+3c6.等腰三角形的两边长分别为4和8,则这个等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对7.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,E是边AB上一点,若CD=6,则DE的长可以是()A.1 B.3 C.5 D.78.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°9.已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在以下条件中不能选择的是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E10.已知(x﹣2019)2+(x﹣2021)2=34,则(x﹣2020)2的值是()A.4 B.8 C.12 D.16二、填空题(本题共6小题,每小题3分,共18分.)11. 2-的相反数是_____.12. 如图,将三角形ABC沿直线BC平移得到三角形DEF,其中点A与点D是对应点,点B与点E是对应点,点BC=,EC=2,那么线段CF的长是_______.C与点F是对应点.如果513. 已知点P (2a −2,a +5),点Q (4,5),且直线PQ ∥y 轴,则点P 的坐标为________.14. 如图a ∥b,∠1+∠2=75°,则∠3+∠4=______________.15. 方程组{4x +3y =1,mx +(m −1)y =3的解x 和y 的值相等,则m =___.16. 已知实数x 满足{5(x +1)≥3x −112x −1≤7−32x ,若S =|x ﹣1|+|x+1|的最大值为m ,最小值为n ,则mn =_____.三、解答题(本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(6分)计算:||﹣+﹣(﹣1)2019.18.(6分)解方程组:.19.(6分)解不等式组.20.(8分)如图,在平面直角坐标系中,有三点A (1,0),B (3,0),C (4,﹣2).(1)画出三角形ABC ;(2)将三角形ABC 先向左平移4个单位长度,再向上平移3个单位长度,画出平移后的三角形DEF ,并写出D、E、F三点的坐标;(3)求三角形ABC的面积.21.(8分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m=,n=;并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在什么范围内?22.(8分)实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成.现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?23.(10分)已知,如图,∠CDG=∠B,AD⊥BC于点D,∠1=∠2,EF分别交AB、BC于点E、F,试判断EF与BC的位置关系,并说明理由.24.(10分)某业主贷款18920元购进一台机器,生产某种产品.已知产品的成本是每个5元,售价是每个8元,应付的税款和其他费用是售价的10%.若每个月能生产、销售2000个产品.(1)问每个月所获得利润为多少元?(2)问至少几个月后能赚回这台机器的贷款?25.(10分)已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.参考答案一、选择题1.选:C.2.选:C.3.选:B.4.选:B.5.选:D.6.选:B.7.选:D.8.选:B.9.选:B.10.选:D.二、填空题11、【答案】√5-212、【答案】313、【答案】(4,8)14、【答案】105°15、【答案】1116、【答案】16三、解答题17.【解答】解:原式=﹣1﹣2+2+1=.18.【解答】解:方程组整理得:,①+②得:﹣6y=6,解得:y=﹣1,把y=﹣1代入②得:x﹣2=1,解得:x=3,则方程组的解为.19.【解答】解:∵由①得:x≤3,由②得:x>﹣4,∴不等式组的解集为﹣4<x≤3.20.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△DEF即为所求;其中D(﹣3,3),E(﹣1,3),F(0,1);(3)三角形ABC的面积=×2×2=2.21.【解答】解:(1)测量的总人数是:3÷0.06=50(人),则m=50×0.28=14,n==0.26.补全频数分布直方图:故答案为14,0.26.(2)观察表格可知中位数在 161≤x<164范围内.22.【解答】解:设用x张做侧面,y张做底面才可以使得刚好配套,没有剩余,根据题意得:,解得:.答:用20张做侧面,6张做底面才可以使得刚好配套,没有剩余.23.【解答】解:EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=∠2(已知),∴∠2=∠DAB(等量代换),∴EF∥AD(同位角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,∴EF与BC的位置关系是垂直(垂直的定义).24.【解答】解:(1)每个月总收入为:2000×8=16000(元),则应付的税款和其他费用为:16000×10%=1600(元),利润=16000﹣2000×5﹣1600=4400(元),答:每个月所获得利润为4400元;(2)设需要x个月后能赚回这台机器贷款,依题意,得:4400x≥18920,解得:x≥43.答:至少43个月后能赚回这台机器贷款.25.【解答】解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵PA=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x 解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为PA的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.。

七年级下学期期末考试数学试卷(附有答案)

七年级下学期期末考试数学试卷(附有答案)

a b七年级下学期期末考试数学试卷(附有答案)一 、选择题(每小题4分,共40分)1、点P (-2021,12+a )所在象限为( )A 第一象限B 第二象限C 第三象限D 第四象限2、一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人,准备同时租用这三种客房共7间,如果每个房间都住满租房方案有 ( ) A 4种 B 3种 C 2种 D 1种3、点A (-3,-5)向上平移4个单位,再向左平移3个单位到点B ,则点B 的坐标为 ( ) A.(1,-8) B. (1, -2) C. (-6,-1 ) D. ( 0,-1)4、如右图,下列能判定AB ∥CD 的条件的个数为( ) (1)∠B+∠BCD=0180 (2)∠1=∠2;(3)∠3=∠4 ;(4)∠B=∠5 . A.1 B.2 C.3 D.45、如图和,生活中,将一个宽度相等的纸条按右图所示折叠一下; 如果∠1=140°,那么∠2的度数为( ) A 140° B 120° C 110° D 100°6、如果表示a ,b 两个实数的点在数轴上的位置如图测所示,那么化简│a-b │+2()a b +的结果等于( )A -2bB 2bC -2aD 2a7、已知五个命题,正确的有 ( )(1)有理数与无理数之和是无理数; ⑵有理数与无理数之积是无理数; (3)无理数与无理数之积是无理数; ⑷无理数与无理数之积是有理数;(5)所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。

A. 1个 B. 2个 C. 3个 D.4个8、为了了解参加某运动会的2000名运动员的年龄情况,从中抽取了100名运动员的年龄,就这个问题来说,下面说法正确的是 ( )A .2000名运动员是总体B .100名运动员是所抽取的一个样本C .样本容量为100名D .抽取的100名运动员的年龄是样本第4第5题9、若x 是49的算术平方根,则x 等于 ( )A. 7B. -7C. 49D.-4910、已知点A (-1,0),点B (2,0),在y 轴上存在一点C ,使得△ABC 的面积为6,则点C 的坐标为 ( )A (0,4)B (0,2)C (0,2)或(0,-2)D (0,4)或(0,-4) 二 、填空题(每小题4分,共40分)11、点P在第二象限,P到x 轴的距离为4,P到y 轴距离为3,则点P的坐标为 12 、4的平方根是 .13、若不等式组⎩⎨⎧>>2x mx 解集为2>,则m 取值范围是 .14 、在自然数范围内,方程的解是 .15 、把“同角的余角相等,改写成如果……那么……的形式为 。

河北省保定市竞秀区2023-2024学年七年级下学期期末数学试题(含答案)

河北省保定市竞秀区2023-2024学年七年级下学期期末数学试题(含答案)

