呼伦贝尔市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

呼伦贝尔市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)是二元一次方程的一个解,则a的值为()
A.1
B.
C.3
D.-1
【答案】B
【考点】二元一次方程的解
【解析】【解答】解:将x=1,y=3代入2x+ay=3得:2+3a=3,
解得:a= .
故答案为:B.
【分析】方程的解就是能使方程的左边和右边相等的未知数的值,根据定义将将x=1,y=3代入2x+ay=3即可得出关于字母a的方程,求解即可得出a的值。

2、(2分)如图所示,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0 cm”和“15 cm”
分别对应数轴上的-3.6和x,则()
A. 9<x<10
B. 10<x<11
C. 11<x<12
D. 12<x<13
【答案】C
【考点】一元一次不等式组的应用,一元一次方程的实际应用-几何问题
【解析】【解答】解:根据题意得:x+3.6=15,
解得:x=11.4 ;
故答案为:C
【分析】根据数轴上两点间的距离得出原点右边的线段长度+原点左边的线段长度=15,列出方程,求解得出x 的值,从而得出答案。

3、(2分)不等式组的最小整数解是()
A.0
B.-1
C.1
D.2
【答案】A
【考点】一元一次不等式的特殊解
【解析】【解答】解不等式组可得,即<x≤2,整数解有0、1、2,其中最小的是0,A符合题意。

故答案为:A
【分析】首先解出不等式组的解集,再确定其不等式组的最小整数解.解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
4、(2分)下列方程组中,属于二元一次方程组的是()
A.
B.
C.
D.
【答案】C
【考点】二元一次方程组的定义
【解析】【解答】解:A. 未知项xy的次数为2,故不是二元一次方程组;
B. 第一个方程不是整式方程,故不是二元一次方程组;
C. 符合二元一次方程组的定义,是二元一次方程组;
D.含有三个未知数,故不是二元一次方程组。

故答案为:C
【分析】组成方程组的两个方程满足:①一共含有两个未知数,②未知数项的最高次数是1,③整式方程,同时满足这些条件的方程组就是二元一次方程组,根据定义即可一一判断。

5、(2分)下列说法正确的是()
A. 3与的和是有理数
B. 的相反数是
C. 与最接近的整数是4
D. 81的算术平方根是±9
【答案】B
【考点】相反数及有理数的相反数,平方根,算术平方根,估算无理数的大小
【解析】【解答】解:A.∵是无理数,∴3与2的和不可能是有理数,故错误,A不符合题意;
B.∵2-的相反数是:-(2-)=-2,故正确,B符合题意;
C.∵≈2.2,∴1+最接近的整数是3,故错误,C不符合题意;
D.∵81的算术平方根是9,故错误,D不符合题意;
故答案为:B.
【分析】A.由于是无理数,故有理数和无理数的和不可能是有理数;
B.相反数:数值相同,符号相反的数,由此可判断正确;
C.根据的大小,可知其最接近的整数是3,故错误;
D.根据算术平方根和平方根的定义即可判断对错.
6、(2分)如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()
A.60°
B.80°
C.100°
D.120°
【答案】B
【考点】平行线的性质
【解析】【解答】解:∵DE∥OB
∴∠ADE=∠AOB=40°,∠CDE+∠DCB=180°
∵CD和DE为光线
∴∠ODC=∠ADE=40°
∴∠CDE=180°-40°-40°=100°
∴∠BCD=180°-100°=80°。

故答案为:B。

【分析】根据入射光线和反射光线,他们与镜面所成的角相等,可得∠ODC=∠ADE;根据直线平行的性质,两直线平行,同位角相等,同旁内角互补进行计算即可。

7、(2分)利用数轴确定不等式组的解集,正确的是()
A.
B.
C.
D.
【答案】A
【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组
【解析】【解答】解:先解不等式2x+1≤3得到x≤1则可得到不等式组的解集为-3<x≤1,再根据不等式解集
的数轴表示法,“>”、“<”用虚点,“≥”、“≤”用实心点,可在数轴上表示为:.
故答案为:A.
【分析】先求出每一个不等式的解集,确定不等式组的解集,在数轴上表示出来.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
8、(2分)下列不是二元一次方程组的是()
A. .
B. .
C. .
D.
【答案】C
【考点】二元一次方程组的定义
【解析】【解答】解:由定义可知:是分式方程.故答案为:C.
【分析】根据二元一次方程组的定义,两个方程中,含有两个未知数,且含未知数项的次数都是1的整式方程。

判断即可。

9、(2分)已知方程,则x+y的值是()
A. 3
B. 1
C. ﹣3
D. ﹣1 【答案】D
【考点】解二元一次方程组
【解析】【解答】解:,
①+②得:2x+2y=﹣2,
则x+y=﹣1.
故答案为:D.
【分析】观察方程组中同一未知数的系数特点,由(①+②)÷2,就可求出x+y的值。

