线线角_线面角_二面角的讲义
专题03 利用向量法求线线角、线面角、二面角及距离问题(知识梳理+专题过关)(解析版)
![专题03 利用向量法求线线角、线面角、二面角及距离问题(知识梳理+专题过关)(解析版)](https://img.taocdn.com/s3/m/bc4b9cbd05a1b0717fd5360cba1aa81144318fba.png)
专题03利用向量法求线线角、线面角、二面角及距离问题【知识梳理】(1)异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅==a b a b a bθ.(2)线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅==a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,=n n θ或12,-n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅=n n n n θ.(4)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线,a b 的公垂线的方向向量为n ,这时分别在,a b 上任取,A B 两点,则向量在n 上的正射影长就是两条异面直线,a b 的距离.则||||||||⋅=⋅=n AB n d AB n n 即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(5)点到平面的距离A 为平面α外一点(如图),n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|n ||n |||||sin |||cos ,|=||nn⋅⋅=⋅=⋅<>=⋅AB AB AH AB AB AB n AB AB θ||||⋅=AB n d n (6)点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算.(7)在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为PA n d PA cos PA,n n⋅=〈〉=.【专题过关】【考点目录】考点1:异面直线所成角考点2:线面角考点3:二面角考点4:点到直线的距离考点5:点到平面的距离、直线到平面的距离、平面到平面的距离考点6:异面直线的距离【典型例题】考点1:异面直线所成角1.(2022·贵州·遵义市第五中学高二期中(理))在三棱锥P —ABC 中,PA 、PB 、PC 两两垂直,且PA =PB =PC ,M 、N 分别为AC 、AB 的中点,则异面直线PN 和BM 所成角的余弦值为()A 33B .36C .63D .66【答案】B【解析】以点P 为坐标原点,以PA ,PB ,PC 方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,令2PA =,则()0,0,0P ,()0,2,0B ,()1,0,0M ,()1,1,0N ,则(1,1,0)PN =,(1,2,1)BM =-,设异面直线PN 和BM 所成角为θ,则||3cos 6||||PN BM PN BM θ⋅==.故选:B.2.(2022·四川省成都市新都一中高二期中(理))将正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,则异面直线AB 与CD 所成角的余弦值为()A .12B 2C .12-D .2【答案】A【解析】取BD 中点为O ,连接,AO CO ,所以,AO BD CO BD ⊥⊥,又面ABD ⊥面CBD 且交线为BD ,AO ⊂面ABD ,所以AO ⊥面CBD ,OC ⊂面CBD ,则AO CO ⊥.设正方形的对角线长度为2,如图所示,建立空间直角坐标系,()()()(0,0,1),1,0,0,0,1,0,1,0,0A B C D -,所以()()=1,0,1,=1,1,0AB CD ---,1cos ,222AB CD AB CD AB CD⋅==-⨯.所以异面直线AB 与CD 所成角的余弦值为12.故选:A3.(2022·新疆·乌苏市第一中学高二期中(理))如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,13CC =,90ACB ∠=︒,则1BC 与1AC 所成角的余弦值为()A .3210B .3210-C .24D 5【答案】A【解析】因为111ABC A B C -为直三棱柱,且90ACB ∠=︒,所以建立如图所示的空间直角坐标系,()()()()110,4,0,0,0,0,0,0,3,3,0,3B C C A ,所以()()110,4,3,3,0,3BC AC =-=--,115,992BC A C ==+设1BC 与1AC 所成角为θ,所以11932cos cos ,532BC A Cθ-===⨯.则1BC 与1AC 32故选:A.4.(2022·福建宁德·高二期中)若异面直线1l ,2l 的方向向量分别是()1,0,2a =-,()0,2,1b =,则异面直线1l 与2l 的夹角的余弦值等于()A .25-B .25C .255-D 255【答案】B【解析】由题,()22125a =+-=,22215b =+=,则22cos 555a b a bθ⋅-==⋅⋅,故选:B5.(2022·河南·焦作市第一中学高二期中(理))已知四棱锥S ABCD -的底面ABCD 是边长为1的正方形,SD ⊥平面ABCD ,线段,AB SC 的中点分别为E ,F ,若异面直线EC 与BF 5SD =()A .1B .32C .2D .3【答案】C【解析】如图示,以D 为原点,,,DA DC DS 分别为x 、y 、z 轴正方向联立空间直角坐标系.不妨设(),0SD t t =>.则()0,0,0D ,()1,0,0A ,()1,1,0B ,()0,1,0C ,()0,0,S t ,11,,02E ⎛⎫⎪⎝⎭,10,,22t F ⎛⎫ ⎪⎝⎭.所以11,,02EC ⎛⎫=- ⎪⎝⎭,11,,22t BF ⎛⎫=-- ⎪⎝⎭.因为异面直线EC 与BF 55211054cos ,1111444EC BF EC BF EC BFt -+==⨯+⨯++,解得:t =2.即SD =2.故选:C6.(2021·广东·深圳市龙岗区德琳学校高二期中)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2DC SD ==,点M 是侧棱SC 的中点,2AD =则异面直线CD 与BM 所成角的大小为___________.【答案】3π【解析】由题知,底面ABCD 为矩形,SD ⊥底面ABCD 所以DA 、DC 、DS 两两垂直故以D 为原点,建立如图所示的空间直角坐标系因为2DC SD ==,2AD =,点M 是侧棱SC 的中点,则()0,0,0D ,()0,2,0C ,)2,2,0B ,()0,0,2S ,()0,1,1M 所以()0,2,0DC =,()2,1,1BM =--设异面直线CD 与BM 所成角为θ则21cos 22211DC BM DC BMθ⋅-===⨯++⋅因为异面直线的夹角为0,2π⎛⎤⎥⎝⎦所以3πθ=故答案为:3π.7.(2021·广东·江门市广雅中学高二期中)如图,在正三棱柱111ABC A B C -中,1 2.AB AA ==E 、F 分别是BC 、11AC 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所10BD 的长为_______.【答案】【解析】如图以E为坐标原点建立空间直角坐标系:则()()10,0,0,,2,0,1,0,22E F B ⎛⎫- ⎪ ⎪⎝⎭设(0,,2)(11)D t t -≤≤,则()1,2,0,1,22EF BD t ⎫==+⎪⎪⎝⎭,设直线BD 与EF 所成角为θ所以cos ||||EF BD EF BD θ⋅==22314370t t +-=,解得1t =或3723t =-(舍去),所以BD ==故答案为:8.(2021·福建省厦门集美中学高二期中)如图,在正四棱锥V ABCD -中, E 为BC 的中点,2AB AV ==.已知F 为直线VA 上一点,且F 与A 不重合,若异面直线BF 与VE 所成角为余弦值为216,则VF VA =________.【答案】23【解析】连接AC 、BD 交于点O ,则AC BD ⊥,因为四棱锥V ABCD -为正四棱锥,故VO ⊥底面ABCD ,以点O 为坐标原点,OA 、OB 、OV 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则)A、E ⎛⎫ ⎪ ⎪⎝⎭、(V、()B ,设),0,VF VA λλ===-,其中01λ≤≤,(0,BV =,则)),1BF BV VF λ=+=-,22,22VE ⎛=- ⎝,由已知可得21cos ,6BF VE BF VE BF VE ⋅<>==⋅,整理可得2620λλ--=,因为01λ≤≤,解得23λ=,即23VF VA =.故答案为:23考点2:线面角9.(2022·山东·东营市第一中学高二期中)如图,在正方体1111ABCD A B C D -中,棱长为2,M 、N 分别为1A B 、AC 的中点.(1)证明://MN 平面11BCC B ;(2)求1A B 与平面11A B CD 所成角的大小.【解析】(1)如图,以点D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系.则()2,0,0A ,()0,2,0C ,()12,0,2A ,(2,2,0)B ,()12,2,2B ,()2,1,1M ,()1,1,0N .所以()1,0,1MN =--,因为DC ⊥平面11BCC B ,所以平面11BCC B 的一个法向量为(0,2,0)DC =,因为0MN DC ⋅=,所以MN DC ⊥,因为MN ⊂平面11BCC B ,所以//MN 平面11BCC B (2)()0,2,0DC =,()12,0,2DA =,()10,2,2A B =-.设平面11A B CD 的一个法向量为(),,n x y z =则122020DA n x z DC n y ⎧⋅=+=⎨⋅==⎩,令1z =,则1x =-,0y =,所以()1,0,1n =-设1A B 与平面11A B CD 所成角为θ,则1111sin cos ,2A B n A B n A B nθ⋅===⋅.因为0180θ︒≤<︒,所以1A B 与平面11A B CD 所成角为30°.10.(2021·黑龙江·哈尔滨七十三中高二期中(理))如图,已知正四棱柱1111ABCD A B C D -中,底面边长2AB =,侧棱1BB 的长为4,过点B 作1B C 的垂线交侧棱1CC 于点E ,交1B C 于点F.(1)求证:1A C ⊥平面BED ;(2)求1A B 与平面BDE 所成的角的正弦值.【解析】(1)连接AC ,因为1111ABCD AB C D -是正四棱柱,即底面为正方形,则BD AC ⊥,又1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1BD AA ⊥,又1AC AA A =∩,1,AC AA ⊂平面1A AC ,故BD ⊥平面1A AC ,而1AC ⊂平面1A AC ,则1BD AC ⊥,同理得1BE AC ⊥,又BD BE B ⋂=,,BD BE ⊂平面BDE ,所以1A C ⊥平面BDE ;(2)以DA 、DC 、1DD 分别为,,x y z 轴,建立直角坐标系,则()2,2,0B ,()()12,0,4,0,2,0A C ,∴()10,2,4A B =-,()12,2,4AC =--,由题可知()12,2,4AC =--为平面BDE 的一个法向量,设1A B 与平面BDE 所成的角为α,则1130sin cos 62024,C A B A α==⋅,即1A B 与平面BDE 所成的角的正弦值为306.11.(2021·河北唐山·高二期中)如图(1),△BCD 中,AD 是BC 边上的高,且∠ACD =45°,AB =2AD ,E 是BD 的中点,将△BCD 沿AD 翻折,使得平面ACD ⊥平面ABD ,得到的图形如图(2).(1)求证:AB⊥CD;(2)求直线AE与平面BCE所成角的正弦值.【解析】(1)证明:由图(1)知,在图(2)中AC⊥AD,AB⊥AD,∵平面ACD⊥平面ABD,平面ACD∩平面ABD=AD,AB⊂平面ABD,∴AB⊥平面ACD,又CD⊂平面ACD,∴AB⊥CD;(2)由(1)可知AB⊥平面ACD,又AC⊂平面ACD,∴AB⊥AC.以A为原点,AC,AB,AD所在直线分别为x,y,z轴建立空间直角坐标系,不妨设AC=1,则A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,1),E(0,1,12),∴A E=10,1,2⎛⎫,⎪⎝⎭BC=(120),BE,-,=10,1,2⎛⎫-,⎪⎝⎭设平面BCE的法向量为n=(x,y,z),由20102BC n x yn BE y z⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令y=1,得x=2,z=2,则n=(2,1,2),……设直线AE与平面BCE所成角为θ,则245 sin|cos,|15532AE nθ==⨯故直线AE与平面BCE4512.(2022·贵州·遵义市第五中学高二期中(理))如图,在四棱锥P-ABCD中,AD⊥平面ABP,BC//AD,∠PAB=90°,PA=AB=2,AD=3,BC=1,E是PB的中点.(1)证明:PB ⊥平面ADE ;(2)求直线AP 与平面AEC 所成角的正弦值.【解析】(1)因AD ⊥平面ABP ,PB ⊂平面ABP ,则AD ⊥PB ,又PA =AB =2,E 是PB 的中点,则有AE ⊥PB ,而AE AD A =,,AE AD ⊂平面ADE ,所以PB ⊥平面ADE .(2)因AD ⊥平面ABP ,∠PAB =90°,则直线,,AB AD AP 两两垂直,以点A 为原点,射线,,AB AD AP 分别为x ,y ,z 轴非负半轴建立空间直角坐标系,如图,则(0,0,0),(1,0,1),(0,0,2),(2,1,0)A E P C ,(1,0,1),(2,1,0),(0,0,2)AE AC AP ===,令平面AEC 的一个法向量为(,,)n x y z =,则020n AE x z n AC x y ⎧⋅=+=⎨⋅=+=⎩,令1x =-,得(121)n ,,=-,令直线AP 与平面AEC 所成角的大小为θ,则||26sin |cos ,|||||62n AP n AP n AP θ⋅=〈〉==⨯所以直线AP 与平面AEC 613.(2022·四川省成都市新都一中高二期中(理))如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD BC ∥,90ABC ∠=︒,2PA AB BC ===,1AD =,点M ,N 分别为棱PB ,DC 的中点.(1)求证:AM ∥平面PCD ;(2)求直线MN 与平面PCD 所成角的正弦值.【解析】(1)证明:以A 为坐标原点建立如图所示的空间直角坐标系,则()()()0,0,0,0,2,0,2,2,0A B C ,()()()1,0,0,0,0,2,0,1,1D P M ,则()()0,1,1,1,0,2AM PD ==-,()1,2,0CD =--,设平面PCD 的一个法向量为(),,n x y z =r,则2020n PD x z n CD x y ⎧⋅=-=⎨⋅=--=⎩,令1z =,则2,1x y ==-,则平面PCD 的一个法向量为()2,1,1n =-,0110,n AM n AM∴⋅=-+=∴⊥//AM ∴平面PCD(2)由(1)得3,1,02N ⎛⎫ ⎪⎝⎭,3,0,12MN ⎛⎫=- ⎪⎝⎭设直线MN 与平面PCD 所成角为θ.sin cos ,n MN MN n n MNθ⋅∴==⋅39=∴直线MN 与平面PCD 所成角的正弦值为27839.14.(2021·福建·厦门大学附属科技中学高二期中)如图,在四棱锥P ABCD -中,PA ABCD ⊥平面,,//AB AD BC AD ⊥,点M 是棱PD 上一点,且满足2,4AB BC AD PA ====.(1)求二面角A CD P --的正弦值;(2)若直线AM 与平面PCD所成角的正弦值为3,求MD 的长.【解析】(1)如图建立空间直角坐标系,则(0,0,0)A ,(2,2,0)C ,(0,4,0)D ,(0,0,4)P ,(2,2,0)CD =-,(0,4,4)PD =-,设平面PCD 法向量(,,)n x y z =,则00n CD n PD ⎧⋅=⎨⋅=⎩,即220440x y y z -+=⎧⎨-=⎩,令1x =,111x y z =⎧⎪=⎨⎪=⎩,即(1,1,1)n =,又平面ACD 的法向量(0,0,1)m =,cos ,3m n m n m n⋅〈〉=,故二面角A CD P --3=.(2)设MD PD λ=(01λ≤≤),(0,4,4)MD λλ=-,点(0,4,44)M λλ-,∴(0,4,44)AM λλ=-,由(1)得平面PCD 法向量(1,1,1)n =,且直线AM 与平面PCD∴6cos ,3AM n AM n AM n⋅〈〉==,解得12λ=,即12=MD PD ,又PD 12==MD PD 15.(2022·北京市第十二中学高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,PD ⊥平面ABCD ,E 是棱PC 的中点.(1)证明://PA 平面BDE ;(2)若1,90PD AD BD ADB ===∠=︒,F 为棱PB 上一点,DF 与平面BDE 所成角的大小为30°,求PFPB的值.【解析】(1)如图,连接AC 交BD 于点M ,连接EM ,因为M 是AC 的中点,E 是PC 的中点,所以//PA EM 又ME ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE(2)因为1,90PD AD BD ADB ===∠=︒,所以AD BD ⊥,故以D 为坐标原点,DA 为x 轴,DB 为y 轴,DP 为z轴建立空间直角坐标系,则()()()()()1110,0,0,1,0,0,0,1,0,0,0,1,1,1,0,,,222D A B P C E ⎛⎫-- ⎪⎝⎭,()111,,,0,1,0222DE DB ⎛⎫=-= ⎪⎝⎭,设平面BDE 的法向量为(),,n x y z =r ,则00n DE n DB ⎧⋅=⎨⋅=⎩,即11102220x y z y ⎧-++=⎪⎨⎪=⎩,故取()1,0,1n =,设(01)PF PB λλ=<<,则()()0,,1,0,,1F DF λλλλ-=-因为直线DF 与平面BDE 所成角的大小为30,所以1sin302DF n DF n⋅==12=解得12λ=,故此时12PF PB =.16.(2022·江苏·东海县教育局教研室高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,2PD AD ==,AD PC ⊥,点E 在线段PC 上(不与端点重合),30PCD ∠=︒.(1)求证:AD ⊥平面PCD ;(2)是否存在点E 使得直线PB 与平面ADE 所成角为30°?若存在,求出PEEC的值;若不存在,说明理由.【解析】(1)证明:在正方形ABCD 中,可得AD CD ⊥,又由AD PC ⊥,且CDPC C =,CD ⊂平面PCD ,PC ⊂平面PCD ,根据线面垂直的判定定理,可得AD ⊥平面PCD .(2)在平面PCD 中,过点D 作DF CD ⊥交PC 于点F .由(1)知AD ⊥平面PCD ,所以AD DF ⊥,又由AD DC ⊥,以{},,DA DC DF 为正交基底建立空间直角坐标系D xyz -,如图所示,则()(0,0,0),2,0,0D A ,()2,2,0B ,()0,2,0C,(0,P -,设PEEC λ=,则PE EC λ=,所以212,,11AE AP PE λλλ⎛⎫-=+=- ++⎝⎭,()2,0,0AD =-,(2,3,PB =uu r设平面ADE 的一个法向量为(),,n x y z =,则2120120AE n x y AD n x λλ⎧-⋅=-++=⎪⎨+⎪⋅=-=⎩,取y =0,12x z λ==-,所以平面ADE的一个法向量()2n λ=-,因为直线PB 与平面ADE 所成角为30,所以1sin 30cos ,2PB n ︒==,解得5λ=±综上可得,存在点E 使得直线PB 与平面ADE 所成角为30,且5PEEC=±考点3:二面角17.(2022·云南·罗平县第一中学高二期中)如图,在直三棱柱111ABC A B C -中,D 为1AB 的中点,1B C 交1BC 于点E ,AC BC ⊥,1CA CB CC ==.(1)求证:DE ∥平面11AAC C ;(2)求平面1AB C 与平面11A B C 的夹角的余弦值.【解析】(1)证明:因为111ABC A B C -为三棱柱,所以平面11BCC B 是平行四边形,又1B C 交1BC 于点E ,所以E 是1B C 的中点.又D 为1AB 的中点,所以//DE AC ,又AC ⊂平面11AAC C ,DE ⊂/平面11AAC C ,所以//DE 平面11AAC C ;(2)在直三棱柱111ABC A B C -中,1CC ⊥平面111A B C ,又AC BC ⊥,所以11C A 、11C B 、1C C 两两互相垂直,所以以1C 为坐标原点,分别以11C A 、11C B 、1C C 为x 、y 、z 轴建立空间直角坐标系1C xyz -,如图所示.设11CA CB CC ===,则1(0,0,0)C ,1(1,0,0)A ,1(0,1,0)B ,(1,0,1)A ,(0,0,1)C ,所以1(1,1,1)AB =--,(1,0,0)=-AC ,11(1,1,0)=-A B ,1(1,0,1)AC =-.设平面1AB C 的一个法向量为(,,)n x y z =,则100n AB n AC ⎧⋅=⎨⋅=⎩,所以00x y z x -+-=⎧⎨-=⎩,不妨令1y =,则(0,1,1)n =,设平面11A B C 的一个法向量为(,,)m x y z =,则11100m A B m A C ⎧⋅=⎪⎨⋅=⎪⎩,所以00x y x z -+=⎧⎨-+=⎩,不妨令1y =,则(1,1,1)m =.所以cos ||||m n m n m n ⋅〈⋅〉===⋅所以平面1AB C 与平面11A B C18.(2022·江苏·宝应县教育局教研室高二期中)如图,已知三棱锥O ABC -的侧棱,,OA OB OC 两两垂直,且1,2OA OB OC ===,E 是OC的中点.(1)求异面直线BE 与AC 所成角的余弦值;(2)求二面角A BE C --的正弦值.【解析】(1)以O 为原点,OB ,OC ,OA 分别为,,x y z 轴建立如图所示空间直角坐标系,则有()0,0,1A ,()2,0,0B ,()0,2,0C ,()0,1,0E .()()()2,0,00,1,02,1,0EB =-=-,()0,2,1AC =-.2cos 5EB AC =-,.由于异面直线BE 与AC 所成的角是锐角,故其余弦值是25.(2)()()2,0,10,1,1AB AE =-=-,.设平面ABE 的法向量为()1,,n x y z =,则由11n AB n AE ⊥⊥,,得200x z y z -=⎧⎨-=⎩,取()11,2,2n =.由题意可得,平面BEC 为xOy 平面,则其一个法向量为()20,0,1n =u u r,1212122cos 3n n n n n n ⋅===⋅,,则12sin 3n n =,,即二面角A BE C --的正弦值为3.19.(2021·福建·厦门一中高二期中)如图,在平行四边形ABCD中,AB =,2BC =,4ABC π∠=,四边形ACEF 为矩形,平面ACEF ⊥平面ABCD ,1AF =,点M 在线段EF 上运动.(1)当AE DM ⊥时,求点M 的位置;(2)在(1)的条件下,求平面MBC 与平面ECD 所成锐二面角的余弦值.【解析】(1)2AB =2AD BC ==,4ABC π∠=,∴222cos 2AC AB BC AB BC ABC +-⋅∠∴222AB AC BC +=,∴90BAC ∠=︒,AB AC ∴⊥,又AF AC ⊥,又平面ACEF ⊥平面ABCD ,平面ACEF 平面ABCD AC =,AF ⊂平面ACEF ,AF ∴⊥平面ABCD ,所以以AB ,AC ,AF 为x ,y ,z 轴建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(2,2,0),(0,2,1),(0,0,1)A B C D E F-,设(0,,1),02M y y 则2,1)AE =,(2,2,1)DM y =-AE DM ⊥,∴2(2)10AE DM y ⋅=-+=,解得22y =,∴12FM FE =.∴当AE DM ⊥时,点M 为EF 的中点.(2)由(1)可得(2,,1)2BM =,(BC =设平面MBC 的一个法向量为111(,,)m x y z =,则111112020m BM y z m BC ⎧⋅=+=⎪⎨⎪⋅==⎩,取12y =,则m =,易知平面ECD 的一个法向量为(0,1,0)n =,∴cos |cos ,|||||m n m n m n θ⋅=<>=⋅∴平面MBC 与平面ECD 所成锐二面角的余弦值为105.20.