2023—2024学年度第二学期期末学业质量监测七年级数学试卷注意事项:1.本试卷共8页,总分120分,考试时间120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡相应位置上.3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效.答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B 铅笔把答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题.一、选择题(本大题共12个小题,每题3分,共36分.在每小题给出的四个选项中,只有一个选项符合题意)1.如图,点D 在直线上,,则图中的和的关系是()A .互为补角B .互为余角C .同位角D .对顶角2.中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A .B .C .D .3.如图,为了估计一池塘岸边两点A ,B 之间的距离,小颖同学在池塘一侧选取了一点P ,测得,,那么点A 与点B 之间的距离不可能是( )A .B .C .D .4.计算的值为( )A .B .C .1D .25.事件①:射击运动员射击一次,命中靶心;事件②:随意翻到一本书的某页,这页的页码是奇数.则下列表述正确的是()A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件AB CD ED ⊥1∠2∠100m PA =90m PB =90m 100m 150m 200m202420250.5(2)⨯-2-0.5-D .事件①和②都是必然事件6.如图,平分,,垂足为A ,,Q 是射线上的一个动点,则线段的最小值是( )A .10B .8C .6D .47.红外线是太阳光线中众多不可见光线中的一种,且应用广泛,某红外线遥控器发出的红外线波长约为,则下列说法正确的是( )A .是8位小数B .C .D .是7位小数8.如图,是一个可折叠衣架,是地平线,当,时,就可以确定点N 、P 、M 在同一直线上,这样判定的依据是()A .内错角相等,两直线平行B .过直线外一点有且只有一条直线与这条直线平行C .两点确定一条直线D .平行于同一直线的两直线平行9.在一次数学实践活动课上,老师指导学生进行折纸活动,下图是小明、小凡、小颖三位同学的折纸示意图(C 的对应点是),分析他们折纸情况说法正确的是()A .小明折出的是中的角平分线B .小凡折出的是边上的中线C .小颖折出的是中边上的高线D .上述说法都错误10.已知线段a ,b ,c 求作:,使,,.下面的作图顺序正确的是()OP MON ∠PA ON ⊥6PA =OM PQ 79.410m -⨯79.410-⨯779.410 1.4810--⨯-=⨯769.410109.410--⨯+=⨯79.410-⨯AB //PM AB //PN AB C 'ABC △BAC ∠BC ABC △BC ABC △BC a =AC b =AB c =①以点A 为圆心,以b 为半径画弧,以点B 为圆心,以a 为半径画弧,两弧交于C 点;②作线段等于c ;③连接,,则就是所求作图形.A .①②③B .③②①C .②①③D .②③①11.如图,已知,直线l 与直线a ,b 分别交于点A ,B ,分别以点A ,B为圆心,大于的长为半径画弧,两弧分别相交于点M ,N ,作直线,交直线b 于点C ,连接,若,则的度数是()A .B .C .D .12.如图,中,,D 是线段上一点(不与点B ,C 重合),连接,点E ,F 分别在线段,的延长线上,且.则以下结论:①;②;③;④D 从B 运动到C 的过程中,周长不变.正确的是()A .①②④B .①②③C .②③④D .①③④二、填空题(本大题共4个小题;每题3分,共12分.把答案写在题中横线上)13.已知,,则____________.14.如图,点P 是外的一点,点M ,N 分别是两边上的点,点P 关于的对称点Q 恰好落在线段上,点P 关于的对称点R 落在的延长线上,若,,,则线段的长为____________.15.不透明的盒子中装有红、白两色的小球共n (n 为正整数)个,这些球除颜色外无其他差别,随机摸出一个小球,记录颜色后放回并摇匀,不断重复这一过程.如图显示了用计算机模拟实验的结果.AB AC BC ABC △//a b 12AB MN AC 138∠=︒ACB∠76︒100︒102︒104︒ABC △AB AC BC ==BC AD AB AC DE DF AD ==60E BDE ∠+∠=︒60E CFD ∠+∠=︒EBD DCF △≌△BED △45x =42y=4x y+=AOB ∠AOB ∠OA MN OB MN 2.5PM = 3.5PN =3MN =QR若盒子中共装60个小球,可以根据本次实验结果,估算出盒子中红球有____________个.16.如图,长方形纸片中,,点E ,F 在边上,点G ,H 在边上,分别沿,折叠,使点D 和点A 都落在点M 处,若,则的度数是____________度.三、解答题(本大题共8个小题,共72分,解答应写出必要的文字说明,证明过程或演算步骤.)17.计算:(本小题满分8分,(1)题4分,(2)题4分)(1).(2)利用整式乘法公式计算:.18.(本小题满分6分)先化简,再求值:,其中.19.(本小题满分7分)小明和妈妈去超市买凳子,小明发现售货员把凳子按如图方式叠放在一起时,每叠放一个凳子,增加的高度是一样的.下表是叠放凳子的总高度h 与凳子数量n 的几组对应值.凳子的数量n (个)1234…叠放凳子的总高度h (厘米)46525864…根据以上信息,回答下列问题:(1)按照表格所示的规律,当凳子的数量为6时,叠放的凳子总高度为____________厘米;(2)直接写出叠放的凳子总高度h 与凳子的数量n 之间的关系式:____________;(3)按上表所示的规律,若将该种凳子按如图方式叠放在层高为92厘米的超市货架上,能叠放8个吗?ABCD //AD BC AD BC EG FH 12115∠+∠=︒EMF ∠1021(2024)(2)3π-⎛⎫-+--- ⎪⎝⎭2202320222024-⨯432(32)()()3x x x x x x -÷---⋅12x =-请说明理由.20.(本小题满分8分)如图,墙地面b ,嘉嘉想知道这堵墙上点A 到地面的高度,但又没有直接测量的工具,于是设计了下面的方案.第一步:找一根长度大于的直杆,使直杆斜靠在墙上,且顶端与点A 重合,记下直杆与地面的夹角;第二步:使直杆顶端竖直缓慢下滑,直到,标记此时直杆的底端点D ;第三步:测量的长度即为点A 到地面的高度.(1)请说明为什么的长度即为点A 到地面的高度;(2)若测得,,求梯子下滑的高度.21.(本小题满分9分)小明和小颖都想参加学校杜团组织的暑假实践活动,但只有一个名额,小明提议用如下的办法决定谁去参加活动:将一个转盘9等分,分别标上1至9九个号码,随意转动转盘,若转到2的倍数,小明去参加活动;转到3的倍数,小颖去参加活动;转到其它号码则重新转动转盘.(1)转盘转到号码7的概率是____________.(2)转盘转到2的倍数的概率是多少?(3)你认为这个游戏对小明和小颖公平吗?请说明理由.22.(本小题满分11分)题目:如图,中,F 为边上一点,点D 为延长线上一点.(1)在图中按要求完成尺规作图:①在右侧作,交于点G ;②作的角平分线.(不写作图步骤,保留作图痕迹,作图要用2B 铅笔,如果笔迹太细、太轻,可以描重一些.)(2)在(1)的条件下,若.①请说明.a ⊥AN NA ABN ∠NCD ABN ∠=∠ND AN ND AN 1.2m BN = 2.5m DN =AC ABC △AB BC BF BFG A ∠=∠BC ACD ∠CE 180AFG ACE ∠+∠=︒//AB CE②与的关系是____________.下面是嘉嘉的解答过程,请在(1)中完成尺规作图,并补全(2)中的说理依据:解:(1)(2)①因为,根据________________________,得到;因为,根据________________________,得到;因为已知,所以可以得到;进而根据________________________,得到.②与的关系是____________.23.(本小题满分11分)如图1,在长方形中,,E 为边中点.动点P 从点B 开始,以的速度沿路线运动,到点A 停止.图2是点P 出发t 秒后,的面积随时间变化的图象.根据图中提供的信息,回答下列问题:(1)____________;点M 表示的实际意义是________________________;(2)当点P 在上运动时,求的面积为时t 的值;(3)如图3,当点P 从点B 出发时,动点Q 同时以的速度从C 点出发,沿边运动,当点P 运动到点C 时,P 、Q 两点停止运动.当x 为何值时,与全等,请直接写出x 的值.24.(本小题满分12分)活动探究:数学活动课上,王老师准备了若干个图1所示的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a的长方形.AFG ∠B ∠BFG A ∠=∠//FG AC //FG AC 180AFG A ∠+∠=︒180AFG ACE ∠+∠=︒A ACE ∠=∠//AB CE AFG ∠B ∠ABCD 6cm AB =AB 3cm/s B C D A →→→BPE △2(cm )S (s)t BC =cm DA BPE △29cm cm/s x CD PBE △PCQ △(1)若小明想用图1中的三种纸片拼出一个面积为的大长方形,则需要C 种纸片____________张;(2)小兰用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成了图2所示的大正方形,在用两种不同的方法求此大正方形的面积时,小兰发现了代数式,,之间的等量关系式,这个关系式是:________________________;实践应用:(3)如图3,学校在长方形空地里铺了地砖,地砖有三种,一种是5个相同的黑色小长方形,另两种是两个白色大正方形和两个白色小正方形.已知长方形空地的周长为8.4米,每个黑色小长方形地砖的面积均为0.36平方米.设每个黑色小长方形地砖的长为m 米,宽为n 米.①____________;②求空地中白色地砖的总面积.2023-2024学年度第二学期期末学业质量监测七年级数学试卷参考答案及评分标准(仅供参考,其他解法,参照给分)一、选择题(本大题共12个小题,每题3分,共36分。

安徽省滁州市天长市2023-2024学年七年级下学期期末数学试题(含答案)

安徽省滁州市天长市2023-2024学年七年级下学期期末数学试题(含答案)

