方正县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方正县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 函数
是(

A .最小正周期为2π的奇函数
B .最小正周期为π的奇函数
C .最小正周期为2π的偶函数
D .最小正周期为π的偶函数
2. 已知函数f(x)是定义在R 上的奇函数,当x ≥0时,.若
,f(x-1)≤f(x),则实数a 的取值范围为A[]B[]
C[]
D[
]
3. “p q ∨为真”是“p ⌝为假”的( )条件
A .充分不必要
B .必要不充分
C .充要
D .既不充分也不必要
4. 若a >0,b >0,a+b=1,则y=+的最小值是( )
A .2
B .3
C .4
D .5
5. 已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( )A .x 3+2x 2B .x 3﹣2x 2
C .﹣x 3+2x 2
D .﹣x 3﹣2x 26. 函数y=
的图象大致是(

A .
B .
C .
D .
7. 已知函数f (x )=(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )={
a x -1,x ≤1
log a 1
x +1
,x >1
)


A .-
B .-141
2C .- D .-345
4
8. 经过点且在两轴上截距相等的直线是( )
()1,1M A . B .20x y +-=10
x y +-=C .或 D .或1x =1y =20x y +-=0
x y -=9. 与﹣463°终边相同的角可以表示为(k ∈Z )(

A .k360°+463°
B .k360°+103°
C .k360°+257°
D .k360°﹣257°
10.函数是周期为4的奇函数,且在上的解析式为,则
()()f x x R Î02[,](1),01
()sin ,12x x x f x x x ì-££ï=íp <£ïî
( )1741
()()46f f +=A . B . C . D .
71691611161316
【命题意图】本题考查函数的奇偶性和周期性、
分段函数等基础知识,意在考查转化和化归思想和基本运算能力.
11.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是(

A .
B .
C .1
D .
12.已知,若存在,使得,则的()(2)(0)x b g x ax a e a x =-->0(1,)x ∈+∞00()'()0g x g x +=b
a
取值范围是(

A .
B .
C.
D .(1,)-+∞(1,0)-(2,)-+∞(2,0)
-二、填空题
13.已知z ,ω为复数,i 为虚数单位,(1+3i )z 为纯虚数,ω=,且|ω
|=5,则复数ω= .
14.已知[2,2]a ∈-,不等式2
(4)420x a x a +-+->恒成立,则的取值范围为__________.
15.已知、、分别是三内角的对应的三边,若,则
a b c ABC ∆A B C 、、C a A c cos sin -=的取值范围是___________
.3cos(4
A B π
-+
【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、
转化思想.
16.已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2
)a n +sin 2
,则该数列的前16项和为 .
17.如图,是一回形图,其回形通道的宽和OB 1的长均为1,回形线与射线OA 交于A 1,A 2,A 3,…,若从点O 到点A 3的回形线为第1圈(长为7),从点A 3到点A 2的回形线为第2圈,从点A 2到点A 3的回形线为第3圈…依此类推,第8
圈的长为 .
18.已知实数,满足,目标函数的最大值为4,则______.
x y 2
330220y x y x y ≤⎧⎪
--≤⎨⎪+-≥⎩
3z x y a =++a =【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.
三、解答题
19.(本小题满分12分)已知函数f (x )=x 2+x +a ,g (x )=e x .
12
(1)记曲线y =g (x )关于直线y =x 对称的曲线为y =h (x ),且曲线y =h (x )的一条切线方程为mx -y -1=0,求m 的值;
(2)讨论函数φ(x )=f (x )-g (x )的零点个数,若零点在区间(0,1)上,求a 的取值范围.
20.已知圆C经过点A(﹣2,0),B(0,2),且圆心在直线y=x上,且,又直线l:y=kx+1与圆C相交于P、Q两点.
(Ⅰ)求圆C的方程;
(Ⅱ)若,求实数k的值;
(Ⅲ)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.
21.在△ABC中,cos2A﹣3cos(B+C)﹣1=0.
(1)求角A的大小;
(2)若△ABC的外接圆半径为1,试求该三角形面积的最大值.
22.设{a n}是公比小于4的等比数列,S n为数列{a n}的前n项和.已知a1=1,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{a n}的通项公式;
(2)令b n=lna3n+1,n=12…求数列{b n}的前n项和T n.
23.如图所示,已知+=1(a>>0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直
线BD交椭圆C于B、D两点,且A、B、D三点不重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求△ABD面积的最大值;
(Ⅲ)设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数λ,使得k1+λk2=0成立?若存在,求出λ的值;否则说明理由.
24.已知函数f(x)=
(Ⅰ)求函数f(x)单调递增区间;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a﹣c)cosB=bcosC,求f(A)的取值范围. 
方正县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1.【答案】B
【解析】解:因为
=
=cos(2x+)=﹣sin2x.
所以函数的周期为:=π.
因为f(﹣x)=﹣sin(﹣2x)=sin2x=﹣f(x),所以函数是奇函数.
故选B.
【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力.
2.【答案】B
【解析】当x≥0时,
f(x)=,
由f(x)=x﹣3a2,x>2a2,得f(x)>﹣a2;
当a2<x<2a2时,f(x)=﹣a2;
由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2。