(2022·四川省内江市第六中学高二期中(理))如图,直角三角形ABC 中,60BAC ∠=,点F 在斜边AB 上,且4AB AF =,AD ⊥平面ABC ,BE ⊥平面ABC ,3AD =,4AC BE ==.(1)求证:DF ⊥平面CEF ;(2)点M 在线段BC 上,且二面角F DM C --的余弦值为25,求CM 的长度.【解析】(1)90ACB ∠=,60BAC ∠=,4AC =,8AB ∴=,又4AB AF =,2AF ∴=;2222cos 2016cos6012CF AC AF AC AF BAC ∴=+-⋅∠=-=,解得:CF =,222AF CF AC ∴+=,则AF CF ⊥;DA ⊥平面ABC ,CF ⊂平面ABC ,CF AD ∴⊥;又,AF AD ⊂平面ADF ,AFA AD =,CF ∴⊥平面ADF ,DF ⊂平面ADF ,DF CF ∴⊥;连接ED ,在四边形ABED 中,作DH BE ⊥,垂足为H,如下图所示,DF ==EF ==,DE =222DF EF DE ∴+=,则DF EF ^;,CF EF ⊂平面CEF ,CF EF F ⋂=,DF ⊥∴平面CEF .(2)以C 为坐标原点,,CA CB 正方向为,x y 轴,以BE 的平行线为z 轴,可建立如图所示空间直角坐标系,设CM m =,则()0,,0M m ,()0,0,0C ,()4,0,3D,()F ,()4,,3MD m ∴=-,()4,0,3CD =,()1,FD =,设平面DMF 的法向量(),,n x y z =,则43030MD n x my z FD n x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令9y =,解得:3x m =-z m =,()3n m m ∴=--;设平面CDM 的法向量(),,m a b c =,则430430CD m a c MD m a mb c ⎧⋅=+=⎨⋅=-+=⎩,令3a =,解得:0b =,4c =-,()3,0,4m ∴=-;二面角F DM C --的余弦值为25,2cos ,5m n m n m n ⋅∴<>==⋅,25=,((()222134381m m m ⎡⎤∴-=-++⎢⎥⎣⎦,解得:m;当m F DM C --为钝二面角,不合题意;则二面角F DM C --的余弦值为25时,CM =21.(2022·江苏徐州·高二期中)如图所示,在四棱锥中P ABCD -,2AB DC=,0AB BC ⋅=,AP BD ⊥,且AP DP DC BC ====(1)求证:平面ADP ⊥平面ABCD ;(2)已知点E 是线段BP 上的动点(不与点P 、B 重合),若使二面角E AD P --的大小为4π,试确定点E 的位置.【解析】(1)连接BD ,由2AB DC =,0AB BC ⋅=知242,//,AB DC AB DC CD BC ==⊥,在Rt BCD 中,22216,4BD CD BC BD =+==,设AB 的中点为Q ,连接DQ ,则//,CD QB QB CD =,所以四边形BCDQ 为平行四边形,又,CD BC DC BC ⊥=,所以四边形BCDQ 为正方形,所以,22DQ AB DQ AQ ⊥==Rt AQD 中,22216AD AQ DQ =+=,在Rt ABD 中,222161632AD BD AB +=+==,所以AD BD ⊥,又,AP BD AP AD A ⊥⋂=,,AP AD ⊂平面ADP ,所以BD ⊥平面ADP ,又BD ⊂平面ABCD ,所以平面ADP ⊥平面ABCD ;(2)在APD △中,2228816AP PD AD +=+==,所以AP PD ⊥,在Rt APD 中,过点P 作PF AD ⊥,垂足为F ,因为PA PD =,所以F 为AD 中点,所以2PF DF ==,由(1)得BD ⊥平面ADP ,PF ⊂平面ADP ,则BD PF ⊥,,AD BD ⊂平面ABCD ,ADBD D =,则PF ⊥平面ABCD .以D 为原点,分别以,DA DB 所在直线为,x y 轴,以过点D 与平面ABCD 垂直的直线为z 轴,建立如图所示空间坐标系,则(0,0,0),(4,0,0),(0,4,0),(2,0,2),(4,0,0),(2,4,2)D A B P DA PB ==--,设()(2,4,2),0,1PE PB λλλλλ==--∈,则(22,4,22)DE DP PE λλλ=+=--,易知平面PAD 的一个法向量为(0,1,0)m =,设平面EAD 的法向量为(,,)n x y z =,则()()40224220n DA x n DE x y z λλλ⎧⋅==⎪⎨⋅=-++-=⎪⎩,令1z =,则1(0,,1)2n λλ-=,所以221cos ,cos 4211m n m n m nλπλλλ⋅-===⎛⎫+ ⎪-⎝⎭,即2122521λλλ-=-+,即23210λλ+-=,解得1λ=-(舍)或13λ=,所以,当点E 在线段BP 上满足13PE PB =时,使二面角E AD P --的大小为4π.22.(2021·湖北十堰·高二期中)如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,//,2,4,23AN BM AB AN BM CN ====(1)证明:BM ⊥平面ABCD ;(2)在线段CM 上是否存在一点E ,使得二面角E BN M --的余弦值为33,若存在求出CE EM 的值,若不存在,请说明理由.【解析】(1)正方形ABCD 中,BC AB ⊥,因为平面ABCD ⊥平面ABMN ,平面ABCD平面,ABMN AB BC =⊂平面ABCD ,所以BC ⊥平面ABMN ,所以BC BM ⊥,且BC BN ⊥,2,23BC CN ==所以2222BN CN BC -,又因为2AB AN ==,所以222BN AB AN =+,所以AN AB ⊥,又因为AN //BM ,所以BM AB ⊥,BC BA B =,所以BM ⊥平面ABCD .(2)由(1)知,BM ⊥平面,ABCD BM AB ⊥,以B 为坐标原点,,,BA BM BC 所在直线分别为,,x y z 轴建立空间直角坐标系.()()()()0,0,0,0,0,2,2,2,0,0,4,0B C N M 设点(),,,,E x y z CE CM λ=[0,λ∈1],则()(),,20,4,2x y z λ-=-,所以0422x y z λλ=⎧⎪=⎨⎪=-⎩,所以()0,4,22E λλ-,所以()()2,2,0,0,4,22BN BE λλ==-,设平面BEN 的法向量为(),,m x y z =,()2204220m x y m y z λλ⋅=+=⎧∴⎨⋅=+-=⎩令1x =,所以21,1y z λλ=-=-,所以2(1,1,)1m λλ=--,显然,平面BMN 的法向量为()0,0,2BC =,所以cos ,BC m BC m BC m⋅=⋅3==即2642λλ=-+,即23210λλ+-=,解得13λ=或1-(舍),则存在一点E ,且12CE EM =.考点4:点到直线的距离23.(2021·云南大理·高二期中)鳖臑是指四个面都是直角三角形的三棱锥.如图,在鳖臑P ABC -中,PA ⊥平面ABC ,2AB BC PA ===,D ,E 分别是棱AB ,PC 的中点,点F是线段DE 的中点,则点F 到直线AC 的距离是()A .38B 6C .118D .224【答案】B 【解析】因为AB BC =,且ABC 是直角三角形,所以AB BC ⊥.以B 为原点,分别以BC ,BA 的方向为x ,y 轴的正方向,建立如图所示的空间直角坐标系B xyz -.因为2AB BC PA ===,所以()0,2,0A ,()2,0,0C ,()0,1,0D ,()1,1,1E ,则()2,2,0AC =-,11,1,22AF ⎛⎫=- ⎪⎝⎭.故点F到直线AC 的距离2221136144422AF AF AC AC d ⎛⎫⋅⎛⎫⎪=-++-= ⎪ ⎪⎝⎭⎝⎭.故点F 到直线AC 的距离是6424.(2021·河北·石家庄市第十二中学高二期中)已知直线l 的方向向量为(1,0,2)n =,点()0,1,1A 在直线l 上,则点()1,2,2P 到直线l 的距离为()A .230B 30C 3010D 305【答案】D【解析】由已知得(1,1,1)PA =---,因为直线l 的方向向量为(1,0,2)n =,所以点()1,2,2P 到直线l 的距离为2222212930335512PA n PA n ⎛⎫⎛⎫⋅-----= ⎪ ⎪ ⎪+⎝⎭⎝⎭故选:D25.(2021·北京·牛栏山一中高二期中)在空间直角坐标系中,已知长方体1111ABCD A B C D -的项点()0,0,0D ,()2,0,0A ,()2,4,0B ,()10,4,2C =,则点1A 与直线1BC 之间的距离为()A .B .2C .125D .52【答案】A【解析】如图,由题意知,建立空间直角坐标系D xyz -,1(000)(200)(240)(042)D A B C ,,,,,,,,,,,,则1422AB BC CC ===,,,连接111A B AC ,,所以1111A B A C BC ===得11A BC V 是等腰三角形,取1BC 的中点O ,连接1OA ,则1OA ⊥1BC ,即点1A 到直线1BC 的距离为1OA ,在1Rt A OB 中,有1OA ==故选:A26.(2021·北京市昌平区第二中学高二期中)已知空间中三点(1,0,0)A -,(0,1,1)B -,(2,1,2)C --,则点C 到直线AB 的距离为()A B C D 【答案】A【解析】依题意得()()1,1,2,1,1,1AC AB =--=-则点C 到直线AB 的距离为63d =故选:A27.(2022·江西南昌·高二期中(理))如图,在棱长为4的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在线段1D E 上,点Р到直线1CC 的距离的最小值为_______.【答案】5【解析】在正方体1111ABCD A B C D -中,建立如图所示的空间直角坐标系,则11(0,4,0),(0,0,4),(2,4,0),(0,4,4)C D E C ,11(2,0,0),(0,0,4),(2,4,4)CE CC ED ===--,因点P 在线段1D E 上,则[0,1]λ∈,1(2,4,4)EP ED λλλλ==--,(22,4,4)CP CE EP λλλ=+=--,向量CP 在向量1CC 上投影长为11||4||CP CC d CC λ⋅==,而||CP =,则点Р到直线1CC的距离4525h =,当且仅当15λ=时取“=”,所以点Р到直线1CC的距离的最小值为5.28.(2022·福建龙岩·高二期中)直线l 的方向向量为()1,1,1m =-,且l 过点()1,1,1A -,则点()0,1,1P -到l 的距离为___________.【解析】(1,0,2)AP =-,直线l 的方向向量为()1,1,1m =-,由题意得点P 到l的距离d =29.(2021·山东·嘉祥县第一中学高二期中)在棱长为2的正方体1111ABCD A B C D -中,O 为平面11A ABB 的中心,E 为BC 的中点,则点O 到直线1A E 的距离为________.【答案】3【解析】如图,以D 为原点建系,则()()()12,0,2,2,1,1,1,2,0A O E ,则()()110,1,1,1,2,2AO A E =-=--,则111111cos ,3A O A E A O A E A O A E⋅==,又[]11,0,A O A E π∈,所以111sin ,3A O A E =,所以点O 到直线1A E的距离为1111sin ,33A O A O A E ==.故答案为:23.考点5:点到平面的距离、直线到平面的距离、平面到平面的距离30.(2020·山东省商河县第一中学高二期中)如图,在正四棱柱1111ABCD A B C D -中,已知2AB AD ==,15AA =,E ,F 分别为1DD ,1BB 上的点,且11DE B F ==.(1)求证:BE ⊥平面ACF :(2)求点B 到平面ACF 的距离.【解析】(1)以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系,如下图所示:则()()()()()2,0,0,2,2,0,0,2,0,0,0,1,2,2,4A B C E F ,设面ACF 的一个法向量为()=,,n x y z ,()()=2,2,0,0,2,4AC AF -=,可得00n AC n AF ⎧⋅=⎪⎨⋅=⎪⎩,即220240x y y z -+=⎧⎨+=⎩,不妨令1z =则()=2,2,1n BE --=,BE ∴⊥平面ACF .(2)()=0,2,0AB ,则点B 到平面ACF 的距离为43AB nn⋅=.31.(2022·江苏·2的正方形ABCD 沿对角线BD 折成直二面角,则点D 到平面ABC 的距离为______.【答案】33【解析】记AC 与BD 的交点为O ,图1中,由正方形性质可知AC BD ⊥,所以在图2中,,OB AC OD AC ⊥⊥,所以2BOD π∠=,即OB OD⊥如图建立空间直角坐标系,易知1OA OB OC OD ====则(0,0,1),(0,1,0),(1,0,0),(0,1,0)A B C D -则(0,1,1),(1,0,1),(0,2,0)AB AC BD =--=-=设(,,)n x y z =为平面ABC 的法向量,则00AB n y z AC n x z ⎧⋅=--=⎨⋅=-=⎩,取1x =,得(1,1,1)n =-所以点D 到平面ABC 的距离22333BD n d n⋅===故答案为:23332.(2022·河南·濮阳一高高二期中(理))如图,在棱长为1的正方体1111ABCD A B C D -中,若E ,F 分别是上底棱的中点,则点A 到平面11B D EF 的距离为______.【答案】1【解析】以1D 为坐标原点,11111,,D A D C D D 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则()1,0,1A ,()11,1,0B ,10,,12E ⎛⎫⎪⎝⎭,()10,0,0D ,设平面11B D EF 的法向量(),,m x y z =,则有1111020m D E y z m D B x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令2y =得:2,1x z =-=-,故()2,2,1m =--,其中()10,1,1AB =-,则点A 到平面11B D EF 的距离为11AB m d m⋅===故答案为:133.(2022·山东·济南外国语学校高二期中)在棱长为1的正方体1111ABCD A B C D -中,平面1AB C 与平面11AC D 间的距离是________.【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()11,0,1B 、()1,1,0C 、()0,1,0D 、()10,0,1A 、()11,1,1C ,设平面1AB C 的法向量为()111,,m x y z =,()11,0,1AB =,()1,1,0AC =,由1111100m AB x z m AC x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取11x =,可得()1,1,1m =--,设平面11AC D 的法向量为()222,,n x y z =,()10,1,1DA =-,()11,0,1DC =,由12212200n DA y z n DC x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取21x =,可得()1,1,1n =--r ,因为m n =,平面1AB C 与平面11AC D 不重合,故平面1//AB C 平面11AC D ,()0,1,0AD =uuu r ,所以,平面1AB C 与平面11AC D 间的距离为1333AD m d m⋅==故答案为:33.34.(多选题)(2020·辽宁·大连八中高二期中)已知正方体1111ABCD A B C D -的棱长为1,点,E O 分别是11A B ,11AC 的中点,P 在正方体内部且满足1132243AP AB AD AA =++,则下列说法正确的是()A .点A 到直线BE 255B .点O 到平面11ABCD 的距离是24C .平面1A BD 与平面11B CD 3D .点P 到直线AD 的距离为56【答案】ABCD【解析】如图,建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,1(0,0,1)A ,1(1,1,1)C ,()10,1,1D ,1,0,12E ⎛⎫⎪⎝⎭,所以1(1,0,0),,0,12BA BE ⎛⎫=-=- ⎪⎝⎭.设ABE θ∠=,则||5cos 5||||BA BE BA BE θ⋅==,25sin 5θ==.故A 到直线BE的距离1||sin 1d BA θ===,故选项A 正确.易知111111,,0222C O C A ⎛⎫==-- ⎪⎝⎭,平面11ABC D 的一个法向量1(0,1,1)DA =-,则点O 到平面11ABC D 的距离11211||224||DA C O d DA ⋅===,故选项B 正确.1111(1,0,1),(0,1,1),(0,1,0)A B A D A D =-=-=.设平面1A BD 的法向量为(,,)n x y z =,则110,0,n A B n A D ⎧⋅=⎪⎨⋅=⎪⎩所以0,0,x z y z -=⎧⎨-=⎩令1z =,得1,1y x ==,所以(1,1,1)n =.所以点1D 到平面1A BD的距离113||||A D n d n ⋅===因为平面1//A BD 平面11B CD ,所以平面1A BD 与平面11B CD 间的距离等于点1D 到平面1A BD 的距离,所以平面1A BD 与平面11B CD 间的距离为3.故选项C 正确.因为1312423AP AB AD AA =++,所以312,,423AP ⎛⎫= ⎪⎝⎭,又(1,0,0)AB =,则34||AP AB AB ⋅=,所以点P 到AB 的距离56d ==.故选项D 正确.故选:ABCD.考点6:异面直线的距离35.(2021·安徽·合肥市第六中学高二期中)如图正四棱柱1111ABCD A B C D -中,1AB BC ==,12AA =.动点P ,Q 分别在线段1C D ,AC 上,则线段PQ 长度的最小值是()A .13B .23C .1D .43【答案】B【解析】由题意可知,线段PQ 长度的最小值为异面直线1C D 、AC 的公垂线的长度.如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则点()1,0,0A 、()0,1,0C 、()10,1,2C 、()0,0,0D ,所以,()1,1,0AC =-,()10,1,2=DC ,()1,0,0DA =,设向量(),,n x y z =满足n AC ⊥,1⊥n DC ,由题意可得1020n AC x y n DC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,解得2x yy z =⎧⎪⎨=-⎪⎩,取2y =,则2x =,1z =-,可得()2,2,1n =-,因此,min 23DA n PQ n⋅==.故选:B .36.(2021·辽宁沈阳·高二期中)定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在长方体1111ABCD A B C D -中,1AB =,2BC =,13AA =,则异面直线AC 与1BC 之间的距离是()A 5B 7C 6D .67【答案】D【解析】如图,以D 为坐标原点建立空间直角坐标系,则()()()()12,0,0,0,1,0,2,1,0,0,1,3A C B C ,则()2,1,0AC =-,()12,0,3BC =-,设AC 和1BC 的公垂线的方向向量(),,n x y z =,则100n AC n BC ⎧⋅=⎪⎨⋅=⎪⎩,即20230x y x z -+=⎧⎨-+=⎩,令3x =,则()3,6,2n =,()0,1,0AB =,67AB n d n⋅∴==.故选:D.37.(2021·上海交大附中高二期中)在正方体1111ABCD A B C D -中,4AB =,则异面直线AB 和1AC 的距离为___________.【答案】【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,由1(4,0,0),(4,4,0),(0,4,0),(4,0,4)A B C A ,则1(0,4,0),(4,4,4)AB CA ==-,1(0,0,4)AA =设(,,)m x y z =是异面直线AB 和1AC 的公垂线的一个方向向量,则1404440m AB y m CA x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,则(1,0,1)m =-,所以异面直线AB 和1AC的距离为1AA m m ⋅==故答案为:38.(2021·广东·广州市第二中学高二期中)如图,在三棱锥P ABC -中,三条侧棱PA ,PB ,PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为BC ,PB 上的点,且::1:2BE EC PF FB ==.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 是直线PG 与BC 的公垂线;(3)求异面直线PG 与BC 的距离.【解析】(1)建立如图所示空间直角坐标系,()()()()()()3,0,0,0,3,0,0,0,3,0,1,0,0,2,1,1,1,0A B C F E G ,()1,0,0GF =-,0,0GF PC GF PB ⋅=⋅=,所以,,GF PC GF PB PC PB P ⊥⊥⋂=,所以GF ⊥平面PBC ,由于GF ⊂平面GEF ,所以平面GEF ⊥平面PBC .(2)()()1,1,1,0,3,3EG BC =--=-,0,0EG PG EG BC ⋅=⋅=,所以EG 是直线PG 与BC 的公垂线.(3)2221113EG =++=所以异面直线PG 与BC39.(2021·全国·高二期中)如下图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,,2,12ABC BAD PA AD AB BC π∠=∠=====.(1)求平面PAB 与平面PCD 所成夹角的余弦值;(2)求异面直线PB 与CD 之间的距离.【解析】以A 为原点,,,AB AD AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A xyz -,则()()()()()0,0,0,1,0,0,1,1,0,0,2,0,0,0,2A B C D P .(1)因为PA ⊥平面ABCD ,且AD ⊂平面ABCD ,所以PA AD ⊥,又AB AD ⊥,且PAAB A =,所以AD ⊥平面PAB ,所以()0,2,0AD =是平面PAB 的一个法向量.易知()()1,1,2,0,2,2PC PD =-=-uu u r uu u r ,设平面PCD 的法向量为(),,m x y z =,则0,0,m PC m PD ⎧⋅=⎨⋅=⎩即20,220,x y y z +-=⎧⎨-=⎩,令1y =解得1,1z x ==.所以()1,1,1m =是平面PCD 的一个法向量,从而3cos ,AD m AD m AD m⋅==uuu r u r uuu r u r uuu r u r PAB 与平面PCD 所成夹角为锐角所以平面PAB 与平面PCD 所成夹角的余弦值为33.(2)()1,0,2BP =-,设Q 为直线PB 上一点,且(),0,2BQ BP λλλ==-,因为()0,1,0CB =-,所以(),1,2CQ CB BQ λλ=+=--,又()1,1,0CD =-,所以点Q 到直线CD 的距离()22cos d CQ CQ CQ CD =-⋅uu u r uu u r uu u r uu u r===,因为22919144222999λλλ⎛⎫++=++≥⎪⎝⎭,所以23d≥,所以异面直线PB与CD之间的距离为2 3.。
培优增分 第6讲 几何法求线面角、二面角和距离
![培优增分 第6讲 几何法求线面角、二面角和距离](https://img.taocdn.com/s3/m/35d78f9b2dc58bd63186bceb19e8b8f67d1cef4c.png)
A.4 C.3
B.2 3 D.2 2
17
D 由题可得 AB=8,因为 AP=BP, 所以 S△ABP=12×8×4=16, 因为 PC⊥平面 ABP,且 PC=4, 所以 VC -ABP=13×16×4=634, 因为 AP=BP=4 2, 所以 AC=BC=4 3,
限时规范训练
18
所以 S△ABC=12×8× 48-16=16 2. 设点 P 到平面 ABC 的距离为 d, 则 VP -ABC=13×16 2d=634,解得 d=2 2.