安徽省滁州市天长市2023-2024学年七年级下学期期末数学试题注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出四个选项,其中只有一个是符合题目要求的.1.下列实数中,无理数是B. C. D.-12.生物学家发现一种花粉的直径约为0.0000021毫米.数据0.0000021用科学记数法表示正确的是A. B. C. D.3.下列计算正确的是B. C. D.4.不等式的负整数解有A.4个B.3个C.2个D.1个5.下列因式分解正确的是A. B.C. D.6.如图,,点在直线上,若,则下列结论错误的是A. B. C. D.7.若运算结果中不含关于的一次项,则的值是A.4B.-4C.2D.-38.某商店购进一种笔记本200本,进价为2元/本,标价为5元/本.现准备打折出售,若商店要保证售完这种笔记本的利润不少于300元,则至多可打A.9折B.8折C.7折D.6折9.定义一种运算:当时,;当时,.若,则的值是A B C D 、、、13π262.110-⨯52.110-⨯82110-⨯70.2110-⨯2=-326a a a ⋅=()332328a b a b -=-222()a b a b +=+2(3)41x x -+…()226332ax ax ax ax-=-()()()()x x y y y x x y x y -+-=-+22224(2)x xy y x y +-=-2(1)(1)ay a a y y -=+-//,a b AC AB ⊥A b 162︒∠=262︒∠=4118︒∠=32∠=∠538︒∠=(2)(2)x x k -+x k a b >ab a b a b *=-a b <*ab a b b a=-*32x =xA.-6B. C.-6或 D.-6或10.两个正方形边长分别为和,按图(1)放置其未叠合部分(阴影)的面积记为,若在图(1)中大正方形的右下角再摆放一个边长为的小正方形,如图(2)所示,两个小正方形叠合部分(阴影)的面积记为,若,则的值为A.69B.73C.85D.92二、填空题(本大题共4小题,每小题5分,满分20分)11.4的平方根是___________.12.已知,则的值是___________.13.如图,直线AB ,CD 相交于点,则___________.14.已知关于的分式方程.(1)当时,方程的根是___________;(2)若该方程的解是非负数,且满足则所有满足条件的偶数的值之和为___________.三、(本大题共2小题,每小题8分,满分16分)15.计算:;(2).16.在正方形网格中,每个小正方形的边长均为1个单位长度,三角形ABC 的三个顶点的位置如图所示.现将三角形ABC 平移,使点与点重合,点D ,E 分别是A ,B 的对应点.656525a b 1S b 2S 9,4a b ab +==12S S +23,25x y ==22x y -,,50O OE CD AOC ︒⊥∠=BOD BOE ∠-∠=︒x 42522x a a x x--=--3a =-10,a -…a 1012-⎛⎫++- ⎪⎝⎭()232(32)(32)(1)4x y x y x x xy x x +--++-++÷C F(1)请画出平移后的三角形DEF ;(2)连接BE ,CF ,则线段BE 与CF 之间的关系是___________;(3)点到直线AB 的距离是___________个单位长度.四、(本大题共2小题、每小题8分,满分16分)17.阅读材料:,即,2,,请解答下列问题:(1)比较大小(填“>”“<”或“=”);(2)的整数部分为a ,6是的算术平方根,求的立方根.18.先化简,再求值:,其中在中选一个合适的数,代入求值.五、(本大题共2小题,每小题10分,满分20分)19.如图,.(1)试说明;(2)求的度数.20.已知关于x 的不等式组.(1)当时,求这个不等式组的解集,并把解集在数轴上表示出来;(2)若不等式组只有2个整数解,求的取值范围.六、(本题满分12分)21.有下列等式:C <<23<<2-12b 352b a --2695222m m m m m -+⎛⎫÷+- ⎪--⎝⎭m 1,2,3-//,12,105,2AE FG D CBD ABC ︒∠=∠∠=∠=∠//AB CD C ∠43421x x a -⎧+≥⎪⎨⎪-⎩①>②2a =-a①,②,③,④,……按照以上规律,解决下面问题:(1)写出第(5)个等式:______________;(2)写出你猜想的第○n 个等式(用含正整数的等式表示),并说明猜想的正确性.七、(本题满分12分)22.为加快公共领域充电基础设施建设,某停车场计划购买A ,B 两种型号的充电桩.已知型充电桩比型充电桩的单价少0.3万元,且用15万元购买型充电桩与用20万元购买型充电桩的数量相等.(1)A ,B 两种型号充电桩的单价各是多少?(2)该停车场计划共购买25个A ,B 型充电桩,购买总费用不超过26万元,且型充电桩的购买数量不少于型充电桩购买数量的.问:共有哪几种购买方案?哪种方案所需购买总费用最少?八、(本题满分14分)23.如图,,点分别为直线上的点,点在两平行线AB 与CD 之间,连接的平分线EN 交CD 于点.(1)如图1,过点作,若,求的度数;(2)如图2,的平分线FH 的反向延长线交EN 于点.①成立吗?请说明理由;②请直接写出与的数量关系.22212131⨯=-⨯243333132⨯=-⨯254434133⨯=-⨯25525134⨯=-⨯n A B A B B A12//AB CD ,E F ,AB CD M ,,EM FM AEM ∠N M //MG AB 65,120AEN EMF ︒︒∠=∠=MFD ∠MFD ∠P AEP EPH HFD ∠=∠+∠EMF ∠EPH ∠20232024学年度第二学期教学质量监测七年级数学参考答案一、(每小题4分,满分40分)1~5:CACBD 6~10:DACBA二、(每小题5分,满分20分)11.12. 13.10 14.(1)7 (2)-22三、(每小题8分,满分16分)15.(1)解:原式……………………………………4分(2)解:原式……………………………………8分16.(1)如右图………………………4分(2)平行且相等………………………6分(3)3………………………4分四、(每小题8分,满分16分)17.(1)<.…………………………………………………………………………………………2分(2)解:又……………………………………………………………………4分…………………………………………………………6分的立方根是-2.…………………………………………………………8分18.解:原式…………………6分只能为-1当时,原式…………………………………………………………8分五、(每小题10分,满分20分)2±953421=-++-2=22222942141x y x x x y =-----++272x x =-56<<∴<<5a ∴=2636b ==351518582b a ∴--=--=-352b a ∴--222(3)45(3)23222(3)(3)3m m m m m m m m m m m ------=÷=⋅=---+-+20,30m m m -≠-≠∴ 1m =-422-==-19.(1)解:又…………………………………………………………5分(2)解:……………………………………………10分20.(1)解:由①得当时,由②得不等式组的解集是……………………6分(2)解:由①知,因为只有两个整数解,所以整数解是1和2又由②得………………………………………………10分六、(本题满分12分)21.(1)……………………………………………………………………………4分(2)解:…………………………………………………………………8分理由:左边右边,所以猜想成立.………………………12分七、(本题满分12分)22.(1)解:设型充电桩的单价为万元,则型充电桩的单价为万元,根据题意,得:………………………………………………………………………3分解得经检验是原方程的解,则(万元)答:型充电桩的单价为0.9万元,型充电桩的单价为1.2万元;………………………6分(2)解:设购买型充电桩个,则购买型充电桩个,根据题意,得:解得为非负整数取共有3种购买方案………………………9分方案1:购买型充电桩14个、型11个,费用为(万元)方案2:购买型充电桩15个、B 型10个,费用为(万元)方案3:购买型充电桩16个、型9个,费用为(万元)//1AE FG A ∴∠=∠ 12∠=∠2//A AB CD ∴∠=∠∴//180AB CD D ABD ︒∴+=∵∠∠105218025ABC ABC ABC ︒︒︒∴+∠+∠=∴∠=//25AB CD C ABC ︒∴∠=∠= 2,x …2a =-1x >-∴12x -<...2x ...101110x a a a >+∴+<∴-< (276636135)⨯=-⨯22113(1)13n n n n n+++⋅=+-2113(2)3n n n n n n +++=⋅==+B x A (0.3)x -15200.3x x=-1.2x = 1.2x =0.30.9x -=A B A a B (25)a -0.9 1.2(25)261252a a a a +-⎧⎪⎨-⎪⎩……405033a ……a a ∴14,15,16∴A B 0.914 1.21125.8⨯+⨯=A 0.915 1.21025.5⨯+⨯=A B 0.916 1.2925.2⨯+⨯=方案3,即购买型充电桩16个、型9个所需总费用最少.………………………12分八、(本题满分14分)23.(1)解:平分 ……………………4分(2)解:①成立理由:过点P 作........................10分②∠EMF +2∠EPH =180° (14)分25.225.525.8<< ∴A B //,////180AB CD MG AB MG CD AEM EMG ︒∴∴∠+∠= EN AEM ∠2265130AEM AEN ︒︒∴∠=∠=⨯=18013050EMG ︒︒︒∴∠=-=1205070EMF EMG GMF GMF ︒︒︒∠=∠+∠∴∠=-= //70MG CD MFD GMF ︒∴∠=∠= //PK AB////AB CD CD PK∴ AEP EPK HFD HPK∴∠=∠∠=∠AEP EPK EPH HPK EPH HFD ∴∠=∠=∠+∠=∠+∠。

七年级下学期期末考试数学试卷(附含答案)

七年级下学期期末考试数学试卷(附含答案)