∴当x>0时,。

∵函数f(x)为奇函数,
∴当x<0时,。

∵对∀x∈R,都有f(x﹣1)≤f(x),
∴2a2﹣(﹣4a2)≤1,解得:。

故实数a的取值范围是。

3.【答案】B
【解析】
p p q∨p⌝p q∨p⌝p⌝
试题分析:因为假真时,真,此时为真,所以,“真”不能得“为假”,而“为p p q∨
假”时为真,必有“真”,故选B.
考点:1、充分条件与必要条件;2、真值表的应用.4. 【答案】C
【解析】解:∵a >0,b >0,a+b=1,
∴y=+=(a+b )=2+
=4,当且仅当a=b=时取等号.
∴y=+的最小值是4.故选:C .
【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题. 
5. 【答案】A
【解析】解:设x <0时,则﹣x >0,
因为当x >0时,f (x )=x 3﹣2x 2所以f (﹣x )=(﹣x )3﹣2(﹣x )2=﹣x 3﹣2x 2,又因为f (x )是定义在R 上的奇函数,所以f (﹣x )=﹣f (x ),所以当x <0时,函数f (x )的表达式为f (x )=x 3+2x 2,故选A . 
6. 【答案】A
【解析】解:∵函数
∴函数的零点呈周期性出现,且法自变量趋向于正无穷大时,函数值在x 轴上下震荡,幅度越来越小,而当自变量趋向于负无穷大时,函数值在x 轴上下震荡,幅度越来越大,A 选项符合题意;
B 选项振幅变化规律与函数的性质相悖,不正确;
C 选项是一个偶函数的图象,而已知的函数不是一个偶函数故不正确;
D 选项最高点离开原点的距离的变化趋势不符合题意,故不对.综上,A 选项符合题意故选A
7. 【答案】
【解析】解析:选C.由题意得a -1=1,∴a =2.若b ≤1,则2b -1=-3,即2b =-2,无解.∴b >1,即有log 2=-3,∴=,∴b =7.
1b +11b +118
∴f (5-b )=f (-2)=2-2-1=-,故选C.
34
8. 【答案】D
【解析】
考点:直线的方程.
9.【答案】C
【解析】解:与﹣463°终边相同的角可以表示为:k360°﹣463°,(k∈Z)
即:k360°+257°,(k∈Z)
故选C
【点评】本题考查终边相同的角,是基础题.
10.【答案】C
11.【答案】B
【解析】解:由三视图知几何体的直观图是半个圆锥,
又∵正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,
∴半圆锥的底面半径为1,高为,
即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,
故侧视图的面积是,
故选:B.
【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
12.【答案】A
【解析】

点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.
【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).
二、填空题
13.【答案】 ±(7﹣i ) .
【解析】解:设z=a+bi (a ,b ∈R ),∵(1+3i )z=(1+3i )(a+bi )=a ﹣3b+(3a+b )i 为纯虚数,∴.又ω=
==
,|ω|=
,∴

把a=3b 代入化为b 2=25,解得b=±5,∴a=±15.
∴ω=±
=±(7﹣i ).
故答案为±(7﹣i ).
【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出.
14.【答案】(,0)(4,)-∞+∞ 【解析】
试题分析:把原不等式看成是关于的一次不等式,在2],
[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可,设关于的函数44)2(24)4(x f(x)y 2
2
+-+-=-+-+==x x a x a x a 对任意的2],[-2a ∈,当-2
a =时,044)42(x )2(f(a)y 2
>++--+=-==x f ,即086x )2(2
>+-=-x f ,解得4x 2x ><或;当2
a =时,044)42(x )2(y 2
>-+-+==x f ,即02x )2(2
>-=x f ,解得2x 0x ><或,∴的取值范围是
{x|x 0x 4}<>或;故答案为:(,0)(4,)-∞+∞ .
考点:换主元法解决不等式恒成立问题.
【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简
洁,是易错题.把原不等式看成是关于的一次不等式,在2],
[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.
15.【答案】 【