5= 5
5,即 A1C 与平面 ABCD
所成角的正切值为 5.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
27
限时规范训练
3.把边长为 2的正方形 ABCD 沿对角线 AC 折成直二面角 D -AC -B,
则三棱锥 D -ABC 的外接球的球心到平面 BCD 的距离为( A )
1 2 3 4 5 6 7 8 9 10 11 12 13 14
31
由 PA⊥底面 ABCD 易知 PA⊥AD, 所以 PD= 12+12= 2, 易知 DO=12DB=12 12+12= 22, 所以 sin∠DPO=DPDO=12, 即直线 PD 与平面 PAC 所成角的正弦值为12.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
BC 的中点,l 为平面 O1AC 与平面 O1OD 的交线,则交线 l 与平面 O1BC 所 成角的大小为( B )
A.π2
B.π3
C.π6
D.π4
4
限时规范训练
B 因为O,D分别是AB,BC的中点,所以OD∥AC,
又OD⊂平面O1OD,AC⊄平面O1OD, 所以AC∥平面O1OD, AC⊂平面O1AC,平面O1AC∩平面O1OD=l, 所以AC∥l,OD∥AC,所以OD∥l,
立体几何-空间角求法题型(线线角、线面角、二面角)
![立体几何-空间角求法题型(线线角、线面角、二面角)](https://img.taocdn.com/s3/m/74160a2bec3a87c24028c4cf.png)
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。
E 、F 分别是线段AB 、BC 上的点,且EB FB 1。
求直线EC i 与FD i 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。
思路二:平移线段C i E 让C i 与D i 重合。
转化为平面角,放到 三角形中,用几何法求解。
(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。
则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。
在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。
立体几何-空间角求法题型(线线角、线面角、二面角)
![立体几何-空间角求法题型(线线角、线面角、二面角)](https://img.taocdn.com/s3/m/48a3f2488bd63186bcebbcf1.png)
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。
E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。
求直线1EC 与1FD 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。
思路二:平移线段C 1E 让C 1与D 1重合。
转化为平面角,放到三角形中,用几何法求解。
(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。
则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。
浅谈线线角、线面角、面面角的定义方式及其中蕴含的数学基本思想
![浅谈线线角、线面角、面面角的定义方式及其中蕴含的数学基本思想](https://img.taocdn.com/s3/m/56eb2bf2846a561252d380eb6294dd88d0d23db6.png)
浅谈线线角、线面角、面面角的定义方式北京市顺义区第九中学101300高中阶段在学习空间线、面位置关系的时候,会给出线线角、线面角及面面角的定义,本文以角形成的定义方式及蕴含的基本思想为主,进行研究。
1、直线与直线所成的角:(1)共面:同一平面内的两直线所成角,是利用两直线位置关系,平行、重合所成角为0度,如果相交就取交线所构成的锐角(或直角)。
(2)异面:如图所示,已知两条异面直线a和b,经过空间任一点O分别作直线a′∥a,b′∥b,我们把直线a′与b′所成的角叫做异面直线a与b所成的角(或夹角)。
θ定义方式:是发生定义法(即构造定义方式)定义中的“空间中任取一点O”,意味着:角的大小与O 点选取的位置无关;通过平移把异面直线所成角转化成两相交直线,是将空间图形问题转化成平面图形问题的定义方式,体现了定义的纯粹性和完备性。
2、直线和平面所成的角:如图,一条直线和一个平面相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A叫做斜足.过斜线上斜足以外的一点P向平面引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的角,叫做这条直线和这个平面所成的角。
规定:一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角。
3、面面所成的角:(1)在二面角的棱l上任取一点O,以该点O为垂足,在半平面和内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的角称为二面角的平面角.( 2)作二面角的平面角的方法方法一:(定义法)在二面角的棱上找一个特殊点,在两个半平面内分别作垂直于棱的射线.如图所示,∠AOB为二面角αaβ的平面角.方法二:(垂线法)过二面角的一个面内一点作另一个平面的垂线,过垂足作棱的垂线,连接该点与垂足,利用线面垂直可找到二面角的平面角或其补角.如图所示,∠ACB为二面角αmβ的平面角.4、线线、线面、面面所成角的定义方式线线、线面、面面所成角的定义方式是“属加种差定义法”。
线线角和线面角
![线线角和线面角](https://img.taocdn.com/s3/m/7b67eb09581b6bd97f19ea88.png)
线线角和线面角[重点]:确定点、斜线在平面内的射影。
[知识要点]:一、线线角1、定义:设a、b是异面直线,过空间一点O引a′//a,b′//b,则a′、b′所成的锐角(或直角),叫做异面直线a、b所成的角.2、范围:(0,]3. 向量知识:对异面直线AB和CD(1);(2) 向量和的夹角<,>(或者说其补角)等于异面直线AB和CD的夹角;(3)二、线面角1、定义:平面的一条斜线和它在这个平面内的射影所成的锐角,斜线和平面所成角的范围是(0,).2、直线在平面内或直线与平面平行,它们所成角是零角;直线垂直平面它们所成角为,3、范围: [0,]。
4、射影定理:斜线长定理:从平面外一点向这个平面所引的垂线段和斜线段中:(1)射影相等的两条斜线段相等,射影较长的斜线段也较长;(2)相等的斜线段的射影相等,较长的斜线段的射影也较长;(3)垂线段比任何一条斜线段都短。
5、最小角定理:平面的一条斜线与平面所成的角,是这条直线和平面内过斜足的直线所成的一切角中最小的角。
6、向量知识(法向量法)与平面的斜线共线的向量和这个平面的一个法向量的夹角<,>(或者说其补角)是这条斜线与该平面夹角的余角.[例题分析与解答]例1.如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,求:异面直线BA1与AC所成的角.分析:利用,求出向量的夹角,再根据异面直线BA1,AC所成角的范围确定异面直线所成角.解:∵,,∴∵AB⊥BC,BB1⊥AB,BB1⊥BC,∴∴又∴∴所以异面直线BA1与AC所成的角为60°.点评:求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须会把所求向量用空间的一组基向量来表示.例2.如图(1),ABCD是一直角梯形,AD⊥AB,AD//BC,AB=BC=a, AD=2a,且PA⊥平面ABCD,PD与平面ABCD成30°角.(1)若AE⊥PD,E为垂足,求证:BE⊥PD;(2)求异面直线AE与CD所成角的大小(用反三角函数表示)解法一:(1)证明:∵PA⊥平面ABCD,∴PA⊥AB,∵AD⊥AB,∴AB⊥平面PAD,∴AB⊥PD,又AE⊥PD,∴PD⊥平面ABE,∴BE⊥PD.(2)解:设G、H分别为ED、AD的中点,连BH、HG、GB(图(1))易知,∴BH//CD.∵G、H分别为ED、AD的中点,∴HG//AE则∠BHG或它的补角就是异面直线AE、CD所成的角,而,,,在ΔBHG中,由余弦定理,得,∴.∴异面直线AE、CD所成角的大小为.解法二:如图(2)所示建立空间直角坐标系A-xyz,则,,,,,(1)证明:∵∴∴∴(2)解:∵∴∴异面直线AE、CD所成角的大小为例3.如图,在正方体ABCD-A1B1C1D1中,,求BE1与DF1所成角的余弦值.解:以D为坐标原点,为x,y,z轴,建立空间直角坐标系D-xyz,设正方体的棱长为4,则D(0,0,0),B(4,4,0),E1(4,3,4), F1(0,1,4).则,∴,∵.∴∴BE1与DF1所成角的余弦值为点评:在计算和证明立体几何问题中,若能在原图中建立适当的空间直角坐标系,把图形中的点的坐标求出来,那么图形有关问题可用向量表示.利用空间向量的坐标运算来求解,这样可以避开较为复杂的空间想象。
线线角与线面角
![线线角与线面角](https://img.taocdn.com/s3/m/134d97cafc4ffe473368abfe.png)
线线角和线面角[重点]:确定点、斜线在平面内的射影。
[知识要点]: 一、线线角1、定义:设a 、b 是异面直线,过空间一点 O 引a ' 〃a,b '则/域;b 所成的锐角(或直角),叫做异面直线a 、b 所成的角.3. 向量知识:对异面直线AB 和CD⑵ 向量二_和匚匸 的夹角<_」,「「「: >(或者说其补角)等于异面直线 AB和CD 的夹角;(3)..”厂,二:二「二■--二、线面角1、定义:平面的一条斜线和它在这个平面内的射影所成的锐角,斜线和平面所成角的范围是(0, _ ).2、直线在平面内或直线与平面平行,它们所成角是零角;直线垂直平面它们所成角为 -3、范围:[0,二]4、射影定理:斜线长定理:从平面外一点向这个平面所引的垂线段和斜线段中: (1) 射影相等的两条斜线段相等,射影较长的斜线段也较长; (2) 相等的斜线段的射影相等,较长的斜线段的射影也较长;2、范围7T一(3)垂线段比任何一条斜线段都短。
5、最小角定理:平面的一条斜线与平面所成的角,是这条直线和平面内过斜足的直线所成 的一切角中最小的角。
6、向量知识(法向量法)■* -f *与平面的斜线共线的向量 显和这个平面的一个法向量J 的夹角V 」,一1 >(或者说其补角)是这条斜线与该平面夹角的余角[例题分析与解答] 例1 •如图所示,在棱长为 a 的正方体ABCD-A 1B 1C 1D 1中,求:异面直线 BA 1与AC 所成的角.■- - -11!■',再根据异面直线 BA 1,AC 所成角的范围确定异面直线所成角解:•••】,—-匸二 , -!<■'.:― 二.'::=B T AB+BA BC+BB[ AB+BB[ BC•/ AB 丄 BC ,BB 1 丄 AB ,BB 1± BC ,...「i,T-; I,BB] BSC BA AB = -a\...二小cos < BApAC >= — ---------- =-—...-_三〔13二-所以异面直线 BA i 与AC 所成的角为60°.点评:求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积, 必须会把所求向量用空间的一组基向量来表示例2.如图⑴,ABCD 是一直角梯形, AD 丄AB ,AD//BC ,AB=BC=a, AD=2a,且PA 丄平面 ABCD ,PD 与平面 ABCD 成30。
线线角_线面角_二面角的讲义
![线线角_线面角_二面角的讲义](https://img.taocdn.com/s3/m/7847ecb0dd3383c4bb4cd241.png)
金牌教育二面角大小的求法二面角的类型和求法可用框图展现如下:一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.例、在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。
二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A的大小。
例、如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值.例、ΔABC 中,∠A=90°,AB=4,AC=3,平面ABC 外一点P在平面ABC 内的射影是AB 中点M ,二面角P —AC —B 的大小为45°。
求(1)二面角P —BC —A 的大小;(2)二面角C —PB —A 的大小A B CD A 1 B 1C 1D 1E O金牌教育例、如图4,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2,求:二面角A 1-AB -B 1的大小. 三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;例、空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别为4、3、3392,求二面角βα--l 的大小.四、射影法:(面积法)利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD 中,ABCD 为正方形,PA⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的例、如图,设M 为正方体ABCD-A 1B 1C 1D 1的棱CC 1的中点,求平面BMD 1与底面ABCD 所成的二面角的大小。
线线角,线面角,面面角的公式
![线线角,线面角,面面角的公式](https://img.taocdn.com/s3/m/5ae17b274b7302768e9951e79b89680203d86b11.png)
线线角,线面角,面面角的公式
线线角:
1、定义:线线角是由两条相交的直线上所标注的交汇夹角。
2、公式:计算线线角的公式是以弧度为单位的夹角的函数,公式为:
ϴ=arctan[(y2-y1)/(x2-x1)]。
3、特殊情况下:当两条直线平行时,线线角是否存在?此时两条直线不相交,因此没有线线角存在;当两条直线重合时,此时也可以设定一个夹角为0度的直角,这样线线角的值也是零。
线面角:
1、定义:线面角是指一条直线与一个平面相交时,定义的一个夹角。
2、公式:计算线面角的公式为θ=arccos[n∙l/|n||l|],其中n是平面的法向量,l是直线上的位置向量。
3、特殊情况下:当线与平面垂直时,线面角的值为90度,即θ=π/2;当线与平面平行时,线面角的值为零,即θ=0。
面面角:
1、定义:面面角是两个平面在不同方向上接触的交点夹角。
2、公式:计算面面角的公式为θ=arccos[n1∙n2/|n1||n2|],其中n1、n2是平面的法向量。
3、特殊情况下:当两平面垂直时,面面角的值为90度,即θ=π/2;当两平面平行时,面面角的值为零,即θ=0。
第2讲 立体几何中的空间角问题
![第2讲 立体几何中的空间角问题](https://img.taocdn.com/s3/m/13a8292bc4da50e2524de518964bcf84b8d52d62.png)
(2)求直线DF与平面DBC所成角的正弦值.
解 方法一 如图(2),过点O作OH⊥BD,交直线BD于点H,连接CH.
由ABC-DEF为三棱台,得DF∥CO,
所以直线DF与平面DBC所成角等于直线CO与平面DBC所成角.
由BC⊥平面BDO,得OH⊥BC,又BC∩BD=B,
故OH⊥平面DBC,
所以∠OCH为直线CO与平面DBC所成角.
(2)(2021·温州模拟)如图,点M,N分别是正四面体ABCD的棱AB,CD上 的点,设BM=x,直线MN与直线BC所成的角为θ,则 A.当ND=2CN时,θ随着x的增大而增大 B.当ND=2CN时,θ随着x的增大而减小 C.当CN=2ND时,θ随着x的增大而减小
√D.当CN=2ND时,θ随着x的增大而增大
又∵AA1∥B1B,∴BB1⊥BM. 又BM∩BC=B,BM,BC⊂平面BMC, ∴BB1⊥平面BMC, 又CM⊂平面BMC,∴BB1⊥CM.
(2)求直线BM与平面CB1M所成角的正弦值.
解 方法一 作BG⊥MB1于点G,连接CG. 由(1)知BC⊥平面AA1B1B,得到BC⊥MB1, 又BC∩BG=B,BC,BG⊂平面BCG,
MN= x2-3x+7,
所以在△MNE 中,cos θ=2
4-x x2-3x+7
=12 1+x2-9-3x5+x 7(x∈[0,3]),
令 f(x)=x2-9-3x5+x 7,
则 f′(x)=5xx22--31x8+x-782<0,
所以f(x)在定义域内单调递减,即x增大,f(x)减小,即cos θ减小,从而θ 增大,故D正确,C错误.