第5题图第9题图七年级下学期期末考试数学试卷(附含答案)一 选择题(每小题4分,共40分) 1. 9的平方根是( )A.3±B. 3C. 81D.81± 2.在平在直角坐标系中,点M (3,-2)位于( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 3.下列调查中适合采用全面调查的是( )A.了解凯里市“停课不停学”期间全市七年级学生的听课情况B.了解新冠肺炎疫情期间某校七(1)班学生的每日体温C.了解疫情期间某省生产的所有口罩的合格率D.了解全国各地七年级学生对新冠状病毒相关知识的了解情况 4.下列运动属于平移的是( )A. 荡秋千B. 地球绕太阳转C. 风车的转动D.急刹车时,汽车在地面上的滑动5. 如图,在下列条件中,不能判定AB ∥DF 的是( )A. ∠A+∠AFD=180°B.∠A=∠CFDC. ∠BED=∠EDFD. ∠A=∠BED 6. 已知二元一次方程432=-y x ,用含x 的代数式表示y ,正确的是( ) A.342+=x y B. 342-=x y C. 234y x += D. 234yx -= 7. 已知b a >,下列不等式中错误的是( )A. 11+>+b aB. 22->-b aC. b a 22>D. b a 44->-8. 下列命题是真命题的是( )A.若||||b a =,则b a =B.经过直线外一点有且只有一条直线与已知直线平行C.同位角相等D.在同一平面内,如果b a ⊥,c b ⊥,那么c a ⊥ 9.如图,数轴上与40对应的点是( ) A.点A B.点B C.点C D.点D 10. 某种服装的进价为200元,出售时标价为300元; 由于换季,商店准备对该服装打折销售,但要保持利 润不低于20%,那么最多打( )A. 6折B. 7折C. 8折D. 9折 二 填空题(每小题4分,共32分) 11. 在实数①21,②11,③1415926.3,④16,⑤π,⑥ 2020020002.0(相邻两个2之间依次多一个0)中,无理数有 (填写序号).12. 如图,要在河岸l 上建立一水泵房引水到C 处,做法是:过点C 作CD ⊥l 于点D ,将水泵房建在了D 处.这样做最节省水管长度,其数学道理是 . 13. 已知⎩⎨⎧=-=13y x 是方程7=+y mx 的解,则m .14.如图,直线a ∥b ,点B 在a 上,点A 与点C 在b 上; 且AB ⊥BC.若∠1=034,则∠2= .第12题图第14题图15. 将50个数据分成5组列出频数分布表,其中第一组的频数为6,第二组与第五组的频数和为18,第三组的频率为0.2,则第四组的频率为 . 16.一个正数b 有两个不同的平方根1+a 和72-a ,则b a -21的立方根是 . 17.若关于x 的不等式组⎪⎩⎪⎨⎧<->-2210x a x 的所有整数解之和等于9,则a 的取值范围是 .18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上 向右 向下 向右的方向依次不断移动,每次移动1个单位,移动的路线如图所示。

人教版七年级数学下册期末测试题及答案(共五套)

人教版七年级数学下册期末测试题及答案(共五套)

七下期期末(共六套)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PCBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

广西壮族自治区北海市2023-2024学年七年级下学期7月期末考试数学试卷(含答案)

广西壮族自治区北海市2023-2024学年七年级下学期7月期末考试数学试卷(含答案)

北海市2024年春季学期期末教学质量检测七年级数学(考试时间:120分钟满分:120分)注意事项:1.答题前,考生务必将姓名、准考证号、座位号填写在试卷和答题卡上。

2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷上作答无效。

一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列交通标志中,是轴对称图形的是()A.B.C.D.2.下列计算结果正确的是()A.B.C.D.3.下列方程组中,是二元一次方程组的是()A.B.C.D.4.下列各式从左到右变形是因式分解,并分解正确的是()A.B.C.D.5.如图,直线a,b被直线c所截,下列说法中不正确的是()A.∠1与∠2是对顶角B.∠1与∠4是同位角C.∠2与∠5是同旁内角D.∠2与∠4是内错角6.如图,如果∠1=∠3,∠4=140°,那么∠2的度数为()A.140°B.130°C.80°D.40°7.如图,三角形OCD是由三角形OAB绕点O顺时针旋转40°后得到的图形,∠AOB=60°,则∠COB的度数是()A.60°B.40°C.20°D.10°8.某校篮球数比排球数的3倍多5个,篮球数与排球数的差是15个,若设篮球有x个,排球有y个,则可得方程组()A.B.C.D.9.在元旦晚会的校园歌唱比赛中,21名参赛同学的成绩各不相同,按照成绩取前10名进入决赛.如果小庆知道了自己的比赛成绩,要判断能否进入决赛,小庆需要知道这21名同学成绩的()A.中位数B.众数C.平均数D.方差10.同时满足二元一次方程和的x,y的值为()A.B.C.D.11.一组数据6,1,6,3,4,6的众数是()A.6B.1C.3D.412.如图,在三角形ABC中,∠ABC=90°,将三角形ABC沿BC方向平移得到三角形DEF,其中AB=7,BE=3,DM=2,则阴影部分的面积是()A.15B.18C.21D.不确定二、填空题(本大题共6小题,每小题2分,共12分)13.把方程写成用含有x的代数式表示y的形式 .14.计算: .15.因式分解: .16.将一个长方形纸片按如图方式折叠,若∠1=55°,则∠2= °.17.甲、乙两位同学10次数学测试的成绩的平均分是相同的,甲同学成绩的方差为,乙同学成绩的方差为,则两位同学的数学测试成绩比较稳定的是.(填“甲”或“乙”)18.如图,AD∥BC,BC=6,且三角形ABC的面积为12,则点C到AD的距离为 .三、解答题(本大题共8小题,共72分.解答应写出文字说明,证明过程或演算步骤)(1)计算:;(2)计算:;(3)因式分解:.20.(本题满分8分,每小题4分)解下列二元一次方程组:(1)(2)21.(本题满分7分)先化简,再求值:,其中,.22.(本题满分9分)如图,在平面直角坐标系中,点A的坐标为,点B的坐标为,点C的坐标为.(1)画出将△ABC向下平移5个单位长度得到的,写出的坐标;(2)画出将△ABC绕原点O逆时针旋转90°后得到的.23.(本题满分9分)如图,已知直线AB和CD相交于O点,∠DOE是直角,OF平分∠AOE,∠BOD=36°,求∠COF的度数.24.(本题满分9分)某班七年级第二学期数学一共进行四次测试,小丽和小明的成绩如表所示:学生单元测验1期中考试单元测验2期末考试小丽80709080小明60908090(1)求小丽和小明的成绩平均数.(2)若老师计算学生的学期总评成绩按照事下的标准:单元测验1占10%,期中考试占30%,单元测验2占20%,期末考试占40%.请你通过计算,比较谁的学期总评成绩高?25.(本题满分9分)某同学在某家超市发现他看中的随身听和书包,随身听和书包单价之和是435元,且随身听的单价比书包单价的4倍少10元.求该同学看中的随身听和书包单价各是多少元?26.(本题满分9分)如图,在△ABC中,E、G分别是AB、AC上的点,E、D是BC上的点,连接EF、AD、DG,AD∥EF,∠1+∠2=180°.(1)求证:AB∥DG;(2)若DG是∠ADC的平分线,∠2=4∠B-20°,求∠B的度数.北海市2024年春季学期期末教学质量检测·七年级数学参考答案、提示及评分细则一、选择题1.C2.A3.B4.A5.C6.D7.C8.B9.A10.D11.A12.B二、填空题13.14.15.16.7017.乙18.4三、解答题19.解:(1)(2);(3).20.解:(1)①代入②得,,解得,,把代入①得,,∴原方程组的解为:;(2)①×2-②得,,解得,把代入①得,,解得,,∴原方程组的解为21.解:原式,当,时,原式.22.解:(1)如图所示:即为所求作的图;的坐标;(2)如图所示:即为所求作的图.23.解:∵∠DOE是直角,∴∠DOE=90°∴∠COE=180°-∠DOE=180°-90°=90°,又∵∠AOC=∠BOD=36°,∴∠AOE=∠AOC+∠COE=90°+36°=126°,又∵OF平分∠AOE,∴,∴∠COF=∠AOF-∠AOC=63°-36°=27°.24.解:(1)小丽的成绩平均数为:,小明的成绩平均数为:,答:小丽和小明的成绩平均数都是80;(2)小丽的学期总评成绩为:80×10%+70×30%+90×20%+80×40%=79,小明的学期总评成绩为:60×10%+90×30%+80×20%+90×40%=85,答:小明的学期总评成绩高.25.解:设随身听和书包的单价分别为x元,y元.由题意可得,解得,答:随身听和书包的单价分别为346元,89元.26.(1)证明:∵AD∥EF,∴∠BAD+∠2=180°,又∵∠1+∠2=180°,∴∠BAD=∠1,∴AB∥DG.(2)解:∵DG是∠ADC的平分线,∴∠1=∠GDC,∵AB∥DG,∴∠GDC=∠B,又∵∠1=∠GDC,∴∠1=∠GDC=∠B,∵∠2=4∠B-20°,∠1+∠2=180°.∴180°-∠1=4∠B-20°,∴180°-∠B=4∠B-20°,∴∠B=40°.。

七年级数学下学期期末测试卷(含答案)

七年级数学下学期期末测试卷(含答案)