10、(2分)已知方程组,则(x﹣y)﹣2=()
A. 2
B.
C. 4
D.
【答案】D
【考点】代数式求值,解二元一次方程组
【解析】【解答】解:,
①﹣②得:x﹣y=2,
则原式=2﹣2= .故答案为:D
【分析】观察方程组中同一未知数的系数特点及所求代数式的底数,由①﹣②得出x-y的值,再整体代入求值即可。

11、(2分)如图,∠1=100°,要使a∥b,必须具备的另一个条件是()
A. ∠2=100°
B. ∠3=80°
C. ∠3=100°
D. ∠4=80°
【答案】C
【考点】平行线的判定
【解析】【解答】解:∠3=100°,∠1=100°,
则∠1=∠3,
则a∥b.故答案为:C.
【分析】∠1和∠3是同位角,如果它们相等,那么两直线平行.
12、(2分)下列四种说法:① x=是不等式4x-5>0的解;② x=是不等式4x-5>0的一个解;
③ x>是不等式4x-5>0的解集;④ x>2中任何一个数都可以使不等式4x-5>0成立,所以x>2也是它的解集,其中正确的有()
A.1个
B.2个
C.3个
D.4个
【答案】B
【考点】不等式的解及解集
【解析】【解答】解:①当x=时,不等式4x-5=0,故原命题错误;②当x=时,不等式4x-5=5
>0,故原命题正确;③解不等式4x-5>0得,x>,故原命题正确;④与③矛盾,故错误.故正确的有②和③,故答案为:B.
【分析】解不等式4x-5>0 可得x>,不等式的解是解集中的一个,而不等式的解集包含了不等式的所
有解,①x=不在x>的范围内;②x=在x>的范围内;③解不等式4x-5>0 可得x>;
④x>2中任何一个数都可以使不等式4x-5>0成立,但它并不是所有解的集合。

根据以上分析作出判断即可。

二、填空题
13、(1分)的最小值是,的最大值是,则________.
【答案】-4
【考点】代数式求值,一元一次不等式的应用
【解析】【解答】解:的最小值是a,x≤-6的最大值是b,∴a=2,b=-6,∴a+b=2+(-6)=-4.故
答案为:-4.
【分析】由题意先求出a,b;再把a,b的在代入代数式计算即可得出答案。

14、(1分)如果=3,那么(a+3)2的值为________.
【答案】81
【考点】实数的运算
【解析】【解答】由题意可知,a+3的算术平方根是3,因为32=9,即a+3=9,所以(a+3)2=81
故答案为:81
【分析】表示a+3的算术平方根,9的算术平方根是3,即a+3=9,从而求得(a+3)2的值。

15、(5分)4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad
﹣bc.若 >12,则x__.
【答案】>1
【考点】解一元一次不等式
【解析】【解答】解:由题意得:(x+3)2−(x−3)2>12,
整理得:12x>12,
解得:x>1.
故答案为:>1.
【分析】根据所给的运算法则得到(x+3)2−(x−3)2>12,解此不等式可求出答案.
16、(1分)已知方程组由于甲看错了方程①中a得到方程组的解为,乙看
错了方程组②中的b得到方程组的解为,若按正确的a,b计算,则原方程组的解为________.
【答案】
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:将代入②得,﹣12+b=﹣2,b=10;
将代入①,5a+20=15,a=﹣1.
故原方程组为,
解得.
故答案为:.
【分析】甲看错了方程①中的a 但没有看错b,所以可把x=-3和y=-1代入方程②得到关于b的方程,激发出可求得b的值;乙看错了方程组②中的b 但没有看错a,所以把x=5和y=4代入①可得关于a的方程,解方程可求得a的值;再将求得的a、b的值代入原方程组中,解这个新的方程组即可求解。

17、(1分)不等式组的所有整数解是________
【答案】0,1
【考点】一元一次不等式组的特殊解
【解析】【解答】解:,
解不等式①得,x>﹣,
解不等式②得,x≤1,
所以不等式组的解集为﹣x≤1,
所以原不等式组的整数解是0,1.
故答案为:0,1
【分析】在解第二个不等式时需要将不等式两边同乘以6将不等式的未知数系数化为整数再求解.
18、(1分)图形在平移时,下列特征:①图形的形状;②图形的位置;③线段的长度;④角的大小;⑤垂直关系;⑥平行关系,其中不发生改变的有________ (把你认为正确的序号都填上)
【答案】①③④⑤⑥
【考点】平移的性质
【解析】【解答】解:∵平移只改变图形的位置
∴:①图形的形状;②图形的位置;③线段的长度;④角的大小;⑤垂直关系;⑥平行关系,都不会改变。

故答案为:①③④⑤⑥【分析】根据平移的性质,可知平移只改变图形的位置,即可得出答案。

三、解答题
19、(5分)把下列各数填在相应的大括号里:
,,-0.101001,,― ,0.202002…, ,0,
负整数集合:(…);
负分数集合:(…);
无理数集合:(…);
【答案】解:= -4,= -2,= ,所以,负整数集合:(,,…);
负分数集合:(-0.101001,― ,,…);无理数集合:(0.202002…,,…);【考点】有理数及其分类,无理数的认识
【解析】【分析】根据实数的分类填写。