所以在△FNM中, cos θ=2 x25--3xx+7=21
1+x21-8-3x7+x 7(x∈[0,3]),
线线角-线面角
![线线角-线面角](https://img.taocdn.com/s3/m/7f471a515022aaea988f0f81.png)
体(2)求异面直线BC1和AC所成的
角
D1
C1
A1
B1
D A
C B
新课讲解:
异面直线所成角的求法
例1.已知ABCD-A1B1C1D1是棱长为1的正方
体(2)求异面直线BC1和AC所成的
角
D1
C1
B1 A1
D A
C B
新课讲解:
异面直线所成角的求法
例1.已知ABCD-A1B1C1D1是棱长为1的正方
D
C
※求异面直线所成角的一般步骤: A
B
(1)平移作角——作
(2)补形说角——证
(3)计算求角——求
三、两条异面直线所成的角
如图所示,a,b是两条异面直线,在空间中任选一点O, 过O点分别作 a,b的平行线 a′和 b′, 则这两条线所成
的锐角θ(或直角), 称为异面直线a,b所成的角。
b a′ ? OP a
求出平面图形上对应的角θ 注意θ若为钝角,则异面直线所成角为π-θ
体现了立几的“降维思想”
变式一:
(07福建卷)如图,在正方体ABCD-A1B1C1D1中,E、F、G、
H分别为AA1、AB、BB1、B1C1的中点,则异面直线EF与GH 所成的角等于( )
A.45° B.60° C.90° D.120°
D1
C1
A1 E
B1 G
D
A
F
C B
例 1.在正方体ABCD—A1B1C1D1中,指出下列各 对线段所成的角:
1)AB与CC1; 2)A1 B1与AC; 3) AD11 B与D1B1。C1
1)AB与CC1所成的角 = 9 0° A1
B1
2)A1 B1与AC所成的角 = 4 5°
2023年新高考数学大一轮复习专题21 利用传统方法求线线角、线面角、二面角与距离的问题(解析版)
![2023年新高考数学大一轮复习专题21 利用传统方法求线线角、线面角、二面角与距离的问题(解析版)](https://img.taocdn.com/s3/m/5577c8401fb91a37f111f18583d049649b660e33.png)
专题21 利用传统方法求线线角、线面角、二面角与距离的问题【考点预测】知识点1:线与线的夹角(1)位置关系的分类:⎪⎩⎪⎨⎧⎩⎨⎧点一个平面内,没有公共异面直线:不同在任何相交直线平行直线共面直线 (2)异面直线所成的角①定义:设a b ,是两条异面直线,经过空间任一点O 作直线a a b b ''∥,∥,把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:(0]2π,③求法:平移法:将异面直线a b ,平移到同一平面内,放在同一三角形内解三角形. 知识点2:线与面的夹角①定义:平面上的一条斜线与它在平面的射影所成的锐角即为斜线与平面的线面角. ②范围:[0]2π,③求法:常规法:过平面外一点B 做'⊥BB 平面α,交平面α于点'B ;连接'AB ,则'∠BAB 即为直线AB 与平面α的夹角.接下来在△'Rt ABB 中解三角形.即sin 斜线长''∠==BB hBAB AB (其中h 即点B 到面α的距离,可以采用等体积法求h ,斜线长即为线段AB 的长度);知识点3:二面角(1)二面角定义:从一条直线出发的两个半平面所组成的图形称为二面角,这条直线称为二面角的棱,这两个平面称为二面角的面.(二面角l αβ--或者是二面角A CD B --)(2)二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角;范围[0]π,. (3)二面角的求法 法一:定义法在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角,如图在二面角l αβ--的棱上任取一点O ,以O 为垂足,分别在半平面α和β内作垂直于棱的射线OA 和OB ,则射线OA 和OB 所成的角称为二面角的平面角(当然两条垂线的垂足点可以不相同,那求二面角就相当于求两条异面直线的夹角即可).法二:三垂线法在面α或面β内找一合适的点A ,作AO β⊥于O ,过A 作AB c ⊥于B ,则BO 为斜线AB 在面β内的射影,ABO ∠为二面角c αβ--的平面角.如图1,具体步骤:①找点做面的垂线;即过点A ,作AO β⊥于O ;①过点(与①中是同一个点)做交线的垂线;即过A 作AB c ⊥于B ,连接BO ; ①计算:ABO ∠为二面角c αβ--的平面角,在Rt ABO △中解三角形.图1 图2 图3 法三:射影面积法凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式('''cos =A B C ABCS S S S θ=射斜,如图2)求出二面角的大小; 法四:补棱法当构成二面角的两个半平面没有明确交线时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题.当二平面没有明确的交线时,也可直接用法三的摄影面积法解题.法五:垂面法由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角.ba A OBbAB CB'C'A'例如:过二面角内一点A 作AB α⊥于B ,作AC β⊥于C ,面ABC 交棱a 于点O ,则BOC ∠就是二面角的平面角.如图3.此法实际应用中的比较少,此处就不一一举例分析了.知识点4:空间中的距离求点到面的距离转化为三棱锥等体积法求解. 【题型归纳目录】 题型一:异面直线所成角 题型二:线面角 题型三:二面角 题型四:距离问题 【典例例题】题型一:异面直线所成角例1.(2022·吉林·长春市第二实验中学高三阶段练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,,,M N E F 分别是111,,DD BC C D 的中点,则异面直线MN 与EF 所成的角为( )A .2πB .3π C .6πD .4π 【答案】C【解析】取1CC 的中点H ,连接FH ,EH ,NH ,ME ,由正方体的性质可知//NH ME 且NH ME =,所以MNHE 为平行四边形, 所以//MN EH ,所以异面直线MN 与EF 所成的角的平面角为FEH ∠, 又2AB =,则EH FH =,FE则222cos 2EH EF FH FEH EH EF +-∠=⨯⨯,所以6FEH π∠=,故选:C .例2.(2022·四川内江·模拟预测(理))如图,在直三棱柱111ABC A B C -中,BC ⊥面11ACC A ,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为( )A B C D .35【答案】C【解析】连接1CB 交1BC 于D ,若E 是AC 的中点,连接,BE ED ,由111ABC A B C -为直棱柱,各侧面四边形为矩形,易知:D 是1CB 的中点, 所以1//ED AB ,故直线1BC 与直线1AB 夹角,即为ED 与1BC 的夹角BDE ∠或补角,若1BC =,则1CE =,BD CD ==, BC ⊥面11ACC A ,EC ⊂面11ACC A ,则CB CE ⊥,而1EC CC ⊥,又1BC CC C =,1,BC CC ⊂面11BCC B ,故EC ⊥面11BCC B , 又CD ⊂面11BCC B ,所以CE CD ⊥.所以32ED =,BE =, 在①BDE中222592cos 2BD ED BE BDE BD ED +-+-∠=⋅.故选:C例3.(2022·全国·模拟预测)已知正方体中1111ABCD A B C D -,E ,G 分别为11A D ,11C D 的中点,则直线1A G ,CE 所成角的余弦值为( ) ABCD【答案】C【解析】如图所示:取AB 的中点F ,连接EF ,CF ,易知1A G CF ∥,则①ECF (或其补角)为直线1A G 与CE 所成角.不妨设2AB =,则CF =EF =3EC =,由余弦定理得cos ECF ∠==1A G 与CE 所成角的. 故选:C .例4.(2022·全国·模拟预测)在如图所示的圆锥中,底面直径为4,点C 是底面直径AB 所对弧的中点,点D 是母线PB 的中点,则异面直线AB 与CD 所成角的余弦值为( )A .12 BC.2D .45【答案】B【解析】设底面圆心为O ,连接PO ,OC ,取PO 的中点E ,连接DE ,CE ,则DE AB ∥,且DE =CDE ∠为AB 与CD 所成的角(或其补角).由题意知OB =4PB =,所以2PO =,所以CE = 由题意知OC AB ⊥,OC PO ⊥,AB PO O =,AB ,PO ⊂平面POB , 所以OC ⊥平面POB .又OC ⊂平面POC ,所以平面POC ⊥平面POB , 又平面POC平面POB PO =,DE ⊂平面POB 且DE PO ⊥,所以DE ⊥平面POC ,因为CE ⊂平面POC ,所以DE CE ⊥.又12DE OB ==4CD =,所以cos CDE ∠= 故选:B .例5.(2020·黑龙江·哈师大附中高三期末(文))如图,在正三棱柱ABC ﹣A 1B 1C 1中,AB =AA 1=2,M 、N 分别是BB 1和B 1C 1的中点,则直线AM 与CN 所成角的余弦值等于( )AB C .25D .35【答案】D【解析】作BC 的中点E ,连接1B E ,作BE 的中点F ,连接MF 、1A F , 即AMF ∠为异面直线AM 与CN 所成的角,由已知条件得1B E =MF =AM =由余弦定理得AF ==在①AMF 中,有余弦定理可知2222cos AF AM MF AM MF AMF =+-⋅⋅∠,即13552cos 44AMF =+-∠,解得3cos 5AMF ∠=,故选:D .例6.(2023·全国·高三专题练习(文))如图,在四面体ABCD 中,90BCD AB ∠=︒⊥,平面BCD ,AB BC CD ==,P 为AC 的中点,则直线BP 与AD 所成的角为( )A .π6B .π4C .π3D .π2【答案】D【解析】在四面体ABCD 中,AB ⊥平面BCD ,CD ⊂平面BCD ,则AB CD ⊥,而90BCD ∠=︒, 即BC CD ⊥,又AB BC B ⋂=,,AB BC ⊂平面ABC ,则有CD ⊥平面ABC ,而BP ⊂平面ABC , 于是得CD BP ⊥,因P 为AC 的中点,即AC BP ⊥,而AC CD C =,,AC CD ⊂平面ACD , 则BP ⊥平面ACD ,又AD ⊂平面ACD ,从而得BP AD ⊥,所以直线BP 与AD 所成的角为π2.故选:D例7.(2022·河南省杞县高中模拟预测(文))如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,90ACB ∠=︒,1BC AA ==1AC =,则异面直线1AC 与1CB 所成角的余弦值为( )A B C D 【答案】B【解析】把三棱柱补成如图所示长方体,连接1B D ,CD ,则11B D AC ∥, 所以1CB D ∠即为异面直线1AC 与1CB 所成角(或补角).由题意可得2CD AB ==,112B D AC ==,1CB所以22211111cos 2CB B D CD CB D CB B D +-∠=⋅==故选:B .例8.(2022·全国·高三专题练习)在正方体ABCD ﹣A 1B 1C 1D 1中,过点C 做直线l ,使得直线l 与直线BA 1和B 1D 1所成的角均为70,则这样的直线l ( ) A .不存在 B .2条 C .4条 D .无数条【答案】C【解析】在正方体ABCD ﹣A 1B 1C 1D 1中,连接1,A D BD ,如图,则有11//BD B D ,显然11A B A D BD ==,即直线BA 1和B 1D 1所成角160∠=A BD ,过点C 做直线l 与直线BA 1和B 1D 1所成的角均为70可以转化为过点B 做直线l '与直线BA 1和BD 所成的角均为70,A BD '∠的平分线AO 与直线BA 1和BD 都成30的角,让l '绕着点B 从AO 开始在过直线AO 并与平面A BD'垂直的平面内转动时,在转动到l '⊥平面A BD '的过程中,直线l '与直线BA 1和BD 所成的角均相等,角大小从30到90, 由于直线l '的转动方向有两种,从而得有两条直线与直线BA 1和BD 所成的角均为70, 又A BD '∠的邻补角大小为120,其角平分线与直线BA 1和BD 都成60的角,当直线l '绕着点B 从A BD '∠的邻补角的平分线开始在过该平分线并与平面A BD '垂直的平面内转动时, 在转动到l '⊥平面A BD '的过程中,直线l '与直线BA 1和BD 所成的角均相等,角大小从60到90, 由于直线l '的转动方向有两种,从而得有两条直线与直线BA 1和BD 所成的角均为70, 综上得,这样的直线l '有4条,所以过点C 与直线BA 1和B 1D 1所成的角均为70的直线l 有4条. 故选:C例9.(2022·湖南·长沙一中高三开学考试)已知点A 为圆台O 1O 2下底面圆O 2的圆周上一点,S 为上底面圆O1的圆周上一点,且SO 1=1,O 1O 2O 2A=2,记直线SA 与直线O 1O 2所成角为θ,则( ) A .0,6πθ⎛⎤∈ ⎥⎝⎦B .0,3πθ⎛⎤∈ ⎥⎝⎦C .,63ππθ⎡⎤∈⎢⎥⎣⎦D .,42ππθ⎡⎤∈⎢⎥⎣⎦【答案】C【解析】由题意,设上、下底面半径分别为12,R R ,其中121,2R R ==, 如图,过S 作SD 垂直下底面于D ,则12O O SD ∥,所以直线SA 与直线12O O 所成角即为直线SA 与直线SD 所成角,即ASD ∠θ=, 而tanAD SD θ==,由圆的性质,222213R O D AD O D R =-+=,所以tanAD SD θ==⎣,所以,63ππθ⎡⎤∈⎢⎥⎣⎦,故选:C .例10.(2022·湖北武汉·模拟预测)已知异面直线a ,b 的夹角为θ,若过空间中一点P ,作与两异面直线夹角均为π3的直线可以作4条,则θ的取值范围是______.【答案】ππ,32⎛⎤⎥⎝⎦【解析】如图,将异面直线a 、b 平移到过P 点,此时两相交直线确定的平面为α,如图,a 平移为a ',即P A ,b 平移为b ',即BE .设①APB =θ,PC α⊂且PC 是①APB 的角平分线,则PC 与a '和b '的夹角相等,即PC 与a 、b 夹角均相等, ①将直线PC 绕着P 点向上旋转到PD ,当平面PCD ①α时,PD 与a '、b '的夹角依然相等,即PD 与a 、b 的夹角依然相等;将直线PC 绕着P 点向下旋转时也可得到与a 、b 的夹角均相等的另外一条直线,易知PC 与P A 夹角为2θ,当PC 向上或向下旋转的过程中,PC 与P A 夹角增大,则若要存在与两异面直线夹角均为π3的直线,有π2π233θθ<⇒<;①同理,①APE =πθ-,将①APE 的角平分线绕着P 向上或向下旋转可得两条直线与a 、b 的夹角均为π3,则πππ233θθ-<⇒>, 如此,即可作出4条直线与异面直线a 、b 夹角均为π3,又①0<θ≤π2,①θ∈ππ,32⎛⎤ ⎥⎝⎦. 故答案为:ππ,32⎛⎤ ⎥⎝⎦. 例11.(2022·江苏常州·模拟预测)在三棱锥A BCD -中,已知AB ⊥平面BCD ,BC CD ⊥,若2AB =,4BC CD ==,则AC 与BD 所成角的余弦值为___________.【解析】如图,取,,BC AB AD 中点,,E F G ,连接,,EF FG EG ,所以//,//EF AC FG BD ,则EFG (或其补角)即为AC 与BD 所成角,因为AB ⊥平面BCD ,所以AB BC ⊥,所以AC =EF =因为BC CD ⊥,所以BD FG =取BD 中点H ,连接,GH EH ,所以//HG AB ,所以HG ⊥平面BCD ,所以HG EH ⊥,又112GH AB ==,122EH CD ==,所以EG ==所以222cosEFG +-∠==所以AC 与BD题型二:线面角例12.(2022·福建·三明一中模拟预测)已知正方体1111ABCD A B C D -中,AB =E 为平面1A BD 内的动点,设直线AE 与平面1A BD 所成的角为α,若sin α=则点E 的轨迹所围成的面积为___________. 【答案】π【解析】如图所示,连接1AC 交平面1A BD 于O ,连接EO ,由题意可知1AC ⊥平面1A BD ,所以AEO ∠是AE 与平面1A BD 所成的角,所以AEO ∠=α.由sin α=tan 2α=,即2AO EO =.在四面体1A A BD -中,11BD A D A B ===1AB AD AA ===,所以四面体1A A BD -为正三棱锥,O 为1BDA △的重心,如图所示:所以解得BO =2AO ,又因为2AO EO=, 所以1EO =,即E 在平面1A BD 内的轨迹是以O 为圆心,半径为1的圆,所以2π1πS =⨯=.故答案为:π.例13.(2022·全国·模拟预测(理))如图,在三棱台111ABC A B C -中,1AA ⊥平面ABC ,90ABC ∠=︒,111111AA A B B C ===,2AB =,则AC 与平面11BCC B 所成的角为( )A .30B .45︒C .60︒D .90︒【答案】A 【解析】将棱台补全为如下棱锥D ABC -,由90ABC ∠=︒,111111AA A B B C ===,2AB =,易知:2DA BC ==,AC =由1AA ⊥平面ABC ,,AB AC ⊥平面ABC ,则1AA AB ⊥,1AA AC ⊥,所以BD =CD =222BC BD CD +=,所以122BCD S =⨯⨯=△A 到面11BCC B 的距离为h ,又D ABC A BCD V V --=,则111222323h ⨯⨯⨯⨯=⨯h = 综上,AC 与平面11BCC B 所成角[0,]2πθ∈,则1sin 2h AC θ==,即6πθ=. 故选:A例14.(2022·河南安阳·模拟预测(理))如图,在三棱锥P -ABC 中,底面ABC 是直角三角形,AC =BC =2,PB =PC ,D 为AB 的中点.(1)证明:BC ①PD ;(2)若AC ①PB ,P A =3,求直线P A 与平面PBC 所成的角的正弦值.【解析】(1)证明:如图,取BC 中点E ,连接PE ,DEPB PC =,E 为BC 中点PE BC ∴⊥又D 为AB 的中点,所以//DE AC底面ABC 是直角三角形,AC =BC =2,AC BC ∴⊥即DE BC ⊥,,PE DE E PE DE =⊂平面PDEBC ∴⊥平面PDE ,BC PD ∴⊥(2)由(1)知,AC BC ⊥,又AC PB ⊥且,,PB BC C PB BC =⊂平面PBCAC ∴⊥平面PBC ,∴直线P A 与平面PBC 所成的角为APC ∠在Rt APC 中,2,3AC PA ==2sin 3AC APC PA ∴∠==. ∴直线P A 与平面PBC 所成的角的正弦值为23.例15.(2022·河南安阳·模拟预测(理))如图,在四面体ABCD 中,AB AD =,BC CD =,E 为BD 的中点,F 为AC 上一点.(1)求证:平面ACE ⊥平面BDF ;(2)若90BCD ∠=︒,60BAD ∠=︒,AC =,求直线BF 与平面ACD 所成角的正弦值的最大值.【解析】(1)在四面体ABCD 中,AB AD BC CD ==,,E 为BD 的中点,则,AE BD CE BD ⊥⊥, 而AE CE E =,,AE CE ⊂平面ACE ,于是得BD ⊥平面ACE ,又BD ⊂平面BDF ,所以平面ACE ⊥平面BDF .(2)依题意不妨设2BC CD ==,90BCD ∠=︒,则BD CE ==60BAD ∠=︒,则AB AD BD ===AE =在ACE中,AC =222cos 2AE CE AC AEC AE CE +-∠==⋅sin AEC ∠=,11sin 22AEC S AE CE AEC =⋅∠== 由(1)得,1433B ACD AEC V S BD -=⋅=,因22212AD CD AC +==,即90ADC ∠=,则12ACD S AD CD =⋅= 设点B 到平面ACD 的距离为h,则114333B ACD ACD V S h -=⋅=⨯=,解得h =B 到平面ACD设直线BF 与平面ACD 所成角为θ,所以sin h BF θ==. 因为22212AB BC AC +==,所以90ABC ∠=,故当BF AC ⊥时,BF最短,此时2BF ==⨯,正例16.(2022·吉林·长春市第二实验中学高三阶段练习)如图,已知四棱锥P ABCD -中,PD ⊥平面ABCD ,且1,4,5AB DC AB DC PM PC ==∥.