七年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. √ 2的相反数是( )A. 2B. 0C. √ 2D. −√ 22. 下列说法中,错误的是( )A. 4的算术平方根是2B. √ 81的平方根是±3C. 121的平方根是±11D. −1的平方根是±13. 估计√ 10的值( )A. 在3到4之间B. 在4到5之间C. 在5到6之间D. 在6到7之间4. 下列图形中,∠1和∠2是内错角的是( )A. B.C. D.5. 如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为( )A. 45° B. 55°C. 65°D. 75°6. 在平面直角坐标系中,将点(2,1)向下平移3个单位长度,所得点的坐标是( )A. (−1,1)B. (5,1)C. (2,4)D. (2,−2)7. 用加减法解方程组{2a+2b=3,①3a+b=4,②最简单的方法是( )A. ①×3−②×2B. ①×3+②×2C. ①+②×2D. ①−②×28. 不等式组{x−4≤2(x−1),12(x+3)>x+1中两个不等式的解集在数轴上表示正确的是( )A. B. C. D.9. 如图,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置.若∠EFB=65°,则∠AED′等于( )A. 70°B. 65°C. 50°D. 25°10. 小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( )A. 31元B. 30元C. 25元D. 19元二、填空题(本大题共6小题,共18.0分)11. 如图所示,△DEF是由△ABC通过平移得到的,且点B,E,C,F在同一条直线上,若BF=14,EC=8,则从△ABC到△DEF的平移距离为_________.12. 若√ x−1+(y+2)2=0,则(x+y)2021等于.13. 若m<n,则3m−23n−2.14. 如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_____________.15. 3−√ 11的相反数是,绝对值是.16. 在平面直角坐标系中,某机器人从原点O出发,按向右,向上,向右,向下的方向每次移动1个单位长度,行走路线如图所示,第1次移动到A1(1,0)第2次移动到A2(1,1),第3次移动到A3(2,1),第4次移动到A4(2,0)…则第2022次移动至点A2022的坐标是.三、解答题(本大题共7小题,共52.0分。

七年级下学期期末考试数学试卷(附答案解析)

七年级下学期期末考试数学试卷(附答案解析)

七年级下学期期末考试数学试卷(附答案解析)一、选择题(本大题10小题,每小题3分共30分)1.数4的算术平方根是()A.2 B.﹣2 C.±2 D.2.下列图形中,∠1与∠2互为邻补角的是()A.B.C.D.3.下列各数中是无理数的是()A.B.C.D.3.144.在下列调查中,适宜采用全面调查的是()A.了解某省中学生的视力情况B.了解某班学生的身高情况C.检测一批电灯泡的使用寿命D.调查一批汽车的抗撞击能力5.在乡村振兴活动中,某村通过铺设水管将河水引到村庄C处,为节省材料,他们过点C向河岸l作垂线,垂足为点D,于是确定沿CD铺设水管,这样做的数学道理是()A.两点之间,线段最短B.过一点有且只有一条直线与已知直线垂直C.垂线段最短D.两条直线相交有且只有一个交点6.第三象限内的点P到x轴的距离是5,到y轴的距离是6,那么点P的坐标是()A.(5,6)B.(﹣5,﹣6)C.(6,5)D.(﹣6,﹣5)7.李老师设计了一个关于实数运算的程序:输入一个数,乘以后再减去,输出结果.若小刚按程序输入2,则输出的结果应为()A.2 B.C.﹣D.38.下列语句中,是真命题的是()A.如果|a|=|b|,那么a=bB.一个正数的平方大于这个正数C.内错角相等,两直线平行D.如果a>b,那么ac>bc9.若a﹣b<0,则下列不等式正确的是()A.3a>3b B.﹣2a>﹣2b C.a﹣1>b﹣1 D.3﹣a<3﹣b10.已知关于x,y的二元一次方程组,下列结论中正确的是()①当这个方程组的解x,y的值互为相反数时,a=﹣1;②当x为正数,y为非负数时,﹣<a≤;③无论a取何值,x+2y的值始终不变.A.①②B.②③C.①③D.①②③二、填空题(本大题7小题,每小题4分,共28分)11.(4分)计算:|﹣|=.12.(4分)在平面直角坐标系中,将点A(3,m﹣2)在x轴上,则m=.13.(4分)根据如表数据回答259.21的平方根是.x16 16.1 16.2 16.3x2256 259.21 262.44 265.6914.(4分)已知二元一次方程2x﹣3y﹣5=0的一组解为,则2a﹣3b+3=.15.(4分)某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明想得分不少于90分,他至少要答对题.16.(4分)如图,将长方形ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F.若∠EFC=70°,则∠ACF=°.17.(4分)为组织研学活动,王老师把班级里50名学生计划分成若干小组,若每组只能是4人或5人,则有种分组方案.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)在等式y=kx+b中,当x=3时,y=3;当x=﹣1时,y=1.求k,b的值.19.(6分)解不等式组,并将不等式组的解集在数轴上表示出来.20.(6分)在平面直角坐标系中,点P(﹣5,2)和点Q(m+1,3m﹣1),当线段PQ与x轴平行时,求线段PQ的长.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)某校为了解学生的体育锻炼情况,围绕“你最喜欢的一项体育活动”进行随机抽样调查,从而得到一组数据,如图是根据这组数据绘制的两个统计图.请结合统计图,解答下列问题:(1)该校对名学生进行了抽样调查:在扇形统计图中,“羽毛球”所对应的圆心角的度数为度;(2)补全条形统计图;(3)若该校共有2400名学生,请你估计全校学生中最喜欢跳绳活动的人数约为多少人.22.(8分)如图,DE⊥AC,FG⊥AC,∠1=∠2,∠B=∠3+50°,∠CAB=60°.(1)求证:BC∥AG;(2)求∠C的度数.23.(8分)为鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分技第二阶梯电价收费,如图是涛涛家2021年4月和5月所交电费的收据(度数均取整数).(1)该市规定的第一阶梯电费和第二阶梯电费单价分别为多少?(2)涛涛家6月份家庭支出计划中电费不超过120元,她家最大用电量为多少度?五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)小明同学在数学活动中,将一副三角板按如图1所示的方式放置,其中点B在线段EC上,点D在线段AC上,AB与DE相交于点F,∠C=90°,∠A=30°,∠E=45°.(1)求∠BFD的度数;(2)如图2,当小明将三角板DCE绕点C转动到ED⊥AB时,求∠BCE的度数;(3)小明思考:在转动三角板DCE的过程中,当0°<∠BCE<180°,且点E在直线BC的上方时,是否存在DE与三角板ABC的一条边互相平行?若存在,请你帮小明直接写出∠BCE 所有可能的值;若不存在,请说明理由.25.(10分)如图,在平面直角坐标系中,正方形ABCO的边长为1,边AO,CO分别在坐标轴的正半轴上,连接OB,以点O为圆心,对角线OB为半径画弧交x轴的正半轴于点D.(1)填空:线段OB的长为,点D的坐标为;(2)将线段AD向左平移到A′D′位置,当OA'=AD′时,求点D′的坐标;(3)在(2)的条件下,求点D′到直线OB的距离.参考答案与解析一、选择题1.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.2.【解答】解:A.两个角不存在公共边,故不是邻补角,故A不符合题意;B、两个角不存在公共边,故不是邻补角,故B不符合题意;C、两个角不存在公共边,故不是邻补角,故C不符合题意;D、两个角是邻补角,故D符合题意.故选:D.3.【解答】解:A.是分数,属于有理数,故本选项不合题意;B.是无理数,故本选项符合题意;C.,是整数,属于有理数,故本选项不合题意;D.3.14是有限小数,属于有理数,故本选项不合题意;故选:B.4.【解答】解:A.了解某省中学生的视力情况,适合抽样调查,不符合题意;B.了解某班学生的身高情况,适合采用全面调查,符合题意;C.检测一批节能灯的使用寿命,具有破坏性,适合抽样调查,不符合题意;D.调查一批汽车的抗撞击能力,具有破坏性,适合抽样调查,不符合题意;故选:B.5.【解答】解:因为CD⊥l于点D,根据垂线段最短,所以CD为C点到河岸l的最短路径.故选:C.6.【解答】解:∵第三象限的点P到x轴的距离是5,到y轴的距离是6,∴点P的横坐标是﹣6,纵坐标是﹣5,∴点P的坐标为(﹣6,﹣5).故选:D.7.【解答】解:2﹣=.故选:B.8.【解答】解:A、如果|a|=|b|,那么a=b或a=﹣b,原命题是假命题;B、一个正数的平方不一定大于这个正数,如0.1,原命题是假命题;C、内错角相等,两直线平行,是真命题;D、如果a>b,c<0时那么ac<bc,原命题是假命题;故选:C.9.【解答】解:由a﹣b<0可得a<b,A.∵a<b,∴3a<3b,故本选项不合题意;B.∵a<b,∴﹣2a>﹣2b,故本选项符合题意;C.∵a<b,∴a﹣1<b﹣1,故本选项不合题意;D.∵a<b,∴﹣a>﹣b,∴3﹣a>3﹣b,故本选项不合题意;故选:B.10.【解答】解:解方程组得:,①∵x、y互为相反数,∴x+y=0,∴+=0,解得:a=﹣1,故①正确;②∵x为正数,y为非负数,∴,解得:﹣<a≤,故②正确;③∵x=,y=,∴x+2y=+2×==,即x+2y的值始终不变,故③正确;故选:D.二、填空题11.【解答】解:|﹣|=.故答案为:.12.【解答】解:∵点A(3,m﹣2)在x轴上,∴m﹣2=0,解得:m=2.故答案为:2.13.【解答】解:由表中数据可得:259.21的平方根是:±16.1.故答案为:±16.1.14.【解答】解:∵二元一次方程2x﹣3y﹣5=0的一组解为,∴2a﹣3b﹣5=0,∴2a﹣3b=5,∴2a﹣3b+3=5+3=8,故答案为:815.【解答】解:设应答对x道,则:10x﹣5(20﹣x)>90,解得:x>12,∵x取整数,∴x最小为:13,答:他至少要答对13道题.故答案为:13.16.【解答】解:∵将长方形ABCD沿对角线AC折叠,使点B落在点E处,AE交CD于点F,∴∠E=∠B=90°,∠CAB=∠CAE,∵AB∥CD,∠EFC=70°,∴∠BAE=∠EFC=70°,∠CAB=∠ACF,∴∠CAB=∠BAE=35°,∴∠ACF=∠CAB=35°.故答案为:35.17.【解答】解:设4人小组有x组,5人小组有y组,由题意可得:4x+5y=50,∵x,y为自然数,∴,,,∴有3种分组方案,故答案为:3.三、解答题(一)18.【解答】解:根据题意,得,①﹣②,得4k=2,解得:k=,把k=代入②,得﹣+b=1,解得:b=.19.【解答】解:由2x≥x﹣1,得:x≥﹣1,由x+2>4x﹣1,得:x<1,则不等式组的解集为﹣1≤x<1,将不等式组的解集表示在数轴上如下:20.【解答】解:当线段PQ与x轴平行时,3m﹣1=2,解得:m=1,∴Q点坐标为(2,2),∴PQ=2﹣(﹣5)=2+5=7,即线段PQ的长为7.四、解答题(二)21.【解答】解:(1)因为抽样中喜欢足球的学生有12名,占30%,所以共抽样调查的学生数为:12÷30%=40(名).喜欢羽毛球的2名,占抽样的:2÷40=5%.其对应的圆心角为:360°×5%=18°.故答案为:40,18.(2)∵喜欢篮球的占40%,所以喜欢篮球的学生共有:40×40%=16(名).补全的条形图:(3)∵样本中有5名喜欢跳绳,占抽样的5÷40=12.5%,所以该校喜欢跳绳的学生有2400×12.5%=300(名).答:全校学生中最喜欢跳绳活动的人数约为300名.22.【解答】(1)证明:∵DE⊥AC,FG⊥AC,∴DE∥FG,∴∠2=∠AGF,∵∠1=∠2,∴∠1=∠AGF,∴BC∥AG;(2)解:由(1)得,BC∥AG,∴∠B+∠BAC=180°,即∠B+∠3+∠CAB=180°,∵∠B=∠3+50°,∠CAB=60°,∴∠B+(∠B﹣50°)+60°=180°,∴∠B=85°,∴∠C=180°﹣∠B﹣∠CAB=180°﹣85°﹣60°=35°.23.【解答】解:(1)设该市规定的第一阶梯电费单价为x元,第二阶梯电费单价为y元,依题意,得:,解得:.答:该市规定的第一阶梯电费单价为0.5元,第二阶梯电费单价为0.6元.(2)设涛涛家6月份的用电量为m度,依题意,得:200×0.5+0.6(m﹣200)≤120,解得:m≤233,∵m为正整数,∴m的最大值为233.答:涛涛家6月份最大用电量为233度.五、解答题(三)24.【解答】解:(1)如图1中,∵∠A=30°,∠CDE=45°,∴∠ADF=180°﹣45°=135°,∴∠AFD=180°﹣∠A﹣∠ADF=180°﹣30°﹣135°=15°,∴∠BFD=180°﹣∠AFD=180°﹣15°=165°.(2)如图2中,设AB交CE于J.∵DE⊥AB,∴∠EFJ=90°,∵∠E=45°,∴∠EJF=90°﹣45°=45°,∴∠BJC=∠EJF=45°,∵∠B=60°,∴∠ECB=180°﹣∠B﹣∠BJC=180°﹣60°﹣45°=75°.(3)如图3﹣1中,当DE∥BC时,∠BCE=∠E=45°.如图3﹣2中,当DE∥AC时,∠ACE=∠E=45°,∴∠BCE=∠ACB+∠ACE=90°+45°=135°.如图3﹣3中,当DE∥AB时,延长BC交DE于J.∴∠CJD=∠ABC=60°,∵∠CJD=∠E+∠ECJ,∠E=45°,∴∠ECJ=15°,∴∠BCE=180°﹣∠ECJ=180°﹣15°=165°,综上所述,满足条件的∠BCE的值为45°或135°或165°.25.【解答】解:(1)∵四边形OABC是正方形,且边长为1,∴OA=AB=1,根据勾股定理得,OB=,∴OD=,∴D(,0),故答案为:,(,0);(2)∵线段AD向左平移到A′D′,∴AD=A′D′,∵OA'=AD′,∴OD′=OA'+A′D′=(OA'+A′D′+AD′+AD)=OD=,∴D(,0),(3)设点D′到直线OB的距离为h,则S△OBD′=OB•h=OD′•BA,即h=×1,∴点D′到直线OB的距离为h=.。