16.【答案】 546 .
【解析】解:当n=2k ﹣1(k ∈N *)时,a 2k+1=a 2k ﹣1+1,数列{a 2k ﹣1}为等差数列,a 2k ﹣1=a 1+k ﹣1=k ;当n=2k (k ∈N *)时,a 2k+2=2a 2k ,数列{a 2k }为等比数列,.
∴该数列的前16项和S 16=(a 1+a 3+...+a 15)+(a 2+a 4+...+a 16)=(1+2+...+8)+(2+22+ (28)
=+
=36+29﹣2=546.
故答案为:546.
【点评】本题考查了等差数列与等比数列的通项公式及前n 项和公式、“分类讨论方法”,考查了推理能力与计算能力,属于中档题. 
17.【答案】 63 .
【解析】解:∵第一圈长为:1+1+2+2+1=7第二圈长为:2+3+4+4+2=15
第三圈长为:3+5+6+6+3=23…
第n 圈长为:n+(2n ﹣1)+2n+2n+n=8n ﹣1故n=8时,第8圈的长为63,故答案为:63.
【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第1,2,3,…圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特殊情形. 
18.【答案】3
-【解析】作出可行域如图所示:作直线:,再作一组平行于的直线:,当直线
0l 30x y +=0l l 3x y z a +=-经过点时,取得最大值,∴,所以,故
l 5(,2)3M 3z a x y -=+max 5
()3273
z a -=⨯+=max 74z a =+=.
3a =-
三、解答题
19.【答案】
【解析】解:(1)y =g (x )=e x 关于直线y =x 对称的曲线h (x )=ln x ,设曲线y =h (x )与切线mx -y -1=0的切点为(x 0,ln x 0),由h (x )=ln x 得
h ′(x )=,(x >0),1x
则有,
{
1
x 0=m
mx 0-ln x 0-1=0)
解得x 0=m =1.∴m 的值为1.
(2)φ(x )=x 2+x +a -e x ,
12
φ′(x )=x +1-e x ,令t (x )=x +1-e x ,∴t ′(x )=1-e x ,
当x <0时,t ′(x )>0,x >0时,t ′(x )<0,x =0时,t ′(x )=0.
∴φ′(x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,∴φ′(x )max =φ′(0)=0,即φ′(x )≤0在(-∞,+∞)恒成立,即φ(x )在(-∞,+∞)单调递减,且当a =1有φ(0)=0.
∴不论a 为何值时,φ(x )=f (x )-g (x )有唯一零点x 0,当x 0∈(0,1)时,则φ(0)φ(1)<0,
即(a -1)(a -)<0,
2e -3
2
∴1<a <,即a 的取值范围为(1,).
2e -322e -3
2
20.【答案】
【解析】
【分析】(I )设圆心C (a ,a ),半径为r ,利用|AC|=|BC|=r ,建立方程,从而可求圆C 的方程;
(II )方法一:利用向量的数量积公式,求得∠POQ=120°,计算圆心到直线l :kx ﹣y+1=0的距离,即可求得实数k 的值;
方法二:设P (x 1,y 1),Q (x 2,y 2
),直线方程代入圆的方程,利用韦达定理及=x 1•x 2+y 1•y 2=,即可求得k 的值;(III )方法一:设圆心O 到直线l ,l 1的距离分别为d ,d 1,求得,根据垂径定理和勾股定理得到,
,再利用基本不等式,可求四边形PMQN 面积的最大值;
方法二:当直线l 的斜率k=0时,则l 1的斜率不存在,可求面积S ;当直线l 的斜率k ≠0时,设
,则
,代入消元得(1+k 2)x 2+2kx ﹣3=0,求得|PQ|,|MN|,再利用基本不等式,
可求四边形PMQN 面积的最大值.
【解答】解:(I)设圆心C(a,a),半径为r.
因为圆经过点A(﹣2,0),B(0,2),所以|AC|=|BC|=r,
所以
解得a=0,r=2,…(2分)