(1)求证:PA 平面MDB ;(2)当直线,PC PA 与底面ABCD 所成的角都为4π,且4,DC DA AB =⊥时,求出多面体MPABD 的体积. 【解析】(1)证明:连接,AC BD ,设,AC BD 交于点O ,连接OM ,因为AB CD , 所以14OA AB OC CD ==, 因为15PM PC =, 所以14PM OA MC OC==, 所以OM PA ∥,又OM ⊂平面MDB ,PA ⊄平面MDB所以PA 平面MDB ;(2)因为PD ⊥平面ABCD ,所以PAD ∠即为直线PA 与底面ABCD 所成的角的平面角,PCD ∠即为直线PC 与底面ABCD 所成的角的平面角, 所以4PAD PCD π∠=∠=,所以4PD AD CD ===,()144102ABCD S +⨯==梯形,14482BCD S =⨯⨯=△, 设点M 到平面ABCD 的距离为h , 因为15PM PC =, 所以41655h PD ==, 故14010433P ABCD V -=⨯⨯=,11612883515M BCD V -=⨯⨯=, 所以40128243155P ABCD M BCD MPABD V V V --=-=-=多面体.例17.(2022·全国·高三专题练习(文))已知正三棱柱111ABC A B C -中,2AB =,M 是11B C 的中点.(1)求证:1//AC 平面1A MB ;(2)点P 是直线1AC 上的一点,当1AC 与平面ABC 所成的角的正切值为2时,求三棱锥1P A MB -的体积.【解析】(1)证明:连接1AB 交1A B 于点N ,连接MN ,因为四边形11AA B B 为平行四边形,11AB A B N ⋂=,则N 为1AB 的中点,因为M 为11B C 的中点,则1//MN AC ,1AC ⊄平面1A MB ,MN ⊂平面1A MB ,故1//AC 平面1A MB .(2)因为1CC ⊥平面ABC ,1AC ∴与平面ABC 所成的角为1CAC ∠,因为ABC 是边长为2的等边三角形,则2AC =,1CC ⊥平面ABC ,AC ⊂平面ABC ,1CC AC ∴⊥,则11tan 2CC CAC AC∠==, 所以,124CC AC ==,1//AC 平面1A MB ,1P AC ∈,所以,点P 到平面1A MB 的距离等于点1C 到平面1A MB 的距离,因为M 为11B C 的中点,则11111211222A MC A B C S S ===△△则1111111111433P A MB C A MB B A C M A C M V V V BB S ---===⋅=⨯=△. 例18.(2022·四川省泸县第二中学模拟预测(文))如图,在四棱锥S ABCD -中,底面ABCD 为矩形,SAD为等腰直角三角形,SA SD ==2AB =,F 是BC 的中点.(1)在AD 上是否存在点E ,使得平面SEF ⊥平面ABCD ,若存在,求出点E 的位置;若不存在,请说明理由.(2)SBC △为等边三角形,在(1)的条件下,求直线SE 与平面SBC 所成角的正弦值.【解析】(1)在线段AD 上存在点E 满足题意,且E 为AD 的中点.如图,取AD 中点E 连接EF ,SE ,SF ,因为四边形ABCD 是矩形,所以AB AD ⊥.又E ,F 分别是AD ,BC 的中点,所以//EF AB ,AD EF ⊥.因为SAD 为等腰直角三角形,SA SD =,E 为AD 的中点,所以SE AD ⊥.因为SE EF E =,SE ⊂平面SEF ,EF ⊂平面SEF ,所以AD ⊥平面SEF .又AD ⊂平面ABCD .所以平面SEF ⊥平面ABCD .故AD 上存在中点E ,使得平面SEF ⊥平面ABCD .(2)过点E 作EG SF ⊥于点G ,由(1)知AD ⊥平面SEF ,又//BC AD则BC ⊥平面SEF ,EG ⊂平面SEF ,所以BC EG ⊥,又SF BC F ⋂=,所以EG ⊥平面SBC ,所以直线SE 与平面SBC 所成的角为ESG ∠,由SAD 为等腰直角三角形,SA SD ==4AD ==,2SE =.又2EF AB ==,因为SBC △为等边三角形,4BC AD ==,所以SF =在SEF 中,2SE EF ==,SF =所以1EG =. 则1sin 2EG ESG SE ∠==, 即直线SE 与平面SBC 所成角的正弦值为12.例19.(2022·江苏南通·模拟预测)如图,在矩形ABCD 中,AB =2AD =4,M ,N 分别是AB 和CD 的中点,P 是BM 的中点.将矩形AMND 沿MN 折起,形成多面体AMB -DNC .(1)证明:BD //平面ANP ;(2)若二面角A -MN -B 大小为120°,求直线AP 与平面ABCD 所成角的正弦值.【解析】(1)证明:连接MD 交AN 于点O ,连接OP ,①四边形AMND 为矩形①O 为MD 的中点,又①P 为BM 的中点①//OP BD ,①BD ⊄平面ANP ,OP ⊂平面ANP ,①BD //平面ANP(2)①AM MN ⊥,BM MN ⊥,①①AMB 即为二面角A MN B --的平面角,120AMB ∠=,且MN ①平面ABM ,①BC ①平面ABM ,①BC ⊂平面ABCD ,①平面ABCD ①平面ABM过P 作PQ AB ⊥于点Q ,①PQ ①平面ABCD ,①①P AB 即为AP 与平面ABCD 所成角,2AM MB ==,AB =1PB =,①12PQ =,BQ =,①AQ =①AP ==①1sinPAB ∠==题型三:二面角例20.(2023·河北·高三阶段练习)如图,ABCD 为圆柱OO '的轴截面,EF 是圆柱上异于,AD BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若AB BC ==B DEF -的体积最大时,求二面角B DF E --的正弦值.【解析】(1)证明:如图,连接AE ,由题意知AB 为O 的直径,所以AE BE ⊥.因为,AD EF 是圆柱的母线,所以AD EF ∥且AD EF =,所以四边形AEFD 是平行四边形.所以//AE DF ,所以BE DF ⊥.因为EF 是圆柱的母线,所以EF ⊥平面ABE ,又因为BE ⊂平面ABE ,所以EF BE ⊥.又因为DF EF F =,DF EF ⊂、平面DEF ,所以BE ⊥平面DEF .(2)由(1)知BE 是三棱锥B DEF -底面DEF 上的高,由(1)知,EF AE AE DF ⊥∥,所以EF DF ⊥,即底面三角形DEF 是直角三角形.设,DF AE x BE y ===,则在Rt ABE △中有:226x y +=,所以221113322B DEF DEF x y V S BE x y -+⎛=⋅=⋅⋅=≤= ⎝,当且仅当x y ==E ,F 分别是AB ,CD 的中点时,三棱锥B DEF -的体积最大, (另等积转化法:13B DEF D BEF D BCF B CDF CDF V V V V S BC ----====⋅易得当F 与CD 距离最远时取到最大值,此时E 、F 分别为AB 、CD 中点)下面求二面角B DF E --的正弦值:由(1)得BE ⊥平面DEF ,因为DF ⊂平面DEF ,所以BE DF ⊥.又因为,EF DF EF BE E ⊥=,所以DF ⊥平面BEF .因为BF ⊂平面BEF ,所以BF DF ⊥,所以BFE ∠是二面角B DF E --的平面角,由(1)知BEF 为直角三角形,则3BF ==.故sin BE BFE BF ∠==B DF E --例21.(2023·全国·高三专题练习(理))如图,在三棱锥P ABC -中,2AB BC ==,PA PB PC AC ====O 为AC 的中点.(1)证明:PO ①平面ABC ;(2)若点M 在棱BC 上,且PM 与面ABC 求二面角M PA C --的平面角的余弦值.【解析】(1)证明:连接OB .法一:①2,AB BC AC ===①222AB BC AC +=,即①ABC 是直角三角形,又O 为AC 的中点,①OA OB OC ==又①PA PB PC ==,①POA POB POC ∆≅∆≅∆①90POA POB POC ∠=∠=∠=.①,,PO AC PO OB OBAC O ⊥⊥=,OB 、AC ⊂平面ABC ①PO ①平面ABC .法二:连接OB ,PA PC =,O 为AC 的中点①PO AC ⊥因为2,AB BC PA PB PC AC ======①,AB BC BO PO ⊥==222PO OB PB +=,①PO OB ⊥①,,PO AC PO OB OBAC O ⊥⊥=,OB 、AC ⊂平面ABC .①PO ①平面ABC .(2)由(1)知,PO ①面ABC ①OM 为PM 在面ABC 上的射影,①①PMO 为PM 与面ABC 所成角,①tan PO PMO OM ∠===①1OM =, 在①OMC 中由正弦定理可得1MC =,①M 为BC 的中点.作ME ①AC 于E ,①E 为OC 的中点,作EF PA ⊥交P A 于F ,连MF①MF ①P A ①①MFE 即为所求二面角M PA C --的平面角,ME =34EF AE =①tanME MFE EF ∠===①cos MFE ∠= 例22.(2022·广东·大埔县虎山中学高三阶段练习)如图,AB 是圆的直径,P A 垂直圆所在的平面,C 是圆上的点.(1)求证:平面P AC ①平面PBC ;(2)若AB =2,AC =1,P A =1,求:二面角C PB A 的正切值.【解析】(1)因为PA ⊥平面ABC ,BC ⊂平面ABC ,所以PA BC ⊥, 因为AB 是圆的直径,C 是圆上的点,所以BC AC ⊥,因为PA AC A =,所以BC ⊥平面PAC ,因为BC ⊂平面PBC ,所以平面P AC ①平面PBC .(2)过C 作CD AB ⊥,垂足为D ,过D 作DE PB ⊥,垂足为E ,连CE ,如图:因为PA ⊥平面ABC ,CD ⊂平面ABC ,所以PA CD ⊥,因为PA AB A =,所以CD ⊥平面PAB ,所以CD PB ⊥,因为DE PB ⊥,DE CD D ⋂=,所以PB ⊥平面CDE ,所以PB CE ⊥, 所以DEC ∠是二面角C -PB -A 的平面角,因为2AB =,1AC =,AC CB ⊥,所以60CAB ∠=,所以3sin 602CD AC =⋅=12AD =,13222BD =-=, 因为1PA=,2AB =,所以PBsin PA PBA PB ==,在直角三角形DEB中,3sin 2DE BD EBD =⋅==,在直角三角形DEC中,tan CD DEC DE ===所以二面角C -PB -A 例23.(2022·北京·景山学校模拟预测)如图,正三棱柱111ABC A B C -中,E ,F 分别是棱1AA ,1CC 上的点,平面BEF ⊥平面11ABB A ,M 是AB 的中点.(1)证明://CM 平面BEF ;(2)若2AC AE ==,求平面BEF 与平面ABC 夹角的大小.【解析】(1)证明:在等边ABC 中,M 为AB 的中点,所以CM AB ⊥, 在正三棱柱111ABC A B C -中,平面ABC ⊥平面11ABB A ,平面ABC 平面11ABB A AB =,CM ⊂平面ABC ,所以CM ⊥平面11ABB A ,过F 在平面BEF 内作FN BE ⊥,垂足为N ,平面BEF ⊥平面11ABB A ,平面BEF 平面11ABB A BE =,FN ∴⊥平面11ABB A ,//CM FN ∴, CM ⊂/平面BEF ,FN ⊂平面BEF ,//CM ∴平面BEF .(2)由题设//CF 平面11ABB A ,平面FCMN 平面11ABB A MN =, //CF NM ∴,∴四边形CFNM 是平行四边形,又//MN AE 且12MN AE =, 所以112CF NM AE ===,延长EF ,AC ,相交于点G ,连接BG ,则C 、F 分别为AG 、EG 的中点, 则平面BEF 与平面ABC 所成的角就是二面角E BG A --,可知CG AC BC ==,BG AB ∴⊥,所以BG ⊥平面11ABB A ,EBA ∴∠是二面角E BG A --的平面角, 又AE AB =,AB AE ⊥,所以45EBA ∠=︒,即平面BEF 与平面ABC 所成的角为45︒;例24.(2022·湖南·雅礼中学二模)如图,在正方体1111ABCD A B C D -中,点E 在线段1CD 上,12CE ED =,点F 为线段AB 上的动点.(1)若EF 平面11ADD A ,求AF FB的值; (2)当F 为AB 中点时,求二面角E DF C --的正切值.【解析】(1)过E 作1EG D D ⊥于G ,连接GA .则∥EG CD ,而CD FA ∥,所以EG FA ∥.因为EF 平面11,ADD A EF ⊂平面EFAG ,平面EGAF 平面11ADD A GA =, 所以EF GA ∥,所以四边形EGAF 是平行四边形,所以GE AF =.因为12CE ED =,所以11D E GE DC D C=.所以13AF AB =, 所以12AF FB =. (2)过E 作EH CD ⊥于D ,过H 作HM DF M ⊥于,连接EM ,因为平面11CDD C ⊥平面,ABCD EH CD ⊥,所以EH ⊥平面ABCD ,因为DF ⊂平面ABCD ,所以EH DF ⊥,又HM DF ⊥,所以DF ⊥平面EMH ,因为EM ⊂平面EMH ,所以DF EM ⊥.所以EMH ∠是二面角E DF C --的平面角.设正方体的棱长为3a ,则2,EH a DH a ==.在Rt ADF 中,DF =, 则11,22DHF S DF MH DH AD MH =⋅=⋅⇒=tan EH EMH MH∠∴==即二面角E DF C --例25.(2022·天津·耀华中学一模)如图,在四棱锥E ABCD -中,平面ABCD ⊥平面ABE ,AB DC ∥,AB BC ⊥,222AB BC CD ===,AE BE ==M 为BE 的中点.(1)求证:CM ∥平面ADE ;(2)求平面EBD 与平面BDC 夹角的正弦值;【解析】(1)取AE 中点G ,连接,GM GD ,如图,因为M 是EB 中点,则//MG AB 且12MG AB =,又//AB CD ,2AB CD =, 所以//MG CD 且MG CD =,所以MGDC 是平行四边形,所以//CM DG ,DG ⊂平面ADE ,CM ⊄平面ADE ,所以//CM 平面ADE ;(2)取AB 中点F ,连接,EF CF ,CF 交BD 于点O ,连接OE , 由已知//AB DC ,AB BC ⊥,2AB CD =,得CDFB 是正方形, CF BD ⊥,EA EB =,则EF AB ⊥,因为平面ABCD ⊥平面ABE ,平面ABCD 平面ABE AB =,EF ⊂平面ABE , 所以EF ⊥平面ABCD ,又BD ⊂平面ABCD ,所以EF BD ⊥, 又BD FC ⊥,EF CF F =,所以BD ⊥平面ECF ,又OE ⊂平面BCF ,所以BD OE ⊥,所以EOC ∠是二面角E BD C --的平面角,又2OF =,2==EF ,所以===OEsin EF EOF OE ∠==()sin sin πsin EOC EOF EOF ∠=-∠=∠= 所以平面EBD 与平面BDC.例26.(2022·浙江·海宁中学模拟预测)如图所示,在四边形ABCD 中,//AD BC ,AB AD ⊥,1.2AD AB BC ==现将ABD △沿BD 折起,使得点A 到E 的位置.(1)试在BC 边上确定一点F ,使得BD EF ⊥;(2)若平面EBD ⊥平面BCD ,求二面角E BC D --所成角的正切值.【解析】(1)因为//AD BC ,AB AD ⊥,12AD AB BC ==,所以45ABD ADB DBC ∠=∠=∠=︒,BD =,BC , 所以BAD ①BDC ,所以90BAD BDC ∠=∠=︒,所以BD CD ⊥,在四边形ABCD 内过点A 作AM BD ⊥于点M ,并延长交BC 于.F则点M 为BD 中点,所以F 也为BC 中点.将ABD △沿BD 折起,使得点A 到E 的位置时,有EM BD MF BD ⊥⊥,,所以BD ⊥平面EFM ,也为EF ⊂平面EFM ,所以BD EF ⊥,(2)过点M 作MN BC ⊥交BC 于点.N 则1.2MN AB = 则在三棱锥E BCD -中,因为平面EBD ⊥平面BCD ,所以EM ⊥平面.BCD因为MN BC ⊥,连接EN ,则有.EN BC ⊥所以ENM ∠即为二面角E BC D --的平面角,设122AD AB BC ===,则 1.EM MN ==所以在Rt EMN △中,tan EM ENM MN∠==所以二面角E BC D --例27.(2022·湖北武汉·模拟预测)如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,4PA PC ==,AB BC ⊥,D ,E 分别为PC ,AC 中点,且BD AC ⊥.(1)求AB BC的值; (2)若4AC =,求二面角E BD C --的余弦值.【解析】(1)作DF AC ⊥于F ,连接DF ,BF ,①平面PAC ⊥平面ABC ,平面PAC 平面C ABC A =,DF AC ⊥,PE ⊂面PAC①DF ⊥平面ABC .①DF PE ∥.①PE ⊥平面ABC ,AC ⊂平面ABC①DF AC ⊥,①AC BD ⊥,BD DF D =,BD ,DF ⊂平面BFD ,①AC ⊥平面BFD ,BF ⊂平面BFD ,①AC ⊥BF ,①D ,E 分别为PC ,AC 中点,4PA PC ==,DF AC ⊥,①3AF FC =,①AB BC ⊥,AC ⊥BF ,①22,AB AF AC BC FC AC =⋅=⋅①AB BC ==(2)由4AC AB =⇒=2BC BE CD ED ====,取BD 中点为G ,连接DG ,CG .由BED ,BCD △为等腰三角形,故BD EG ⊥,BD CG ⊥,则EGC ∠为二面角E BD C --的平面角.BD ==EG CG ==22221cos 5EGC +-∠==.所以二面角E BD C --的余弦值为15. 例28.(2022·陕西·西北工业大学附属中学二模(理))在如图所示的圆锥中,PA 、PB 、PC 是该圆锥的三条不同母线,M 、N 分别为PA 、PB 的中点,圆锥的高为h ,底面半径为r ,:3:2h r =,且圆锥的体积为32π.(1)求证:直线MN 平行于圆锥的底面;(2)若三条母线PA 、PB 、PC 两两夹角相等,求平面MNC 与圆锥底面的夹角的余弦值.【解析】(1)连接AB ,在PAB △中,M 、N 分别为PA 、PB 的中点,所以//MN AB ,因为MN ⊄平面ABC ,AB平面ABC ,所以//MN 平面ABC ; (2)由21323V r h ππ==圆锥,且:3:2h r =,可解得6,4h r === 因为三条母线PA 、PB 、PC 两两夹角相等,所以ABC为等边三角形,则边长为2sin60r ︒= 设MN 的中点为D ,点D 在底面的投影为E ,则32h DE ==, 连接,CE CD ,则DCE ∠为平面MNC 与圆锥底面的夹角,在PAC △中,cos 13PAC ∠==, 则在MAC △中,(22223713MC =+-⨯=,所以CD ===,则5CE ==,所以cos34CE DCE CD ∠===.所以平面MNC例29.(2022·天津河北·二模)如图,四边形ABCD 是边长为2的菱形,60ABC ∠=︒,四边形P ACQ 是矩形,1PA =,且平面PACQ ⊥平面ABCD .(1)求直线BP 与平面P ACQ 所成角的正弦值;(2)求平面BPQ 与平面DPQ 的夹角的大小;【解析】(1)连接BD 交AC 于O ,连接OP ,四边形ABCD 是菱形,BD AC ∴⊥,平面PACQ ⊥平面ABCD ,平面PACQ ⋂平面ABCD AC =,BD ⊂平面ABCD ,BD ∴⊥平面PACQ ,BPO ∴∠即为BP 与平面ACQP 所成角.四边形PACQ 为矩形,PA AC ∴⊥,又平面PACQ ⊥平面ABCD ,平面PACQ ⋂平面ABCD AC =,PA ⊂平面PACQ ,PA ∴⊥平面ABCD ,PA AB ∴⊥,BP ∴在Rt POB △中,OB =sin OB BPO BP ∴∠==故BP 与平面ACQP(2)取PQ 的中点M ,连接BM 、DM ,由(1)知,PA ⊥平面ABCD ,四边形ABCD 是菱形,四边形PACQ 为矩形,BP BQ ∴=,DP DQ =,BM PQ ∴⊥,DM PQ ⊥,BM D ∴∠即为二面角B PQ D --的平面角,在BDM 中,BD =2BM DM ==, 由余弦定理知,22244121cos 22222BM DM BD BMD BM DM +-+-∠===-⋅⨯⨯, 120BMD ∴∠=︒, 故二面角B PQ D --的大小为120︒,则平面BPQ 与平面DPQ 的夹角为60︒.