石湖镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石湖镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)如图,现要从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,则这样做的理由是()
A. 两点之间线段最短
B. 两点确定一条直线
C. 垂线段最短
D. 过一点可以作无数条直线
【答案】C
【考点】垂线段最短
【解析】【解答】解:∵从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,
∴AH最短(垂线段最短)
故答案为:C
【分析】根据垂线段最短,即可得出答案。
2、(2分)下列四个数中,最大的一个数是()
A. 2
B.
C. 0
D. -2
【答案】A
【考点】实数大小的比较
【解析】【解答】解:∵0和负数比正数都小
而1<<2
∴最大的数是2
故答案为:A
【分析】根据正数都大于0和负数,因此只需比较2和的大小即可。
3、(2分)若x,y均为正整数,且2x+1·4y=128,则x+y的值为()
A. 3
B. 5
C. 4或5
D. 3或4或5 【答案】C
【考点】同底数幂的乘法,幂的乘方与积的乘方,二元一次方程的解
【解析】【解答】∵2x+1·4y=128,27=128,
∴x+1+2y=7,即x+2y=6.
∵x,y均为正整数,
∴或
∴x+y=4或5.
【分析】根据题意先将方程转化为2x+1+2y=27,得出x+2y=6,再求出此方程的整数解即可。
4、(2分)判断下列现象中是平移的有几种?().
(1 )篮球运动员投出篮球的运动;(2)升降机上上下下运送东西;(3)空中放飞的风筝的运动;(4)飞机在跑道上滑行到停止的运动;(5)铝合金窗叶左右平移;(6)电脑的风叶的运动.
A. 2种
B. 3种
C. 4种
D. 5种
【答案】B
【考点】生活中的平移现象
【解析】【解答】解:(2)(4)(5)是平移;(1)(3)(6)不是平移
故答案为:B
【分析】平移是指让物体沿着一定的方向移动一定的距离,所以(2)、(4)、(5)是平移.
5、(2分)若为非负数,则x的取值范围是()
A.x≥1
B.x≥-
C.x>1
D.x>-
【答案】B
【考点】解一元一次不等式
【解析】【解答】解:由题意得
≥0,
2x+1≥0,
∴x≥- .
故答案为:B.
【分析】非负数即正数和0,由为非负数列出不等式,然后再解不等式即可求出x的取值范围。
6、(2分)对于实数x,规定[x]表示不大于x的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x﹣2]=﹣1,则x的取值范围为()
A.0<x≤1
B.0≤x<1
C.1<x≤2
D.1≤x<2
【答案】A
【考点】解一元一次不等式组,一元一次不等式组的应用
【解析】【解答】解:由题意得
解之得
故答案为:A.
【分析】根据[x]的定义可知,-2<[x-2]≤-1,然后解出该不等式即可求出x的范围.
7、(2分)如图,在三角形中,=90º,=3,=4,=5,则点到直线的
距离等于()
A. 3
B. 4
C. 5
D. 以上都不对
【答案】A
【考点】点到直线的距离
【解析】【解答】解:∵∠C=90°
∴AC⊥BC
∴点A到直线BC的距离就是线段AC的长,即AC=3
故答案为:A
【分析】根据点到直线的距离的定义求解即可。
8、(2分)如图,已知∠B+∠DAB=180°,AC平分∠DAB,如果∠C=50°,那么∠B等于()
A.50°
B.60°
C.70°
D.80°
【答案】D
【考点】平行线的判定与性质,三角形内角和定理
【解析】【解答】解:∵∠B+∠DAB=180°,
∴AD∥BC,
∵∠C=50°,
∴∠C=∠DAC=50°,
又∵AC平分∠DAB,
∴∠DAC=∠BAC=∠DAB=50°,
∴∠DAB=100°,
∴∠B=180°-∠DAB=80°.
故答案为:D.
【分析】根据平行线的判定得AD∥BC,再由平行线性质得∠C=∠DAC=50°,由角平分线定义得∠DAB=100°,根据补角定义即可得出答案.
9、(2分)解为的方程组是()
A.
B.