所以圆C的方程是x2+y2=4.…(4分)
(II)方法一:因为,…(6分)
所以,∠POQ=120°,…(7分)
所以圆心到直线l:kx﹣y+1=0的距离d=1,…(8分)
又,所以k=0.…(9分)
方法二:设P(x1,y1),Q(x2,y2),
因为,代入消元得(1+k2)x2+2kx﹣3=0.…(6分)
由题意得:…(7分)
因为=x1•x2+y1•y2=﹣2,
又,
所以x1•x2+y1•y2=,…(8分)
化简得:﹣5k2﹣3+3(k2+1)=0,
所以k2=0,即k=0.…(9分)
(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,四边形PMQN的面积为S.因为直线l,l1都经过点(0,1),且l⊥l1,根据勾股定理,有,…(10分)
又根据垂径定理和勾股定理得到,,…(11分)而,即
…(13分)
当且仅当d1=d时,等号成立,所以S的最大值为7.…(14分)
方法二:设四边形PMQN的面积为S.
当直线l的斜率k=0时,则l1的斜率不存在,此时.…(10分)
当直线l的斜率k≠0时,设
则,代入消元得(1+k2)x2+2kx﹣3=0
所以
同理得到.…(11分)
=…(12分)
因为,
所以,…(13分)
当且仅当k=±1时,等号成立,所以S的最大值为7.…(14分)21.【答案】
【解析】(本题满分为12分)
解:(1)∵cos2A﹣3cos(B+C)﹣1=0.
∴2cos2A+3cosA﹣2=0,…2分
∴解得:cosA=,或﹣2(舍去),…4分
又∵0<A<π,
∴A=…6分
(2)∵a=2RsinA=,…
又∵a2=b2+c2﹣2bccosA=b2+c2﹣bc≥bc,
∴bc≤3,当且仅当b=c时取等号,…
∴S△ABC=bcsinA=bc≤,
∴三角形面积的最大值为.…
22.【答案】
【解析】解:(1)设等比数列{a n}的公比为q<4,∵a1+3,3a2,a3+4构成等差数列.∴2×3a2=a1+3+a3+4,∴6q=1+7+q2,解得q=2.
(2)由(1)可得:a n=2n﹣1.
b n=lna3n+1=ln23n=3nln2.
∴数列{b n}的前n项和T n=3ln2×(1+2+…+n)
=ln2.
23.【答案】
【解析】解:(Ⅰ)∵,∴a=c,
∴b2=c2
∴椭圆方程为+=1
又点A(1,)在椭圆上,
∴=1,
∴c2=2
∴a=2,b=,
∴椭圆方程为=1 …
(Ⅱ)设直线BD方程为y=x+b,D(x1,y1),B(x2,y2),
与椭圆方程联立,可得4x2+2bx+b2﹣4=0
△=﹣8b2+64>0,∴﹣2<b<2
x1+x2=﹣b,x1x2=
∴|BD|==,
设d为点A到直线y=x+b的距离,∴d=
∴△ABD面积S=≤=
当且仅当b=±2时,△ABD的面积最大,最大值为…
(Ⅲ)当直线BD过椭圆左顶点(﹣,0)时,k1==2﹣,k2==﹣2
此时k1+k2=0,猜想λ=1时成立.
证明如下:k1+k2=+=2+m=2﹣2=0
当λ=1,k1+k2=0,故当且仅当λ=1时满足条件…
【点评】本题考查直线与椭圆方程的综合应用,考查存在性问题的处理方法,椭圆方程的求法,韦达定理的应用,考查分析问题解决问题的能力.
24.【答案】
【解析】解:(Ⅰ)∵f(x)=sin cos+cos2=sin(+),
∴由2k≤+≤2kπ,k∈Z可解得:4kπ﹣≤x≤4kπ,k∈Z,
∴函数f(x)单调递增区间是:[4kπ﹣,4kπ],k∈Z.
(Ⅱ)∵f(A)=sin(+),
∵由条件及正弦定理得sinBcosC=(2sinA﹣sinC)cosB=2sinAcosB﹣sinCcosB,
∴则sinBcosC+sinCcosB=2sinAcosB,
∴sin(B+C)=2sinAcosB,又sin(B+C)=sinA≠0,
∴cosB=,又0<B<π,
∴B=.
∴可得0<A<,
∴<+<,
∴sin(+)<1,
故函数f(A)的取值范围是(1,).
【点评】本题考查三角函数性质及简单的三角变换,要求学生能正确运用三角函数的概念和公式对已知的三角函数进行化简求值,属于中档题.。

相关文档
最新文档