例30.(2021·江苏苏州·高三阶段练习)已知四棱锥Q ABCD -的底面ABCD 是边长为2的正方形,且平面QAD ⊥平面ABCD .(1)证明:AB QD ⊥;(2)若点Q 到平面ABCD 的距离为2,记二面角B QD A --的正切值为m ,求1QD m +的最小值. 【解析】(1)在四棱锥Q ABCD -中,ABCD 是正方形,则AB AD ⊥,因平面QAD ⊥平面ABCD ,平面QAD ⋂平面ABCD AD =,AB平面ABCD ,则AB ⊥平面QAD ,而QD ⊂平面QAD ,所以AB QD ⊥. (2)在平面QAD 内过Q 作QM AD ⊥于M ,过点A 作AN QD ⊥于N ,连接BN ,如图,因平面QAD ⊥平面ABCD ,平面QAD ⋂平面ABCD AD =,则QM ⊥平面ABCD ,即有2QM =, 由(1)知AB QD ⊥,而ABAN A =,,AB AN ⊂平面ABN ,于是得QD ⊥平面ABN ,BN ⊂平面ABN ,则BN QD ⊥,因此,ANB ∠是二面角B QD A --的平面角,2tan AB m ANB AN AN =∠==, 在QAD 中,4AN QD QM AD ⋅=⋅=,即4AN QD =,显然2QD ≥, 于是得1232AN QD QD QD m QD +=+=+≥,当且仅当2QD =时取“=”, 所以1QD m+的最小值是3. 题型四:距离问题例31.(2022·四川广安·模拟预测(文))如图,四棱锥E ABCD -中,底面ABCD 为直角梯形,其中AB BC ⊥,CD AB ∥,面ABE ⊥面ABCD ,且224AB AE BE BC CD =====,点M 在棱AE 上.(1)若2EM AM =,求证:CE ∥平面BDM .(2)当AE ⊥平面MBC 时,求点E 到平面BDM 的距离.【解析】(1)连接AC 与BD 交于点N ,连接MN ,①AB CD ∥,24AB CD ==,①CND ANB △△∽, ①12CD CN AB AN ==, 又因为2EM AM =, ①12CN EM AN MA==, ①CE MN ∥,又①CE ⊄平面BDM ,MN ⊂平面BDM ,①CE ∥平面BDM .(2)①AE ⊥平面MBC ,BM ⊂平面MBC ,①AE BM ⊥,①AB BE =,①M 是AE 的中点,①平面ABE ⊥平面ABCD ,①点E 到平面ABCD 的距离为4sin 60d =︒=在BDM 中,BD =DM =BM =①12BDM S =⋅△ ①111223E BDM E ABD M ABD E ABD ABD V V V V S d ----=-==⨯⨯⨯△114262=⨯⨯⨯⨯①点E 到平面BDM 的距离h 满足13=,所以距离h =. 例32.(2022·全国·模拟预测(文))如图,在三棱锥P ABC -中,平面PAB ⊥平面ABC ,AC BC =,PA PB =,且点C 在以点O 为圆心AB 为直径的半圆AB 上.(1)求证:AB PC ⊥;(2)若2AC =,且PC 与平面ABC 所成角为4π,求点B 到平面PAC 的距离. 【解析】(1)连接,OP OC ,因为PA PB =,AC BC =,故AB OP ⊥,AB OC ⊥,又OP OC O ⋂=,,OP OC ⊂平面OPC ,故AB ⊥平面OPC .又PC ⊂平面OPC ,故AB PC ⊥(2)由(1)因为AB OP ⊥,且平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC 于AB ,故OP ⊥平面ABC ,故PC 与平面ABC 所成角为4PCO π∠=,故OC OP =,又点C 在以点O 为圆心AB 为直径的半圆AB 上,AC BC =,2AC =,故OC OP OA OB ====2PA AC PC ===,设点B 到平面PAC 的距离为h ,则因为P ABC B PAC V V --=,即2111222323h ⨯⨯⨯,解得h 例33.(2022·河南安阳·模拟预测(文))如图,在三棱锥P ABC -中,底面ABC 是直角三角形,2AC BC ==,PB PC =,D 为AB 的中点.(1)证明:BC PD ⊥;(2)若3PA =,PB A 到平面PDC 的距离.【解析】(1)证明:取BC 中点E ,连接PE ,DE ,因为底面ABC 是直角三角形,AC BC =,所以90ACB ∠=︒, 因为D 为AB 的中点,所以//DE AC ,所以DE BC ⊥, 又PB PC =,所以PE BC ⊥,因为PE ,DE ⊂平面PDE ,PE DE E =,所以BC ⊥平面PDE , 因为PD ⊂平面PDE ,所以BC PD ⊥.(2)连接AE ,CD ,由(1),因为PE BC ⊥,112CE BC ==,PC PB ==2PE =,因为AC BC ⊥,所以AE ==又3PA =,所以222PE AE PA +=,即AE PE ⊥,因为PE BC ⊥,BC AE E =,BC ,AE ⊂平面ABC , 所以PE ⊥平面ABC , 所以11142223323P ABC ABC V S PE -=⋅=⨯⨯⨯⨯=, 因为D 是AB 的中点,所以1223P ACD P ABC V V --==,因为直角三角形ABC ,所以1122CD AB ==⨯ 因为PE ⊥平面ABC ,DE ⊂平面ABC ,所以PE DE ⊥,又112DE AC ==,所以PD所以在等腰PCD 中,CD所以13222PCD S ==, 设点A 到平面PDC 的距离为d ,因为P ACD A PCD V V --=, 所以2133PCD S d =⋅,则43d =, 所以点A 到平面PDC 的距离为43.例34.(2022·全国·高三专题练习)如图,在直棱柱1111ABCD A B C D -中,底面ABCD 是直角梯形,//,AB DC AB BC ⊥,33,6AB DC BC ===,点P 在面11ADD A 上,过点P 和棱1BB 的平面把直棱柱分成体积相等的两部分.(1)求截面与直棱柱的侧面11BCC B 所成角的正切值; (2)求棱1DD 到截面的距离.【解析】(1)如图所示,作出截面为1BB PQ 交AD 于Q ,A 1D 1于Q 1.1111ABCD A B C D -为直棱柱,1BB ∴⊥平面1111D C B A ,11,BQ BC BB BB ∴⊥⊥QBC ∴∠为截面与直棱柱的侧面11BCC B 所成角的平面角.过Q 作QH AB ⊥,垂足为11,H AB B C ⊥,,//QH BC QBC BQH ∴∴∠=∠,由题意可得:212ABCD ABQ S S ∴==,1362ABQ S QH ∴=⨯⨯=,4QH ∴=. 过Q 作QM BC ⊥,垂足为M ,则()11412622QBCD MBQ MCDQ S S S QM QM ∴==⨯⨯++⨯+⨯=,解得:53QM =, 所以4,335BH AH ==, 115tan tan 12QM PB C QBM BM ∴∠=∠==. 即截面与直棱柱的侧面11BCC B 所成角的平面角的正切值为512. (2)因为1//DD 截面,所以棱1DD 到截面的距离即为点D 到截面的距离.1BB ⊥平面,ABCD ∴平面1BB PQ ⊥平面ABCD ,交线为BQ ,过D 作DT BQ ⊥,垂足为,T DT ∴⊥平面1BB PQ ,则DT 的长度为棱1DD 到截面所在平面的距离.因为16132BCD S =⨯⨯=△,162QBCD ABCD S S ==,3QBD QBCD BCD S S S =-=, 即132QBD S BQ DT =⨯⨯=.因为133BQ =,所以332181313DT ⨯⨯== 所以棱1DD 到截面所在平面的距离为1813. 例35.(2021·湖南师大附中高三阶段练习)如图,已知ABC 为等边三角形,D ,E 分别为AC ,AB 边的中点,把ADE 沿DE 折起,使点A 到达点P ,平面PDE ⊥平面BCDE ,若4BC =.。
直线和平面所成的角与二面角
![直线和平面所成的角与二面角](https://img.taocdn.com/s3/m/e4b59a13a5e9856a561260ba.png)
直线和平面所成的角与二面角【高考导航】立体几何中的角大致可分为三种,即线线角,线面角,平面与平面所成的二面角.立体几何计算问题几乎都与三种空间角的计算有关,是高考立体几何检测的热点内容,题型上一般以解答题进行考查,难度适中,如1993全国理5分;1995全国文5分;1996全国4分;2002北京4分;1996上海12分;2002全国理12分;2002新课程12分;2002上海春12分;2003北京春5分;2004北京14分;2004广东12分等.【学法点拨】本节内容有斜线在平面上的射影,斜线与平面所成的角,公式cosθ=cosθ1·cosθ2,最小角定理,二面角的概念,二面角的平面角,两个平面垂直的判定定理及性质定理,对于本节知识的学习要了解线面角、半平面与半平面所成二面角以及异面直线所成角,在求法上一般都是转化为平面的角,具体地,通常应用“线线角抓平移,线面角抓射影,面面角抓平面角,利用向量抓法向量”而达到化归的目的.要注意对平面角的拼求和各种角的定义及取值范围.空间角的计算步骤是“一作,二证,三计算”.“作”即在图形中若无所求空间角的平面角,应先作出来;“证”指明自己所找或所作的角即为所求角;“计算”在平面几何图形内把角求出.在三种角的计算中要特别注意二面角的作法及求法,注意cosθ=cosθ1·cosθ2在线面角求值中的应用,注意利用射影面积公式S′=S·cosθ求二面角,对于平面与平面垂直的判定与性质的学习,可以与直线与直线垂直,直线与平面垂直的判定与性质联系起来,应用时注意三种垂直之间的相互转化.同时在学习中培养空间的想象能力、解决问题的能力以及逻辑推理能力和运算能力.【基础知识必备】一、必记知识精选平面的斜线和平面所成的角.(1)直线与平面所成角①范围:0°≤α≤90°当α=0°时,直线在平面内或直线平行于平面;当α=90°时,直线垂直于平面;当0°<α<90°时,直线与平面斜交.②最小角定理:直线与平面斜交,过斜足在平面内作直线,这些线与斜线所成角中射影与斜线所成角最小.③cosθ=cosθ1·cosθ2.④作法:作出直线和平面所成角,关键是作垂线,找射影.(2)二面角①定义:由一条直线出发的两个半平面组成的图形叫二面角.②二面角的平面角:定义:以二面角的棱上任意一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.对概念的理解要注意:平面角的两边分别在二面角的两个半平面内;平面角的二边都和二面角的棱垂直.③二面角平面角的求法:直接法:所谓直接法即先作出二面角的平面角,经过证明后再进行计算,常用的直接法有三:(a)利用平面角的定义;(b)利用三垂线定理;(c)过一点作棱的垂面.间接法:所谓间接法,就是不作出二面角的平面角,而利用公式cos θ=S S 射影.此方法也叫射影法.也可利用两半平面法向量的夹角求二面角.注意当直接作出二面角的平面角有一定难度时,一般才采用间接法求二面角大小. ④二面角的范围是0°≤θ≤180°,可从两个半平面“重合”、“相交”和“共面”各种情况考虑,重合时θ=0°;相交时,0°<θ<180°;共面时,θ=180°.(3)两个平面垂直的判定①定义:如果两相交平面所成二面角是直二面角,那么这两个平面互相垂直.两个平面互相垂直是两个平面相交的特殊情况,若两个相交平面所成的二面角是直二面角,则称这两个平面互相垂直,它和平面几何里两条直线互相垂直的概念类似.②判定定理:如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.即⎭⎬⎫⊂⊥βαl l ⇒β⊥α.简言之,“线面垂直⇒面面垂直”.(4)两个平面垂直的性质①如果两个平面互相垂直,那么它们所成二面角的平面角是直角.②性质定理:如果两个平面互相垂直,那么一个平面内垂直于交线的直线垂直于另一个平面.即⎭⎬⎫⊥⊂=⊥l a a l ,,ββαβα ⇒a ⊥α.简言之,“面面垂直⇒线面垂直”. ③如果两个平面互相垂直,那么过一个平面内一点和另一个平面垂直的直线,必在此平面内.④如果一个平面和二个相交平面都垂直,那么它就和它们的交线垂直.(5)从两个平面垂直的判定定理和性质定理中可看出,平面与平面的垂直问题可转化为直线与平面的垂直问题,即从线面垂直可推出面面垂直,反过来,由面面垂直又可推出线面垂直,这说明线面垂直与面面垂直之间有密切关系,可以互相转化.二、重点难点突破本节的重点是斜线在平面上射影的概念,斜线与平面所成角的概念,二面角的概念,两个平而垂直的判定定理.对于斜线在平面上的射影可通过具体作图具体体验,要注意O 点选取的任意性及斜线在平面上的射影是直线不是线段,斜线与平面所成角要紧扣概念,了解范围.本节的难点是cos θ=cos θ1·cos θ2的灵活应用,二面角的平面角.对于二面角的平面角和平面中角的概念作类比,注意化归思想的应用,二面角的考查在1993至2004高考十一年间有十年都有涉及,是考试热点,应重视.三、易错点和易忽略点导析在求二面角时,忽略二面角的范围,用反三角函数表示角出现错误或确定平面角出现错误.【例】 已知∠AOB=90°,过O 点引∠A O B 所在平面的斜线O C ,与O A 、O B 分别成45°、60°角测以O C 为棱的二面角A-O C-B 大小为________.错解:如图9-7-1所示,在O C 上取一点C ,使O C=1.过C 分别作CA ⊥O C 交O A 于A ,CB ⊥O C 交O B 于B.则AC=1,O A=2,BC=3,O B=2.在Rt △A O B 中,AB 2=O A 2+O B 2=6.在△ABC 中,由余弦定理,得cos ∠ACB=-33.∴∠ACB=arccos 33,即二面角A-O C-B 为arccos 33.正确解法:如图9-7-1所示,在O C 上取一点C ,使O C=1,过C 分别作CA ⊥O C 交O A 于A ,CB ⊥O C 交O B 于B ,则AC=1,O A=2,BC=3,O B=2.在Rt △A O B 中,AB 2=O A 2+O B 2=6,得cos ∠ACB=-33.∴∠ACB=π-arccos 33.即二面角A-O C-B 为π-arccos 33.错解分析:混淆了二面角的范围[0,π]与异面直线所成角的范围(0,2π],且对于反三角函数的表示不熟悉.【综合应用创新思维点拨】一、学科内综合思维点拨【例1】 已知D 、E 分别是正三棱柱ABC 一A 1B 1C 1的侧棱AA 1和BB 1上的点,且A 1D=2B 1E=B 1C 1.求过D 、E 、C 1的平面与棱柱的下底面所成二面角的大小.思维入门指导:在图9-7-2上,过D 、E 、C 1的面与棱柱底面只给出一个公共点C 1,而没有画出它与棱柱底面所成二面角的棱,因此还需找出它与底面的另一个公共点,进而再求二面角的大小.解:在平面M 1B 1B 内延长DE 和A 1B 1交于F ,则F 是面DEF 与面A 1B 1C 1的公共点,C 1也是这两个面的公共点,连结C 1F ,C 1F 为这两个面的交线,所求的二面角就是D-C 1F-A 1.∵A 1D ∥B 1E ,且A 1D=2B 1E ,∴E 、B 1分别为DF 和A 1F 的中点.∵A 1B 1=B 1F=B 1C 1,∴FC 1⊥A 1C 1.又面AA 1C 1C ⊥面A 1B 1C 1,FC 1在面A 1B 1C 1内,∴FC 1⊥面AA 1C 1C.而DC 1在面AA 1C 1C 内,∴FC 1⊥DC 1.∴∠DC 1A 1是二面角D-FC 1-A 1的平面角.由已知A 1D=B 1C=A 1C 1,∴∠DC 1A 1=4π.故所求二面角的大小为4π.点拨:当所求的二面角没有给出它的棱时,可通过公理1和公理2,找出二面角的两个面的两个公共点,从而找出它的棱,进而求其平面角的大小.需要注意的是,若利用cos θ=1111DEC C B A SS △△求二面角的大小,作为解答题,高考中是要扣分的,因为它不是定理.【例2】 设△ABC 和△DBC 所在的两个平面互相垂直,且AB=BC=BD ,∠ABC=∠DBC=120°.求:(1)直线AD 与平面BCD 所成角的大小;(2)异面直线AD 与BC 所成的角的大小;(3)二面角A-BD-C 的大小.思维入门指导:本题主要考查对空间三种角的“作一证一求”.在解题时要合理利用题中条件.解:(1)如图9-7-3所示,在平面ABC 内,过A 作AH ⊥BC ,垂足为H ,则AH ⊥平面DBC ,连结DH ,故∠ADH 为直线AD 与平面BCD 所成的角.由题设知,△AHB ≌△DHB ,则DH ⊥BH ,AH=DH.∴∠ADH=45°为所求.(2)∵BC ⊥DH ,且DH 为AD 在平面BCD 上的射影,∴BC ⊥AD ,故AD 与BC 所成的角为90°.(3)过H 作HR ⊥BD ,垂足为R ,连结AR ,则由三垂线定理知AR ⊥BD ,故∠ARH 为二面角A-BD-C 的平面角的补角.设BC=a ,则由题设得AH=DH=23a ,BH=21a ,BD=BC=a.在△HDB 中,求得HR=43a.∴tan ∠ARH=HR AH =2.故二面角A-BD-C 的大小为π-arctan2.点拨:本题是一道中档难度的立体几何综合题.这种试题命题的目的是考查立体几何重点知识,并且使之能覆盖较多的知识点.二、应用思维点拨【例3】 如图9-7-4所示,边长AC=3,BC=4,AB=5的三角形简易遮阳棚,其A ,B 是地面上南北方向两个定点,正西方向射出的太阳光线与地面成30°角.试问:遮阳棚ABC 与地面成多大角度时,才能保证遮影面ABD 面积最大?思维入门指导:太阳影子实质可理解为射影面积,从而本题可转化为二面角的有关问题进行探讨,那么首先应作出纯数学图形,结合图形进行分析求解.解:易知△ABC 为直角三角形,由C 点引AB 的垂线,垂足为Q ,连结DQ ,则应有DQ 为CQ 在地面上的斜射影,且AB 垂直于平面CQD ,如图9-7-5.∵太阳光与地面成30°角,∴∠CDQ=30°.在△ABC 中,可算得CQ=512,在△CQD 中,由正弦定理,有︒30sin CQ =QCD QD ∠sin .即QD=524sin ∠QCD.为了使平面ABD 的面积最大,需QD 最大,这只有当∠QCD=90°时才可达到.从而∠CQD=60°.故当遮阳棚ABC 与地面成60°角时,才能保证遮影面ABD 面积最大.点拨:从研究中可看出只有当遮阳棚所在平面与太阳光线垂直时,才能挡住最多的光线,被遮阳的地面面积才能获得最大值.利用这个结论,也很容易得出所求值为60°,参看图9-7-6.三、创新思维点拨【例4】 如图9-7-7,在四面体ABCD 中,AB=AD=3,BC=CD=3,AC=10,BD=2.(1)平面ABD 与平面BCD 是否垂直,证明你的结论;(2)求二面角A-CD-B 的正切值;(3)求异面直线BC 与AD 所成角的余弦值.思维入门指导:(1)判断垂直需要寻找符合面面垂直判定定理的条件.(2)(3)求空间的角要先转化为平面相交直线所成角,然后进行求解.解:(1)平面ABD ⊥平面BCD.证明如下:设BD 的中点为E ,连AE 、CE.∵AB=AD ,∴AE ⊥BD.同理CE ⊥BD.∴AE=22BE AB -=13-=2, CE=22BE BC -=19-=22. 又AC=10,∴AC 2=AF 2+CE 2.∴∠AEC=90°.∴AE ⊥EC.又AE ⊥BD ,∴AE ⊥平面BCD.又AE ⊂平面ABD ,∴平面ABD 上平面BCD.(2)作EF ⊥CD 于F ,连AF.∵AE ⊥平面BCD ,由三垂线定理得,AF ⊥CD ,∴∠AFE 就是二面角A-CD-B 的平面角,EF=ED ·sin ∠EDF=ED ·CD EC=1×322=322.∴tan ∠AFE=EF AE =3222=23.即二面角A-CD-B 的正切值为23.(3)解法一:取AB 的中点M ,AC 的中点N ,连MN 、ME 、NE.则ME ∥21AD ,MN ∥21BC. ∴∠NME 是异面直线BC 与AD 所成角或其补角.∵MN=21BC=23, ME=21AD=23, NE=21AC=210,由余弦定理,cos ∠NME=ME MN NE ME MN ∙-+2222=93>0.∴∠NME 为锐角.∴∠NME 就是异面直线BC 与AD 所成角,其余弦值为93.解法二:在平面BCD 内作□BCGD(如图9-7-8),连结AG ,则DG ∥BC ,∴∠ADG 是直线BC 与AD 所成角或者其补角.∵BD ∥CG ,EC ⊥BD ,∴EC ⊥CG.又∵AE ⊥平面BCD ,∴AC ⊥CG ,CG=BD=2,DG=BC=3.