七年级数学(下)期末考试含答案解析

七年级数学(下)期末考试含答案解析

七年级数学(下)期末考试(考试时间:120分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:人教版七年级下全册。

第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.36的平方根是()A.﹣6B.36C.±D.±62.已知a<b,则下列四个不等式中,不正确的是()A.a﹣2<b﹣2B.﹣2a<﹣2b C.2a<2b D.a+2<b+23.若是关于x和y的二元一次方程ax+y=1的解,则a的值等于()A.3B.1C.﹣1D.﹣34.如图,直线l与直线a,b相交,且a∥b,∠1=110°,则∠2的度数是()A.20°B.70°C.90°D.110°5.下列调査中,适合用全面调查方式的是()A.了解某校七年级(1)班学生期中数学考试的成绩B.了解一批签字笔的使用寿命C.了解市场上酸奶的质量情况D.了解某条河流的水质情况6.如图,小手盖住的点的坐标可能为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,5)D.(4,﹣5)7.方程4x+3y=16的所有非负整数解为()A.1个B.2个C.3个D.无数个8.已知方程组,则x+y的值为()A.﹣1B.0C.2D.39.已知点A(a,3),点B是x轴上一动点,则点A、B之间的距离不可能是()A.2B.3C.4D.510.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120 B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120 D.10x﹣5(20﹣x)<12011.若不等式组⎩⎨⎧-+-142322xxax>>,的解集为32<<x-,则a的取值范围是( )A.21=a B.2-=a C.2-≥a D.1-≤a12.若不等式组⎩⎨⎧<-<-mxxx632无解,则m的取值范围是()A.m>2B.m<2C.m≥2 D.m≤2第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)13.389-+= .A Ox-1-5-4-3-2-115432114.已知(m +2)x|m |﹣1+3>0是关于x 的一元一次不等式,则m 的值为 .15.如图,点D 在射线BE 上,AD BC ∥.若145ADE ∠=︒,则DBC ∠的度数为 ; 16.已知一组数据有50个,其中最大值是142,最小值是98.若取组距为5,则可分为 组. 17.若方程组⎩⎨⎧-=++=+ay x ay x 13313的解满足x+y=0,则a 的值是 .三、解答题(本大题共7小题,共49分.解答应写出文字说明、证明过程或演算步骤) 18.计算(5分)|﹣|+3﹣2+19.解方程组(5分)20.(6分)解下列不等式组,并把解集在数轴上表示出来。

七年级下学期期末考试数学试卷(附答案)

七年级下学期期末考试数学试卷(附答案)

七年级下学期期末考试数学试卷(附答案)一、选择题(本大题共10小题,每小题4分,满分40分,)1、下列选项中能由如图平移得到的是()A.B.C.D.2、计算m6÷m2的结果是()A.m3B.m4C.m8D.m123、如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交4、若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm5、计算:(2x﹣y)2=()A.4x2﹣4xy+y2B.4x2﹣2xy+y2C.4x2﹣y2D.4x2+y26、若a<b,则下列结论中,不正确的是()A.a+2<b+2 B.a﹣2>b﹣2 C.2a<2b D.﹣2a>﹣2b7、学校计划用200元钱购买A、B两种奖品(两种都要买),A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.2种B.3种C.4种D.5种8、图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b29、将一个长为2a,宽为2b的长方形纸片(a>b),用剪刀沿图1中的虛线剪开,分成四块形状和大小都一样的小长方形纸片,然后按图2的方式拼成一个正方形,则中间小正方形的面积为( )A. a2+b2B. a2-b2C. (a+b)2D. (a-b)210、如图,已知AD∥EF∥BC,BD∥GF,且BD平分∠ADC,则图中与∠1相等的角(∠1除外)共有( )A. 4个B. 5个 C. 6个 D. 7个二、填空题(本大题共4小题,每小题5分,满分20分)11.8的立方根是________.12.因式分解:x3y2-x=________13.若分式方程mx−1+31−x=2的解为正数,则m的取值范围是________14.已知:AB∥CD,点C在点D的右侧,BE平分∠ABC,DE平分∠ADC,BE,DE所在直线交于点E,∠ADC=70°。