实数包括有理数和无理数。

有理数包括整数(正整数,0,负整数)和分数(正分数,负分数),无理数是指无限不循环小数。

20、(5分)解不等式组,并写出该不等式组的最大整数解.
【答案】解:∵解不等式2x+4≥0得:x≥﹣2,
解不等式得:x<1,
∴不等式组的解集是﹣2≤x<1,
∴该不等式组的最大整数解为0
【考点】一元一次不等式组的应用
【解析】【分析】在解第二个不等式时,若不等式,两边同乘以2时,不要忘记每一项都乘以2.同时该题要求写出最大整数解.
21、(5分)小明在甲公司打工.几个月后同时又在乙公司打工.甲公司每月付给他薪金470元,乙公司每月付给他薪金350元.年终小明从这两家公司共获得薪金7620元.问他在甲、乙两公司分别打工几个月? 【答案】解:设他在甲公司打工x个月,在乙公司打工y个月,依题可得:
470x+350y=7620,
化简为:47x+35y=762,
∴x==16-y+,
∵x是整数,
∴47|10+12y,
∴y=7,x=11,
∴x=11,y=7是原方程的一组解,
∴原方程的整数解为:(k为任意整数),
又∵x>0,y>0,
∴,
解得:-<k<,
k=0,
∴原方程正整数解为:.
答:他在甲公司打工11个月,在乙公司打工7个月.
【考点】二元一次方程的解
【解析】【分析】设他在甲公司打工x个月,在乙公司打工y个月,根据等量关系式:甲公司乙公司+乙公司乙公司=总工资,列出方程,此题转换成求方程47x+35y=762的整数解,求二元一次不定方程的正整数解时,可先求出它的通解。

然后令x>0,y>0,得不等式组.由不等式组解得k的范围.在这范围内取k的整数值,代人通解,即得这个不定方程的所有正整数解.
22、(5分)已知关于x、y的方程组
问a为何值时,方程组有无数多组解?a为何值时,只有一组解?
【答案】解:②-①×2得
(a-4)x=0
所以,当a-4=0,即a=4时,x可取一切数.与之相对应的y 的值也是无数多个,即a=4时,原方程组有无数多组解.
当a-4≠0,即a≠4时,,即x只能取0,与之相对应的y的值为2,即当a≠4时,方程组只
有一组解
【考点】解二元一次方程组
【解析】【分析】该方程组中除未知数x、y外,还含有其他字母a,这类字母通常称为参数.可将参数作为已知的数,同样用代入消元法或加减消元法将方程组化为一个含参数的一元一次方程,再根据一次项系数≠0;一次项系数=0两种情况讨论.
23、(5分)如图,在四边形ABCD中,AB∥CD,点P为BC上一点(点P与B,C不重合),设∠CDP =∠α,∠CPD=∠β,你能不能说明,不论点P在BC上怎样运动,总有∠α+∠β=∠B.
【答案】解:过点P作PE∥CD交AD于E,则∠DPE=∠α.
∵AB∥CD,∴PE∥AB.
∴∠CPE=∠B,即∠DPE+∠β=∠α+∠β=∠B.故不论点P在BC上怎样运动,总有∠α+∠β=∠B
【考点】平行公理及推论,平行线的性质
【解析】【分析】过点P作PE∥CD交AD于E,根据平行线性质得∠DPE=∠α,由平行的传递性得PE∥AB,根据平行线性质得∠CPE=∠B,从而即可得证.
24、(5分)如图,直线AB、CD相交于点O,∠AOE=90°,∠COE=55°,求
∠BOD.
【答案】解:∵∠BOD=∠AOC,∠AOC=∠AOE-∠COE
∴∠BOD=∠AOE-∠COE=90º-55º=35º
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等,可得∠BOD=∠AOC,再根据∠BOD=∠AOC=∠AOE-∠COE,代入数据求得∠BOD。

25、(5分)
【答案】解:依题可设x=m,y=3m,z=5m,
∴x+y+z=m+3m+5m=18,
∴m=2,
∴x=2,y=6,z=10.
∴原方程组的解为:.
【考点】三元一次方程组解法及应用
【解析】【分析】根据x:y:z=1:3:5可设x=m,y=3m,z=5m,再由x+y+z=18得出m值,将m值代入可求得x、y、z的值,从而得出原方程组的解.
26、(5分)若与(b-27)2互为相反数,求- 的立方根.
【答案】解:由题意知+(b-27)2=0
∴a+8=0 ,b-27=0
∴a=-8,b=27,
∴- =-5.
故- 的立方根是
【考点】立方根及开立方,非负数之和为0
【解析】【分析】根据相反数的意义,及二次根式的非负性,偶次方的非负性,知,几个非负数的和等于0,
则这几个数都等于0,从而得出关于a,b的二元一次方程组,求解得出a,b的值,再代入代数式即可得出答案。

相关文档
最新文档