在Rt △ACG 中,AG=22CG AC +=14,cos ∠ADG=DG AD AG DG AD ∙-+2222=3321493∙-+=93.∴直线BC 与AD 所成角的余弦值为93.点拨:本题的(1)设问新颖,属开放式,增加了问题的灵活度,对空间想象能力、推理、判断能力要求更高,近年高考中像这样开放式设问题的试题较多,是高考命题的一个热点.本题的(3)求异面直线所成角,要化归为相交线所成角,解法一利用中位线性质将两异面直线所成角转化为相交直线所成角,解法二过一直线上一点作另一直线的平行线.应注意异面直线所成角一定是锐角或直角.四、高考思维点拨【例5】 (2002,河南、江苏)四棱锥P —ABCD 的底面是边长为a 的正方形PB ⊥面ABCD.(1)若面PAD 与面ABCD 所成的二面角为60°,求这个四棱锥的体积;(2)证明:无论四棱锥的高怎样变化,面PAD 与面PCD 所成的二面角恒大于90°. 思维入门指导:解答第(1)问,基本思路是寻找面PAD 与底面ABCD 所成的二面角的平面角,进而求棱锥的高和体积;也可以通过侧面△PDA 在底面的射影面积与二面角的关系求解;还可以补形为正四棱柱求解,但此法较繁琐.解答第(2)问,首先要找出面PAD 与面PCD 所成的二面角的平面角,也即找出一个垂直于PD 的平面,转化为在平面上研究该平面角的大小.(1)解法一:∵PB ⊥面ABCD ,∴BA 是PA 在面ABCD 上的射影.又DA ⊥AB ,∴PA ⊥DA.∴∠PAB 是面PAD 与面ABCD 所成的二面角的平面角.∴∠PAB=60°.而PB 是四棱锥P —ABCD 的高,PB=AB ·tan60°=3a ,∴V 锥=31·3a ·a 2=33a 3.解法二:如图9-7-9,∵PB ⊥面ABCD ,连结BD ,则△ABD 是△APD 在面ABCD 上的射影, ∴APD ABDS S △△=cos60°.又S △ABD =21a 2,∴S △APD =21212a =a 2.由PB ⊥AD ,AD ⊥AB ,得AD ⊥面PAB.∴AD ⊥AP.∴PA=AD S APD 21△=a a 212=2a.在Rt △PAB 中,PB=22)2(a a -=3a ,∵PB 是四棱推P —ABCD 的高,∴V 锥=31·3a ·a 2=33a 3. (2)证法一:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为全等三角形.作AE ⊥DP ,垂足为E ,连结EC ,如图9-7-10,则△ADE ≌△CDE ,∴AE=CE ,∠CED=90°.故∠CEA 是面PAD 与面PCD 所成的二面角的平面角.设AC 与DB 相交于点O ,连结E O ,则E O ⊥AC ,22a=O A <AE <AD=a ,且AD=2O A.在△AEC 中,cos ∠AEC=EC AE OA EC AE ∙∙-+2)2(222=2)2)(2(AE OA AE OA AE -+<0.所以,面PAD 与PCD所成的二面角恒大于90°.证法二:如图9-7-10,同证法一,得∠CEA 是面PAD 与面PCD 所成的二面角的平面角.设PB=h ,则PA 2=h 2+a 2,PD 2=h 2+2a 2.在Rt △PAD 中,AE=PD ADPA ∙=22222a h a h a ++. 在△AEC 中,∵AE=EC ,∴cos ∠AEC=EC AE AC EC AE ∙-+2222=222AE a AE -=1-22AE a =1-22222a h a h ++=-222a h a +<0.∴∠AEC 是钝角.即面PAD 与面PCD 所成的二面角恒大于90°.点拨:本题以《立体几何》课本的一道复习题为基础,通过题中某个元素的变动,导出某个“恒定”的结论,创设出一个新的问题,与课本的习题一气呵成,构成一个完美的题组,给人以完整、清新、自然的感觉,是一道颇具创意的试题.本题的第(1)题,出自于课本复习参考题九B 组第6组,它只改变问题的表述,并不改变问题的本质,考查线面、线线垂直关系的逻辑推理和解直角三角形、求棱锥体积的运算,是对考生的基本要求.五、经典类型题思维点拨【例6】 如图9-7-11,三棱柱O AB -O 1A 1B 1,平面O BB 1O 1⊥平面O AB ,∠O 1O B=60°,∠A O B=90°,且O B=OO 1=2, O A=3.求:二面角O 1-AB-O 的大小;思维入门指导:根据题意利用二面角的定义,找出二面角的平面角,运用解三角形的知识求出.解:取O B 的中点D ,连结O 1D ,则O 1D ⊥O B.∵平面O BB 1O 1⊥平面O AB ,∴O 1D ⊥平面O AB.过点D 作AB 的垂线,垂足为E ,连结O 1E ,则O 1E ⊥AB.∴∠DE O 1为二面角O 1-AB-O 的平面角.由题设得O 1D=3,sin ∠O BA=22OB OA OA +=721. ∴DE=DB ·sin ∠O BA=721.∵在Rt △O 1DE 中,tan ∠DE O 1=DE DO 1=7.∴∠DE O 1=arctan 7.即二面角O 1-AB-O 的大小为arctan 7.六、探究性学习点拨【例7】 在直角梯形ABCD 中,∠D=∠BAD=90°,AD=DC=21AB=a(如图9-7-12(1)),将△ADC 沿AC 折起,使D 到D ′,记面ACD ′为α,面ABC 为β,面BCD ′为λ.(1)若二面角α-AC-β为直二面角(如图9-7-12(2)),求二面角β-BC-λ的大小;(2)若二面角α-AC-β为60°(如图9-7-12(3)),求三棱锥D ′一ABC 的体积.思维入门指导:本题是一道由平面图形折叠形成的立体几何问题.主要考查空间想象力和图形对应关系,也考查了立体几何的常规计算——二面角计算和体积计算.解:(1)在直角梯形ABCD 中,由已知△DAC 为等腰直角三角形,∴AC=2a ,∠CAB=45°. 由AB=2a ,可推得BC=AC=2a ,∴AC ⊥BC.取AC 的中点E ,连结D ′E ,如图9-7-13,则D ′E ⊥AC.∵二面角α-AC-β为直二面角,∴D ′E ⊥β.又∵BC ⊂平面β,∴BC ⊥D ′E.∴BC ⊥α.而D ′C ⊂α,∴BC ⊥D ′C.∴∠D ′CA 为二面角β-BC-λ的平面角.由于∠D ′CA=45°,∴二面角β-BC-λ为45°.(2)如图9-7-14,取AC 的中点E ,连结D ′E ,再过D ′作D ′O ⊥β,垂足为O ,连结O E.∵AC ⊥D ′E ,∴AC ⊥O E.∴∠D ′E O 为二面角α-AC-β的平面角.∴∠D ′E O =60°.在Rt △D ′OE 中,D ′E=21AC=22a ,D ′O =D ′E ·sin60°=22a ·23=46a.∴V D ′-ABC =31S △ABC ·D ′O =31×21AC ·BC ·D ′O =61×2a ×2a ×46a=126a 3.点拨:本题立意简明,考查了空间图形的基本推理和运算,对于折叠问题,空间图形中大多数数据靠平面图形计算去赋值,这是解决这类问题的通常思考方法,题目难度中档,有一定的区分度.【强化练习题】A 卷:教材跟踪练习题 (60分 45分钟)一、选择题(每小题5分,共30分)1.在正三棱柱ABC -A 1B 1C 1中,若AB=2BB 1;则AB 1与C 1B 所成角的大小为( )A.60°B.90°C.105°D.75°2.直线l 与平面α斜交成n °角,则l 与α内任意直线所成角中,最小与最大的角分别是( )A.n °与90°B.180°-n °与n °C.n °与180°-n °D.以上都不是3.PA 、PB 、PC 是从P 点出发的三条射线,每两条射线的夹角均为60°,那么直线PC 与平面PAB 所成角的余弦值是( ) A.21 B.22C.33D.364.二面角α-AB-β的平面角是锐角,C 是面α内的一点(它不在棱AB 上),点D 是点C 在面β上的射影,点E 是棱AB 上满足∠CEB 为锐角的任意一点,那么( )A.∠CEB=∠DEBB.∠CEB >∠DEBC.∠CEB <∠DEBD.∠CEB 与∠DEB 的大小关系不能确定5.在空间四边形ABCD 中,M 、N 分别为AB 、CD 的中点,且AD=4,BC=6,MN=19,则AD 与BC 所成角的余弦值和所成角分别为( ) A.-21,32π B.-21,3π C.21,3π D.21,32π6.已知a 、b 是异面直线,A ,B ∈α,A 1,B 1∈b ,AA 1⊥α,AA 1⊥b ,BB 1⊥b ,且AB=2,A1B1=1,则α与b所成的角等于()A.30°B.45°C.60°D.75°二、填空题(每小题4分,共16分)7.在正方体ABCD--A1B1C1D1中,BD1与平面A1B1C1D1所成角的正切值为________.8.AB∥平面α,AC⊥α于C,BD是α的斜线,D是斜足,若AC=9,BD=63,则BD与α所成的角为________.9.过一个平面的垂线和这个平面垂直的平面有________.10.一条长为a的线段夹在互相垂直的两平面之间,它和这两个平面所成角分别为45°和30°,由这线段的两个端点向两个平面引垂线,那么垂足间的距离是________.三、解答题(每小题7分,共14分)11.如图9-7-15,A是△BCD所在平面外一点,AB=AD,∠ABC=∠ADC=90°.E是BD的中点.求证:平面AEC⊥平面ABD,平面AEC⊥平面BDC.12.设E为正方体ABCD—A1B1C1D1的棱CC1的中点,求平面AB1E和底面A1B1C1D1所成角的余弦值.B卷:综合应用创新练习题(90分 90分钟)一、学科内综合题(10分)1.如图9-7-16,以正四棱锥V—ABCD底面中心O为坐标原点建立空间直角坐标系O一xyz,其中O x∥BC,O y∥AB,E为VC中点,正四棱锥底面边长为2a,高为h.(1)求cos<BE,DE>;(2)记面BCV为α,面DCV为β,若∠BED是二面角α-VC-β的平面角,求∠BED.二、应用题(10分)2.一个气象探测气球以14m/min的垂直分速度由地面上升,经过10min后,由观察点D测得气球在D的正东,仰角为45°;又过10min后,测得气球在D的北偏东60°,仰角为60°.若气球是直线运动,求风向与风速.三、创新题(60分)(一)教材变型题(10分)3.(P46习题9.7第4题变型)山坡与水平面成30°角,坡面上有一条与山底水平线成30°角的直线小路,某人沿小路上坡走了一段路程后升高了100米,则此人行走的路程为________.(二)一题多解(15分)4.如图9-7-17,在正方体ABCD-A1B1C1D1中,E、F分别为AA1、AB之中点,求EF和平面ACC1A1所成角的大小.(三)一题多变(15分)5.如图9-7-18,过正方形ABCD 的顶点A 作PA ⊥平面ABCD ,设PA=AB=a. ①求二面角B-PC-D 的大小;②求平面PAB 和平面PCD 所成二面角的大小.(1)一变:四边形ABCD 是菱形,且∠ABC=60°,其他条件不变,求二面角B-PC-D 的大小.(四)新解法题(1O 分)6.△ABC 的边BC 在平面α内,A 在平面α上的射影为A ′,当∠BAC=60°,AB 、AC 与平面α所成角分别为30°和45°时,求cos ∠BA ′C 的值.(五)新情境题(10分)7.如图9-7-19,在底面是直角梯形的四棱锥S -ABCD 中,∠ABC=90°,SA ⊥面ABCD ,SA=AB=BC=1,AD=21.(1)求四棱锥S —ABCD 的体积;(2)求面SCD 与面SBA 所成的二面角的正切值. 四、高考题(10分)8.(2001,京、蒙、皖春)已知VC 是△ABC 所在平面外的一条斜线,点N 是V 在平面ABC 上的射影,如图9-7-20,且在△ABC 的高CD 上,AB=a ,VC 与AB 之间的距离为h ,点M ∈VC.(1)求证:∠MDC 是二面角M-AB-C 的平面角; (2)当∠MDE=∠CVN 时,求证:VC ⊥平面AMB ;(3)若∠MDC=∠CVN=θ(0<θ<2π),求四面体MABC 的体积.加试题:竞赛趣味题(10分)已知正方体ABCD -A ′B ′C ′D ′的棱长为1,在AC 上取一点P ,过P 、A ′,B ′三点作的平面与底面所成二面角为α,过P 、B ′、C ′三点作的平面与底面所成的二面角为β,求α+β的最小值.【课外阅读】巧用向量法求空间角众所周知,解决立体几何问题,“平移是手段,垂直是关键”,向量的运算中:两向量的共线易解决平行问题,向量的数量积则易解决垂直、两向量所成角及线段的长度等问题.一般来说,当掌握了用向量的方法解决立体几何问题这套强有力的工具时,应该说不仅会降低学习的难度,而且增强了可操作性,为学生提供了崭新的视角,丰富了思维结构,消除了学生对立体几何学习所产生的畏惧心理,更有利于新课改、新理念、新教材的教学实验.本文主要是谈利用向量法求解空间角的问题.角这一几何量本质上是对直线与平面位置关系的定量分析,其中转化的思想十分重要,三种空间角都可转化为平面角来计算,可以进一步转化为向量的夹角求解.1.求两条异面直线所成的角异面直线所成的角α利用与它们平行的向量,转化为向量的夹角θ问题,但θ∈[0,π],α∈(0,2π],所以cos α=|cos θ|=ba ba ∙.【例1】 (2002,上海春季)如图9-7-21,三校柱O AB —O 1A 1B I ,平面O B 1⊥平面O AB ,∠O 1O B=60°,∠A O B=90°,且O B=OO 1=2,O A=3,求异面直线A 1B 与A O 1所成角的大小.思维入门指导:用平移A 1B 或A O 1的方法求解,是很困难的,于是我们很自然地想到向量法求解.充分利用∠A O B=90°,建立空间直角坐标系,写出有关点及向量的坐标,将几何问题转化为代数问题计算.解:建立如图9-7-21所示的空间直角坐标系,则O (0,0,0),O 1(0,1,3),A(3,0,0),A 1(3,13),B (0,2,0).∴B A 1=OB -1OA =(-3,1,-3),1OA =OA -1OO =(3,-1,3).设异面直线所成的角为α,则cos α=71.故异面直线A 1B 与A O 1所成的角的大小为arccos 71.点拨:(1)以向量为工具,利用空间向量的坐标表示,空间向量的数量积计算公式,异面直线所成角问题思路自然,解法灵活简便;(2)也可以直接用自由向量OA =a ,OB =b ,1OO =c 表示1OA 与A 1,然后再来解.2.求直线与平面所成的角在求平面的斜线与平面所成的角时,一般有两种思考的途径,如图9-7-22,一种是按定义得∠P O H=<OP ,OH >;另一种方法是利用法向量知识,如图9-7-22,平面α的法向量为n ,先求OP 与n 的夹角,注意P O 与α所成角θ与<OP ,n >的关系,于是就有sin θ=|cos<OP ,n>|.【例2】 (2002,天津、山西、江西)如图9-7-23,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求直线AC 1与侧面AB 1所成的角的大小.思维入门指导:利用正三棱柱的性质,建立适当的空间直角坐标系,写出有关点的坐标,求角时有两种思路,一是由定义找出线面角,取A 1B 1中点M ,连结C 1M ,证明∠C 1AM 是AC 1与面A 1B 所成的角;另一种是利用平面AB 1的法向量n =(λ,x ,y ),求解.解法一:建立如图9-7-23所示的空间直角坐标系,则A(0,0,0),B(0,a ,0),A 1(0,0,2a),C 1(-23a ,2a ,2a),取A 1B 1中点M ,则M(0,2a ,2a),连结AM ,MC 1,有1MC =(-23a ,0,0),=(0,a ,0),1AA =(0,0,2a).由于1MC ·AB =0,1MC ·1AA =0,∴MC 1⊥面AB 1.∴∠C 1AM 是AC 1与侧面AB 1所成的角θ.∵1AC =(-23a ,2a ,2a),AM =(0,2a ,2a),∴1AC ·AM =0+42a +2a 2=492a .而|1AC |=2222443a a a ++=3a ,||=2224a a +=23a ,∴cos<1AC ,AM >=233492a a a ∙=23.∴<1AC ,>=30°,即AC 1与侧面AB 1所成的角为30°.解法二(法向量法):(接法一)1AA =(0,0,2a ).设侧面A 1B 的法向量n =(λ,x ,y).所以n ·AB =0,且n ·1AA =0,∴ax=0,且2ay=0.∴x=y=0,故n =(λ,0,0).∵1AC =(-23a ,2a ,2a),∴cos<1AC ,n >=1=a a 3||23∙∙-λλ=-||2λλ.∴sin θ=|cos<1AC ,n >|=21.∴θ=30°.点拨:充分利用图形的几何特征建立适当的空间直角坐标系.再用向量有关知识求解线面角.解法二给出了一般的方法,先求平面法向量与斜线夹角,再进行换算.3.求二面角利用向量法求二面角的平面角有两种途径,一是根据二面角的平面角的定义,如图9-7-24,AB ⊥l ,CD ⊥l ,AB ⊂α,CD ⊂β,则二面角α- l -β的大小为<AB ,CD >.另一种方法是利用两平面的法向量的夹角求解,但应注意法向量n 1、n 2的夹角与二面角的大小是相等或互补的.【例3】 (2001,全国)如图9-7-25,在底面是一直角梯形的四棱锥S 一ABCD 中,AD∥BC ,∠ABC=90°,SA ⊥平面AC ,SA=AB=BC=1,AD=21,求面SCD 与面SBA 所成的角.思维入门指导:本题是“无棱”的二面角,利用向量法求二面角大小更显示了向量工具的魅力.抓住AD 、AB 、AS 两两互相垂直建立坐标系,用待定系数法求出面SAB 、面SCD 的法向量,再求其夹角.解:如图9-7-25,建立空间直角坐标系,则A(0,0,0),B(0,1,0),C(1,1,0),D(21,0,0),S(0,1,0),得DC =(21,1,0),SD =(21,0,-1),SC =(1,1,-1).设平面SDC 的法向量为n 1=(x 1,y 1,z 1).∵n 1⊥面SDC ,∴n 1⊥DC ,n 1⊥SD ,n 1⊥SC .设平面SAB 的法向量为n 2=(x 2,y 2,z 2),则 SA =(0,0,-1),SB =(0,-1,1).∴⎪⎩⎪⎨⎧=∙=∙.0,022SA n n ∴⎩⎨⎧=+-=-.0,0222z y z∴x 2=y 2=0.∴n 2=(x 2,0,0). ∴cos<n 1,n 2>=||||2121n n n n ∙=||414100221212121x x x x x x ∙++++=||322121x x x x =±36.∵面SAB 与面SCD 所成角的二面角为锐角θ,∴cos θ=|cos<n 1,n 2>|=32=36. ∴θ=arccos 36.故面SCD 与面SBA 所成的角大小为arccos 36.点拨:本题考查了空间向量的坐标表示,空间向量的数量积,空间向量垂直的充要条件,空间向量的夹角公式和直线与平面垂直的判定,考查了学生的运算能力,综合运用所学知识解决问题的能力.参考答案A 卷一、1.B 点拨:如答图9-7-1建立空间直角坐标系O 一xyz.设高为h ,则AB=2h ,可得A(0,-22h ,h),B(0,22h ,h),B 1(0,22h ,0),C 1(26h ,0,0).则1AB =(0,2h ,-h),1BC =(26h ,-22h ,-h). ∵1AB ·1BC =O ×26h+2h ·(-22h)+h 2=0,∴1AB ⊥1BC .2.A 点拨:直线与平面斜交时,斜线和面所成角是斜线与面内所有直线所成角中最小的,且最大角为直角.3.C 点拨:构造正方体如答图9-7-2所示,过点C 作C O ⊥平面PAB ,垂足为O ,则O 是正△ABP 的中心,于是∠CP O 为PC 与平面PAB 所成的角.设PC=a ,则P O =32PD=33a.故cos ∠CP O =PC PO=33.4.B 点拨:结合图形,可先比较tan ∠CEB 与tan ∠DEB 的大小,即可得到答案.5.C 点拨:取BD 的中点P ,连PM 、PN ,则PM=2,PN=3,然后用余弦定理可求得.6.C二、7.22点拨:如答图9-7-3,连结B 1D 1,则∠B 1D 1B 为BD 1与面A 1B 1C 1D 1所成角,tan∠B 1DB=111D B BB =22.8.3π点拨:过B 作BE ⊥α,垂足为E ,如答图9-7-4,连结DE ,则∠BDE 为直线BD 与α所成角.在Rt △BED 中易知∠BDE=60°.9.无数个 点拨:由直线和平面垂直的判定定理可知满足条件有无数个.10.2a三、11.证明:∵AB=AD ,∠ABC=∠ADC=90°,AC=AC , ∴Rt △ABC ≌Rt △ADC.∴BC=CD. 又∵E 为BD 的中点,∴CE ⊥BD.又AB=AD ,且E 为BD 的中点,∴AE ⊥BD ,则BD ⊥平面ACE.