七年级下学期期末考试数学试卷(带答案)

七年级下学期期末考试数学试卷(带答案)

七年级下学期期末考试数学试卷(带答案)一、选择题(本大题共8小题)1.下列计算正确的是()A.a2+a3=a5B.a6÷a2=a3C.(a2)3=a6D.2a×3a=6a2.如果a<b,下列各式中正确的是()A.ac2<bc2B.>C.﹣3a>﹣3b D.>3.不等式组的解集在数轴上可以表示为()A.B.C.D.4.已知是二元一次方程2x+my=1的一个解,则m的值为()A.3 B.﹣5 C.﹣3 D.55.下列命题是真命题的是()A.同旁内角互补B.三角形的一个外角等于两个内角的和C.若a2=b2,则a=bD.同角的余角相等6.如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠A=∠EDF C.BC∥EF D.∠B=∠E7.如图,在长方形ABCD纸片中,AD∥BC,AB∥CD,把纸片沿EF折叠后,点C、D分别落在C'、D'的位置.若∠EFB=65°,则∠AED'等于()A.70°B.65°C.50°D.25°8.如图,在△ABC中,已知点D,E分别为BC,AD的中点,EF=2FC,且△ABC的面积12,则△BEF的面积为()A.5 B.C.4 D.二、填空题(本大题共8小题,请将下列各题正确的结果填写在答题卡相应的位置上)9、计算:a2•a3=.10、不等式3x﹣2>1的解集是.11、2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为.12、分解因式:a2﹣4=.13、买5kg苹果和3kg梨共需23元,分别求苹果和梨的单价.设苹果的单价x元/kg,梨的单价y元/kg,可列方程:.14、有一个多边形的每一个外角都等于45°,则这个多边形是边形.15、命题“三角形的三个内角中至少有两个锐角”是(填“真命题”或“假命题”).16、阅读材料:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i;(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i;(4+i)(4﹣i)=16﹣i2=16﹣(﹣1)=17;(2+i)2=4+4i+i2=4+4i﹣1=3+4i根据以上信息,完成下面计算:(1+2i)(2﹣i)+(2﹣i)2=.三、解答题(本大题共8小题,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)17.(10分)计算:(1)(﹣2)2﹣|﹣3|+(π﹣2021)0;(2)m•m5+(2m3)2.18.(10分)解方程组:(1);(2).19.(10分)解下列不等式(组):(1)x﹣3(x﹣2)>4;(2).20.(6分)先化简,再求值:(x﹣1)2﹣x(x+3),其中x=.21.(6分)请将下列证明过程补充完整:已知:如图,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥CD证明:∵CE平分∠ACD∴∠=∠(_),∵∠1=∠2.(已知)∴∠1=∠()∴AB∥CD()22.(8分)如图,AB∥CD,点E在CB的延长线上,∠A=∠E,AC=ED,求证:CB=CD.23.(10分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”.这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?24.(12分)定义:在平面内,如果一个图形沿一条直线折叠,直线两旁的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(1)如图1,OP是∠MON的平分线,请你在图1中画出一对以OP所在直线为对称轴的全等三角形.(2)请你仿照这个作全等三角形的方法,解答下列问题:①如图2,在△ABC中,∠ACB=90°,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.猜想FE和DF之间的数量关系,直接写出结论.②如图3,在△ABC中,如果∠ACB≠90°,而①中的其它条件不变,请问①中结论是否仍然成立?若成立,请证明;若不成立,请说明理由.参考答案一、选择题1.选:D. 2.选:A. 3.选:A. 4.选:B.5.选:A. 6.选:C. 7.选:D. 8.选:C.二、填空题9、a5.10、 x>1.11、2×10﹣8.12、(a+2)(a﹣2).13、5x+3y=23.14、八.15、真命题.16、7﹣i.三、解答题17.【解答】解:(1)原式=4﹣3+1=2;(2)原式=m6+4m6=5m6.18.【解答】解:(1),①+②得5x=20,解得x=4,将x=4代入②得2×4﹣2y=15,解得y=﹣3.5,∴原方程组的解为;(2)原方程组可化为,②﹣①×5得3y=6,解得y=2,将y=2代入①得x+2=6,解得x=4,∴原方程组的解为.19.【解答】解:(1)去括号,得:x﹣3x+6>4,移项,得:x﹣3x>4﹣6,合并同类项,得:﹣2x>﹣2,系数化为1,得:x<1;(2)解不等式3(x﹣1)<5x+1,得:x>﹣2,解不等式2x﹣4≤,得:x≤3,则不等式组的解集为﹣2<x≤3.20.【解答】解:原式=x2﹣2x+1﹣x2﹣3x=﹣5x+1,当x=时,原式=﹣5×+1=0.21.【解答】证明:∵CE平分∠ACD∴∠2=∠ECD(角平分线的定义),∵∠1=∠2.(已知)∴∠1=∠ECD(等量代换))∴AB∥CD(内错角相等两直线平行).故答案为:2,ECD,角平分线的定义,ECD,等量代换,内错角相等两直线平行.22.【解答】证明:∵AB∥CD,∴∠ABC=∠DCE,在△ABC和△ECD中,,∴△ABC≌△ECD(AAS),∴CB=CD.23.【解答】解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:,解得:,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×=3辆、至少享有B型车2000×=2辆.24.【解答】解:(1)如图1,在射线OP上取点A,作AB⊥OM于B,AC⊥ON于C,∵OP是∠MON的平分线,AB⊥OM,AC⊥ON,∴AB=AC,∴Rt△AOB≌Rt△AOC,则AOB和Rt△AOC是一对以OP所在直线为对称轴的全等三角形;(2)①FE=DF,理由如下:如图2,在AC上截取CH=CD,连接FH,∵AD是∠BAC的平分线,∠BAC=30°,∴∠BAD=∠CAD=15°,∴∠ADC=∠BAD+∠B=75°,∵CE是∠ACB的平分线,∠ACB=90°,∴∠ACE=∠BCE=45°,在△FCD和△FCH中,,∴△FCD≌△FCH(SAS),∴FH=FH,∠FHC=∠FDC=75°,∴∠AHF=105°,∵∠AEF是△BCE的外角,∴∠AEF=∠B+∠BCE=105°,∴∠AEF=∠AHF,∴△AEF≌△AHF(AAS),∴FE=FH,∴FE=DF;②、①中结论仍然成立,FE=DF,理由如下:如图3,在AC上截取CG=CD,连接FG,∵∠B=60°,∴∠BAC+∠BCA=120°∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC+∠FCA=(∠BAC+∠BCA)=60°,∴∠AFC=180°﹣60°=120°,∴∠CFD=60°,∵CE是∠ACB的平分线,∴∠ACE=∠BCE,在△FCD和△FCG中,∴△FCD≌△FCG(SAS),∴FD=FG,∠CFG=∠CFD=60°,∴∠AFE=∠AFG=60°,在△AFE和△AFG中,,∴△AFE≌△AFG(ASA),∴FG=FE,∴FE=DF.。

七年级下学期数学期末试卷(精品#直接打印)

七年级下学期数学期末试卷(精品#直接打印)

七 年 级 数 学 试 题一、填空题(每小题3分,共18分)1.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标 .2.-364的绝对值等于 .3.不等式组20210x x -≤⎧⎨->⎩的整数解是 .4.如图,a ∥b ,∠1=55°,∠2=40°,则∠3的度数是 °.5.五女峰森林公园门票价格:成人票每张50元,学生票每张25元.某旅游团买30张门票花了1250元,设其中有x 张成人票,y 张学生票,根据题意列方程组是 . 6.数学活动中,张明和王丽向老师说明他们的位置(单位:m ): 张明:我这里的坐标是(-200,300); 王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是 m . 二、单项选择题(每小题4分,共32分)7.在数2,π,38-,0.3333…中,其中无理数有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个 8.已知:点P (x ,y )且xy=0,则点P 的位置在( )(A) 原点 (B) x 轴上 (C) y 轴上 (D) x 轴上或y 轴上 9.比较大小:215- 1 应填( ). A 、< B 、 > C 、≤ D 、 = 10. 下列调查中,适合用抽样调查的是( ) A .一批炮弹的杀伤半 B .全国人口普查 C .全国农业普查 D .测量某班男生平均身高11.不等式组211420x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )12.下列说法中,正确的...是( ) (A)图形的平移是指把图形沿水平方向移动 (B)“相等的角是对顶角”是一个真命题 (C)平移前后图形的形状和大小都没有发生改变 (D)“直角都相等”是一个假命题13.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已 知中学生被抽到的人数为150人,则应抽取的样本容量等于( )(A) 1500 (B) 1000 (C) 150 (D) 50014.如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是( )①∠1=∠2 ②∠3=∠4 ③∠A=∠DCE ④∠D+∠ABD=180°(A) ①③④ (B) ①②③ (C) ①②④ (D) ②③④三、解答题(共70分) 15.(8分)计算:2393-+-. 322327-+16.(6分)解方程组24824x y x y -=⎧⎨+=-⎩ ① ②.17.(6分)解不等式组3(2)2211132x x x x --⎧⎪-+⎨-⎪⎩<≥,并把解集表示在数轴上,写出不等式组的整数解.18.(6分)已知:如图,AB ∥CD ,EF交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=50°,求∠BHF 的度数.19.(6分)如图,已知∠1=∠2,∠3=∠4,求证:BC ∥EF .完成推理填空: 证明:因为∠1=∠2(已知),所以AC ∥ ( ) , 所以∠ =∠5 ( ) , 又因为∠3=∠4(已知), 所以∠5=∠ (等量代换),所以BC ∥EF ( ) .(第4题) 2 1 3 4B D (第14题)20.(9分)育人中学开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种 活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生 进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为________ 40%,其所在扇形统计图中对应的 圆心角度数是 ______144度; (2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?21.(9分)在平面直角坐标系中,O 为坐标原点,A(-2,3),B (2, 2). (1)画出三角形OAB ; (2)求三角形OAB 的面积;(3)若三角形OAB 中任意一点P (x0,y0)经平移后对应点为P1(x0+4,y0-3),请画出三角 形OAB 平移后得到的三角形O1A1B1,并写出点O1、A1 、B1的坐标.22.(8分) 为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?23.(12分)为了抓住集安国际枫叶旅游节的商机,某商店决定购进A 、B 两种旅游纪念品.若购进A 种 纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件, 需要800元.(1)求购进A 、B 两种纪念品每件各需多少元;(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案? (3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?xO 2 1 3 4 5 6 -1 -21-3 -4 12 3 4-1 -2 -3yA。

七年级下学期期末数学试卷(含答案)

七年级下学期期末数学试卷(含答案)

七年级下学期期末数学试卷(时间:120分钟 满分:120分)亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 请认真审题,看清要求,仔细答题,要相信我能行。

一、认真填一填:(每题3分,共30分)1、剧院里5排2号可以用(5,2)表示,则(7,4)表示 。

2、不等式-4x ≥-12的正整数解为 .3、要使4 x 有意义,则x 的取值范围是_______________。

4、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_______________________.5、如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。

6、等腰三角形一边等于5,另一边等于8,则周长是_________ .7、如图所示,请你添加一个条件....使得AD ∥BC , 。

8、若一个数的立方根就是它本身,则这个数是 。

9、点P (-2,1)向上平移2个单位后的点的坐标为 。

10、某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%。

问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x 名,走读学生y 名,则可列出方程组为 。

二、细心选一选:(每题3分,共30分) 11、下列说法正确的是( )A 、同位角相等;B 、在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥c 。

C 、相等的角是对顶角;D 、在同一平面内,如果a ∥b,b ∥c ,则a ∥c 。

12、观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( )12.长为9,6,5,3的四根木条,选其中三根组成三角形,共有( )种选法.A .4B .3C .2D .113、有下列说法:(1) A B C DE C DBA C BA(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数; (3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信达
5
4D
3E
21
C B A
2015年七年级下学期数学期末考试
沾益县白水一中
姓名 班级 考号
(本卷三个大题,共27个小题,满分120分,考试用时120分钟) 题 号 一 二 三 总 分
评卷人
选择题(本题共10个小题,每小题只有一个正确选项,每小题3分,满分30在实数:
1 在实数 :3.14159,3
64,1.010010001…,
,π,722
中,无理数有( )
A .1个
B .2个
C .3个
D .4
2计算正确的是( )
A .113±=
B .
()332
=-
C .9.081.0=-
D .39±=
3如图所示的图案分别是三菱、大众、奥迪、奔驰汽车的车标,其中可以看着是由“基
本图案”经过平移得到的是( )
4.若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )
A 、(-4,3)
B 、(4,-3)
C 、(-3,4)
D 、(3,-4)
5.如图,一把矩形直尺沿直线断开并错位,点E 、D 、B 、
F 在同一条直线上,若∠ADE =125°, 则∠DBC 的度数为
( )
A .55°
B .65°
C .75°
D .125° 6.下列抽样调查较科学的是( )
①张涛为了知道烤箱中所烤的饼是否熟了,取出一块试吃;
②刘明为了了解初中三个年级学生的平均身高,对初三年级一个班的学生做了调查;
③杨丽为了解云南省2015年的平均气温,上网查询了6月份30天的气温情况; ④李智为了解初中三个年级的课外作业完成情况,向三个年级各一个班的学生做了调查。

A .①②
B .①③
C .①④
D .③④
7.设“●”“▲”“■”表示三种不同的物体,现用天平称了两
次,情况如图所示,那么●、▲、■这三种物体按质量从大到小....
的顺序排列为( )
A. ■●▲
B. ■▲●
C. ▲●■
D. ▲■● 8.如右图,下列能判定AB ∥CD 的条件有( )个。

(1) ︒=∠+∠180BCD B ;(2)21∠=∠; (3) 43∠=∠;(4) 5∠=∠B
A .1个
B .2个
C .3个
D .4个
9.点()12,1+-m m P 在第二象限,则m 的取值范围是( )
A .2
1
>
m B .1<m 学校 班级 姓名 学号 座位号
密 封 线 内 不 要 答 题
信达
5121123
x x +-+≥C .21-
<m 或1>m D .12
1
<<-m 10..在同一平面内,有下列说法
①过两点有且只有一条直线 ②两条直线有且只有一个交点
③过一点有且只有一条直线与已知直线垂直 ④过一点有且只有一条直线与已知直线平行 上述说法中正确的个数有( )
A .1个
B .2个
C .3个
D .4个
二.填空题(本题共10个,每小题3分,满分30分)
11.如下图,小手盖住的点的坐标可能为 (写出一个即可).
12. 比2大比3小的无理数是 (写出一个既可)。

13. 64的立方根是 。

14.如上图,将一个宽度相等的纸条按图所示折叠一下,如果∠1=140°,那么∠2= 。

15、在二元一次方程3x-2y=5中,用含x 的式子表示y ,得y= 。

16.若点()3,2+-a a M 在y 轴上,则=a 。

17.小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为 (-4,3),(-2,3),则移动后猫眼的坐标为 。

18.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、四、五组数据的个数分别是2,8,15,X, 5,则X= 第四组频率为 。

19.小明解方程组⎪⎩⎪⎨⎧=-=+1533y x y x ●的解为⎪⎩⎪⎨⎧==★
y x 4
,由于不小心滴了两滴墨水,刚好遮住了
两数●和★,请你帮他找回这两个数●= 和★ 。

20.⎪⎪⎩⎪
⎪⎨⎧=+=+=+6
42
x z z y y x 的解为 。

三、解答题(共60分)
21、(7分)当x 取何值时,25()25122=-x 成立。

2-x>0 22、(8分)解不等式组 ,并把解集在数轴上表示出来。

23.(8分)如图,∠1+∠2=230°,b ∥c , 则∠1、∠2、∠3、∠4各是多少度?
24、(9分)△ABC 的位置如图所示:
14题图
4
21
c
a
b 3
信达
(1)画出将△ABC 先向右平移4个单位,再向下平移2个单位的△A 1B 1C 1。

(2)写出点A 1、B 1、C 1的坐标。

(3)求出△ABC 的面积。

25.(9分)如图,图1是大众汽车的图标,图2反映其中直线间的关系,且AC//BD ,AE//BF 。

(1)∠A 与∠B 的关系如何? (2)至少写出两种以上的方法说明。

图1 图2
26.(8分)为了节约资源,保护环境,从2008年6月1日起全国限用超薄塑料袋。

古城中学课外实践小组的同学利用业余时间对本城居民家庭使用超薄塑料袋的情况进行了抽样调查。

统计情况如图所示,其中A 为“不再使用”,B 为“明显减少了使用量”,C 为“没有明显变化”。

(1)本次抽样的样本容量是 。

(2)图中=a (户),=c (户)。

(3)若被调查的家庭占全城区家庭数的10%,请估计该城区不再使用超薄塑料袋的家庭数。

(4)针对本次调查结果,请用一句话发表你的感想。

27.(12分)“震灾无情人有情”。

民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件。

(1)求打包成件的帐篷和食品各多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部..运往受灾地区。

已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件。

则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来。

(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元。

民政局应选择哪种方案可使运输费最少?最少运输费是多少元?

B x
-4 -3 -2 -1 1 2 3 4 5
B
C。

相关文档
最新文档