又BD ⊂平面ABD ,BD ⊂平面BCD ,∴平面ABD ⊥平面AEC ,平面BDC ⊥平面AEC. 点拨:本题关键证明BD ⊥面ACE.12.解:如答图9-7-5,设正方体的棱长为a ,在△AB 1E 中,AB 1=2a ,B 1E=25a ,AE=23a.∴cos ∠AB 1E=E B AB AE E B AB 11221212∙∙-+=aa a a a 252249452222∙∙-+=1010.∴sin ∠AB 1E=10103.∴S E AB 1△=21·AB 1·B 1E ·sin ∠AB 1E=21×2a ·25a ×10103=43a 2.又S 111C B A △=21·a ·a=21a 2,∴cos θ=E AB C B A S S 1111△△=224321a a =32. 即平面AB 1E 与底面A 1B 1C 1D 1所成角的余弦值为32.B 卷一、1.解:(1)依题意,B(a ,a ,0),C(-a ,a ,0),D(-a ,-a ,0),E(-2a ,2a ,2h),∴=(-23a ,-2a ,2h ),=(2a ,23a ,2h).∴BE ·DE =(-23a ·2a )+(-2a ·23a )+2h ·2h =-232a +42h ,||=222)2()2()23(h a a +-+-=221021h a +,|DE |=222)2()2()23(h a a ++=221021h a +.由向量的数量积公式,有cos<BE ,DE >==22222210211021423h a h a h a +∙++-=2222106h a h a ++-.(2)∵∠BED 是二面角α-VC-β的平面角, ∴BE ⊥CV ,即有BE ·CV =0.又由C (-a ,a ,0),V (0,0,h ),得CV =(a ,-a ,h),且=(-23a ,-2a ,2h), ∴BE ·=-23a +22a +22h =0.即h=a 2,此时有cos<BE ·DE >=2222106h a h a ++-=2222)2(10)2(6a a a a ++-=-31,∴∠BED=<,>=arccos(-31)=π-arccos 31.点拨:应用空间向量注意坐标系的建立及点的坐标的确定. 二、2.解:以水平放置的平面α的地面,根据题意画出空间图形如答图9-7-6所示.10min 后气球位置为A ,又10min 后气球位置为B ,A 、B 在平面α的射影分别为A 1、B 1,且AA 1=14×10=140(m),BB 1=14×20=280(m),∠A 1DB 1=30°,∠A 1DA=45°,∠B 1DB=60°,于是,得A 1D=A 1A=140m ,B 1D=B 1Bcot60°=3280(m). 在△A 1DB 1中,A 1B 21=1402+(3280)2-2·140·3280·23=31402(m). 因此,风速为1011B A =3314(m/min).∵B 1D 2=A 1D 2+A 1B 21,∴∠DA 1B 1=90°. 故风向为正北. 点拨:要使问题得以解决,其关键在于能否建立起一个能表示观察点D 与该气球的相对位置之间关系的几何模型,因为有了几何模型我们就能根据其立体图形进行相关的计算,求。
线面角二面角线线角的公式
![线面角二面角线线角的公式](https://img.taocdn.com/s3/m/34edf858974bcf84b9d528ea81c758f5f61f29b1.png)
线面角二面角线线角的公式线面角、二面角和线线角是在几何学中常见的概念,它们有各自的计算公式。
下面将分别介绍这三个角的定义和计算方法。
1.线面角:线面角是由一条线与一个平面相交所形成的角。
设平面上有一条直线L,平面上有一点A和直线上的一点B,在平面上从点A引一条垂线,与直线L相交,就形成了一个线面角。
线面角的度量是直线L的角度与平面的夹角。
线面角的计算公式如下:线面角=直线L与平面的夹角2.二面角:二面角是由两个平面相交所形成的角。
设有一个平面P1和一个不与P1平行的平面P2,两个平面相交于一条直线L。
通过P1和P2的交线L 可以确定两个交点A和B。
二面角的计算公式如下:二面角=(直线L在P1中所成的角)+(直线L在P2中所成的角)值得注意的是,二面角没有固定的度量单位,它的度量取决于直线L 在两个平面上的角度度量单位。
3.线线角:线线角是由两条直线相交所形成的角。
设有两条直线L1和L2,它们相交于一点O。
通过O可以确定L1上的一点A和L2上的一点B。
线线角的计算公式如下:线线角=∠AOB其中,∠AOB表示点A、O和B所形成的角。
总结:线面角、二面角和线线角是几何学中常见的角度概念。
线面角由一条直线与一个平面相交所形成,计算公式为线面角=直线L与平面的夹角。
二面角由两个平面相交所形成,计算公式为二面角=(直线L在P1中所成的角)+(直线L在P2中所成的角)。
线线角由两条直线相交所形成,计算公式为线线角=∠AOB。
这些角度概念在几何学的应用中起着重要的作用。
线面角,二面角,线线角的范围
![线面角,二面角,线线角的范围](https://img.taocdn.com/s3/m/75697b05905f804d2b160b4e767f5acfa1c78388.png)
线面角,二面角,线线角的范围线面角、二面角、线线角是数学中用来表示三维空间属性、特征及空间关系的几何概念。
线面角是三角形的两个边和另一条平面之间的夹角;二面角代表了两个平面之间的夹角;线线角是两条直线的夹角。
以上三个角,在数学计算以及生活应用当中都发挥着重要作用。
首先,线面角可以用来表示两个三角形之间的关系。
线面角可以应用在三角形交会、分析物体形状和寻找最大最小角等问题当中。
一般来说,如果两个三角形的三个面分别作直线链接,形成的角就是线面角。
线面角的计算可以采用向量的几何关系、勾股定理以及三角函数等方法。
而且,线面角也有助于解决实际问题,比如求解等腰三角形的外接圆的半径。
其次,二面角也可以用来表示三维空间中物体形状及其关系。
二面角由两个平面和它们之间的空间角度来定义。
常见的计算二面角的方法包括埃尔米特定理、直角坐标系和泰勒公式等。
此外,二面角也可以帮助我们计算三角形的表面积,例如求得两个平面的夹角就可以用二面角来解答。
最后,线线角是两条线段之间的夹角。
它是一种由两条非平行线之间的夹角来定义的几何形状。
线线角在求解三角形外接圆半径和求解正方形面积等几何问题上同样也有重要的作用。
并且,线线角也可以应用在具体工程当中,比如机械结构设计、火箭发射系统的控制与精确定位等技术。
线面角、二面角、线线角均是三维空间的重要几何概念,在平面几何和空间几何的计算以及实际技术应用中都发挥着重要作用。
像是线面角可以用来表示两个三角形之间的关系,计算等腰三角形的外接圆的半径等问题;二面角可以用来表示三维空间中物体形状及其关系,它也可以帮助我们计算三角形的表面积;线线角则是两条线段之间的夹角,可以用来求解三角形外接圆半径和求解正方形面积,也可以应用在具体工程当中,如机械结构设计、火箭发射系统的控制与精确定位等应用技术。
从上面的讨论可以看出,线面角、二面角、线线角三者在数学计算和实际应用中均发挥了重要作用。
这些概念涉及到数学计算中几何计算的技巧,也涉及到工程实践中实用技术的控制,这一举一动都极大地改变了我们对空间这一概念的认识,为我们解决了日常生活中的问题,也丰富了我们的数学认知。
高考数学专题复习:平行、垂直、线面垂直、线面角、二面角知识点及方法总结
![高考数学专题复习:平行、垂直、线面垂直、线面角、二面角知识点及方法总结](https://img.taocdn.com/s3/m/c5284ea7960590c69ec37625.png)
高考数学专题突破——空间几何课题1:平行、垂直的证法定理cc∥∥b a ba ∥⇒ ③线面垂直的性质定理:两条平行直线中的一条垂直于平面,则另一条也垂直于这个平面; ④面面平行的性质定理:一条直线垂直于两平行平面中的一个平面,则必垂直于另一个平面; ⑤面面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
3.面面垂直的证明方法:①面面垂直的定义:两个平面的二面角是直二面角;②面面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个 平面互相垂直;课题2:平行与垂直常用方法归纳一、“平行关系”常见证明方法(一)直线与直线平行的证明1、利用某些平面图形的特性:如平行四边形的对边互相平行2、利用三角形中位线性质3、利用空间平行线的传递性(即公理4):平行于同一条直线的两条直线互相平行。
4、利用直线与平面平行的性质定理:如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
5、利用平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.6、利用直线与平面垂直的性质定理:垂直于同一个平面的两条直线互相平行。
abαβba a =⋂⊂βαβα∥ba ∥⇒b a b a ////⇒⎪⎭⎪⎬⎫==γβγαβα α⊥a αab7、利用平面内直线与直线垂直的性质:在同一个平面内,垂直于同一条直线的两条直线互相平行。
8、利用定义:在同一个平面内且两条直线没有公共点(二)直线与平面平行的证明1、利用直线与平面平行的判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。
2、利用平面与平面平行的性质推论:两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。
3、利用定义:直线在平面外,且直线与平面没有公共点(三)平面与平面平行的证明常见证明方法:1、利用平面与平面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B 1D 1A DC 1B C A 1线线角与线面角一、课前预习1.在空间四边形ABCD 中,AD=BC=2, E 、F 分别为AB 、CD 的中点且EF=3,AD 、BC 所成的角为 .2.如图,在长方体ABCD-A1B1C1D1中 ,B1C 和C1D 与底面所成的角分别为60ο和45ο,则异面直线B1C 和C1D 所成角的余弦值为( )(A). 46 (B).36 (C).62 (D).63 3.平面α与直线a 所成的角为3π,则直线a 与平面α内所有直线所成的角的取值范围是 .4.如图,ABCD 是正方形,PD ⊥平面ABCD,PD=AD,则PA 与BD 所成的角的度数为(A).30ο (B).45ο (C).60ο (D).90ο5.有一个三角尺ABC,∠A=30ο, ∠C=90ο,BC 是贴于桌面上,当三角尺与桌面成45ο角时,AB 边与桌面所成角的正弦值是 .二、典型例题例1.(96·全国) 如图,正方形ABCD 所在平面与正方形 ABEF 所在平面成60ο角,求异面直线AD 与BF 所成角的余弦值.【备课说明:1.求异面直线所成的角常作出所成角的平A CB D B PCD A C B面图形.作法有:①平移法:在异面直线的一条上选择“特殊点”,作另一条直线平行线或利用中位线.②补形法:把空间图形补成熟悉的几何体,其目的在于容易发现两条异面直线的关系.2.解立几计算题要先作出所求的角,并要有严格的推理论证过程,还要有合理的步骤.】例2.如图在正方体AC1中, (1) 求BC1与平面ACC1A1所成的角; (2) 求A1B1与平面A1C1B 所成的角.备课说明:求直线与平面所成角的关键是找直线在此平面上的射影,为此必须在这条直线上找一点作平面的垂线. 作垂线的方法常采用:①利用平面垂直的性质找平面的垂线.②点的射影在面内的特殊位置.例3. 已知直三棱住ABC-A1B1C1,AB=AC, F 为棱BB1上一点,BF ∶FB1=2∶1, BF=BC=a 2. (1)若D 为BC 的中点,E 为线段AD上不同于A 、D 的任意一点,证明:EF ⊥FC1; (2)试问:若AB=a 2,在线段AD 上的E 点能否使EF 与平面BB1C1C 成60ο角,为什么?证明你的结论. 备课说明:这是一道探索性命题,也是近年高考热点问题,解决这类问题,常假设命题成立,再研究是否与已知条件矛盾,从而判断命题是否成立.一、知识与方法要点:1.斜线与平面所成的角就是斜线与它在平面内的射影的夹角。
求斜线与平面所成的角关键是找到斜线在平面内的射影,即确定过斜A D C 1D 1A 1B 1C B A 1CB A B 1DC 1E F线上一点向平面所作垂线的垂足,这时经常要用面面垂直来确定垂足的位置。
若垂足的位置难以确定,可考虑用其它方法求出斜线上一点到平面的距离。
2.二面角的大小用它的平面角来度量,求二面角大小的关键是找到或作出它的平面角(要证明)。
作二面角的平面角经常要用三垂线定理,关键是过二面角的一个面内的一点向另一个面作垂线,并确定垂足的位置。
若二面角的平面角难以作出,可考虑用射影面积公式求二面角的大小。
3.判定两个平面垂直,关键是在一个平面内找到一条垂直于另一个平面的直线。
两个平面垂直的性质定理是:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.二、例题例1.正方体ABCD-A1B1C1D1中,M为C1D1中点.(1)求证:AC1⊥平面A1BD.(2)求BM与平面A1BD成的角的正切值.解:(1)连AC,∵C1C⊥平面ABCD,∴C1C⊥BD.又AC⊥BD,∴AC1⊥BD.同理AC1⊥A1B∵A1B∩BD=B.∴AC1⊥平面A1BD.(2)设正方体的棱长为a,连AD1,AD1交A1D于E,连结ME,在△D1AC1中,ME∥AC1,∵AC1⊥平面A1BD .∴ME ⊥平面A1BD .连结BE ,则∠MBE 为BM 与平面A1BD 成的角.在Rt MEB ∆中,122AC ME a ==,6BE ==,∴tan 2ME MBE BE ∠==.例2.如图,把等腰直角三角形ABC 以斜边AB 为轴旋转, 使C 点移动的距离等于AC 时停止,并记为点P .(1)求证:面ABP ⊥面ABC ;(2)求二面角C-BP-A 的余弦值.证明(1) 由题设知AP =CP =BP .∴点P 在面ABC 的射影D 应是△ABC 的外心,即D ∈AB .∵PD ⊥AB ,PD ⊂面ABP ,由面面垂直的判定定理知,面ABP ⊥面ABC .(2)解法1 取PB 中点E ,连结CE 、DE 、CD .∵△BCP 为正三角形,∴CE ⊥BD .△BOD 为等腰直角三角形,∴DE ⊥PB .∴∠CED 为二面角C-BP-A 的平面角.又由(1)知,面ABP ⊥面ABC ,DC ⊥AB ,AB =面ABP ∩面ABC ,由面面垂直性质定理,得DC ⊥面ABP .∴DC ⊥DE .因此△CDE 为直角三角形.设1BC =,则CE =,12DE =,1cos DE CED CE ∠===.例3.如图所示,在正三棱柱111ABC A B C -中,1E BB ∈,截面1A EC ⊥侧面1AC .(1)求证:1BE EB =;(2)若111AA A B =,求平面1A EC 与平面111A B C 所成二面角(锐角)的度数.证明:在截面A1EC 内,过E 作EG ⊥A 1C ,G 是垂足,如图,∵面A1EC⊥面AC1,∴EG⊥侧面AC1.取AC的中点F,分别连结BF和FC,由AB=BC得BF⊥AC.∵面ABC⊥侧面AC1,∴BF⊥侧面AC1,得BF∥EG.BF和EG确定一个平面,交侧面AC1于FG.∵BE∥侧面AC1,∴BE∥FG,四边形BEGF是,BE=FG.∴BE∥AA1,∴FG∥AA1,△AA1C∽△FGC.解:(2)分别延长CE和C1B1交于点D,连结A1D.∵∠B1A1C1=∠B1C1A1=60°,∴∠DA1C1=∠DA1B1+∠B1A1C1=90°,即DA1⊥A1C1.∵CC1⊥面A1C1B1,由三垂线定理得DA1⊥A1C,所以∠CA1C1是所求二面角的平面角.且∠A1C1C=90°.∵CC1=AA1=A1B1=A1C1,∴∠CA1C1=45°,即所求二面角为45°.说明:如果改用面积射影定理,则还有另外的解法.三、作业:1.已知平面 的一条斜线a 与平面 成 角,直线b ,且a,b 异面,则a 与b 所成的角为(A ) A .有最小值 ,有最大值2πB .无最小值,有最大值2π。
C .有最小值 ,无最大值 D .有最小值 ,有最大值 。
2.下列命题中正确的是 (D )A .过平面外一点作该平面的垂面有且只有一个B .过直线外一点作该直线的平行平面有且只有一个C .过直线外一点作该直线的垂线有且只有一条D .过平面外的一条斜线作该平面的垂面有且只有一个3.一条长为60的线段夹在互相垂直的两个平面之间,它和这两个平面所成的角分别为45°和30°,这条线段的两个端点向平面的交线引垂线,则垂足间的距离是 (A )A .30B .20C .15D .124.设正四棱锥S —ABCD 的侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成的角是(C )A .30°B .45°C .60°D .90°5.正三棱锥的侧面与底面所成的二面角为arctan ,则它的侧6.A 是△BCD 所在平面外的点,∠BAC=∠CAB=∠DAB=60°,AB=3,AC=AD=2.(Ⅰ)求证:AB ⊥CD ; (Ⅱ)求AB 与平面BCD 所成角的余弦值.7.正四面体ABCD 中,E 是AD 边的中点,求:CE 与底面BCD 所成角的正弦值.解 过A ,E 分别作AH ⊥面BCD ,EO ⊥面BCD ,H ,O 为垂足,∴AH 2OE ,AH ,OE 确定平面AHD ,连结OC ,∠ECO 即为所求.∵AB=AC=AD ,∴HB=HC=HD∵△BCD 是正三角形,∴H 是△BCD 的中心,连结DH 并延长交BC 于F ,F 为BC 的中点,2233323D H D F a a ==⨯=,在Rt △ADH 中,8.在四面体ABCD 中,DA ⊥面ABC ,∠ABC =90°,AE ⊥CD ,AF ⊥DB .求证:(1)EF ⊥DC ;(2)平面DBC ⊥平面AEF .证明 如图1-83.(1)∵AD ⊥面ABC .∴AD ⊥BC .又∵∠ABC =90°.∴BC ⊥AB .∴BC ⊥面DAB .∴DB 是DC 在面ABD 内的射影.∵AF⊥DB .∴AF ⊥CD (三垂线定理).∵AE ⊥CD .∴CD ⊥平面AEF .∴CD ⊥EF .(2)∵CD ⊥AE ,CD ⊥EF .∴CD ⊥面AEF .∵CD面BCD .∴面AEF ⊥面BCD .(3)由EF ⊥CD ,AE ⊥CD ∴∠AEF 为二面角B-DC-A 的平面又∵AF ⊥DB ,AF ⊥CD ,BD ∩CD =D ∴AF ⊥平面DBC ,二面角题目:如图所示,已知PA ⊥面ABC ,,PBC ABC S S S S ∆∆'==,二面角P BC A --的平面角为θ,求证:cos S S '⋅=2.如图,在空间四边形ABCD 中,BCD ∆是正三角形,ABD ∆是等腰直角三角形,且90BAD ∠=,又二面角A BD C --为直二面角,求二面角A CD B --的大小。
D CB P A DC F H B A EE D'B'C'A'O D A C B 例3.设A 在平面BCD 内的射影是直角三角形BCD 的斜边BD 的中点O,1,AC BC CD ===求(1)AC 与平面BCD 所成角的大小;(2)二面角A BC D --的大小;(3)异面直线AB 和CD 所成角的大小。
例4.在正方体ABCD A B C D ''''-中,M 为AA '的中点,求截面DMB '与底面ABCD 所成较小的二面角的大小。
选用:如图,正方体的棱长为1,'B C BC O '=,求:(1)AO 与A C ''所成角;(2)AO 与平面ABCD 所成角的正切值;(3)平面AOB 与平面AOC 所成角 解:(1)∵//A C AC '' ∴AO 与A C ''所成角就是OAC ∠∵,OC OB AB ⊥⊥平面BC ' ∴OC OA ⊥(三垂线定理)在Rt AOC ∆中,2OC AC == ∴30OAC ∠=(2)作OE BC ⊥,平面BC '⊥平面ABCD∴OE ⊥平面ABCD ,OAE ∠为OA 与平面ABCD 所成角在Rt OAE ∆中,1,22OE AE ===∴tan 5OE OAE AE ∠==(3)∵,OC OA OC OB ⊥⊥ ∴OC ⊥平面AOB又∵OC ⊂平面AOC ∴平面AOB ⊥平面AOC即平面AOB 与平面AOC 所成角为90二面角大小的求法二面角的类型和求法可用框图展现如下:一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.例、在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。