C.
D.
【答案】D
【考点】二元一次方程组的解
【解析】【解答】解:将分别代入A、B、C、D四个选项进行检验,
能使每个方程的左右两边相等的x、y的值即是方程的解.
A、B、C均不符合,
只有D满足.
故答案为:D.
【分析】由题意把x=1和y=2代入方程组计算即可判断求解。
10、(2分)一元一次不等式的最小整数解为()
A.
B.
C.1
D.2
【答案】C
【考点】一元一次不等式的特殊解
【解析】【解答】解:
∴最小整数解为1.
故答案为:C.
【分析】先解不等式,求出不等式的解集,再从中找出最小整数即可。
11、(2分)在实数0、π、、、中,无理数的个数有()
A.1个
B.2个
C.3个
D.4个
【答案】B
【考点】无理数的认识
【解析】【解答】0是一个整数,所以不是无理数,π是一个无限不循环小数,所以是无理数,是一个开方开不尽的数,所以是无理数,,所以不是无理数。
故答案为:B
【分析】无限不循环小数包括开方开不尽的数,看似有规律实则没有规律的数及含有π的数,所以题目中π
与都是无理数。
12、(2分)如图,多边形的相邻两边互相垂直,则这个多边形的周长为().
A. 21
B. 26
C. 37
D. 42
【答案】D
【考点】平移的性质
【解析】【解答】解:图1中只给出了一个底边的长和高,可以利用平移的知识来解决:把所有的短横线移动到最上方的那条横线上,再把所有的竖线移动到两条竖线上,这样可以重新拼成一个长方形(如图2),可得多边形的周长为2×(16+5)=42.
故答案为:D
【分析】利用平移可将图1,平移成图2的形状,所以求出图2 的周长即可.
二、填空题
13、(1分)已知数a、b的对应点在数轴上的位置如图所示,则a﹣3________b﹣3.
【答案】<
【考点】不等式及其性质
【解析】【解答】解:a、b的对应点在数轴上的位置如图所示,得
a<b,
不等式的两边都减3,得
a﹣3<b﹣3,
故答案为:<
【分析】根据数轴上表示的两个数右边都总比左边的数大,可知a<b,然后根据不等式的性质①即可作出判断。
14、(4分)填写推理理由:
如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.
证明:∵CD∥EF,
∴∠DCB=∠2(________).
∵∠1=∠2,
∴∠DCB=∠1(________).
∴GD∥CB(________).
∴∠3=∠ACB(________).
【答案】两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同位角相等【考点】平行线的判定与性质
【解析】【解答】根据平行线的判定与性质定理以及等量代换的关系进行填空即可.
【分析】利用平行线的性质可以得到GD//BC,从而得到∠3=∠ACB.
15、(1分)写出一个比-1小的无理数________.
【答案】
【考点】实数大小的比较
【解析】【解答】解:比-1小的无理数为:
【分析】根据无理数的大小比较,写出一个比-1小的无理数即可。
此题答案不唯一。
16、(5分)有理数m,n在数轴上如图,用不等号填空.
(1)m+n________0;
(2)m-n________0;
(3)m•n________0;
(4)m2________n;
(5)|m|________|n|.
【答案】(1)<
(2)<
(3)>
(4)>
(5)>
【考点】不等式及其性质
【解析】【解答】解:由数轴可得m<n<0,(1)两个负数相加,和仍为负数,故m+n<0;(2)相当于两个异号的数相加,符号由绝对值大的数决定,故m-n<0;(3)两个负数的积是正数,故m•n>0;(4)正数大于一切负数,故m2>n;(5)由数轴离原点的距离可得,|m|>|n|.
【分析】由数轴可得m<n<0,
(1)两个负数相加,和仍为负数,即m+n<0;
(2)m-n=m+(-n),根据两个异号的数相加,符号由绝对值大的数决定,可得m-n<0;
(3)两个负数的积是正数,即m•n>0;
(4)根据正数大于一切负数,可得m2>n;
(5)由数轴上的点离原点的距离可得,|m|>|n|.
17、(1分)在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出________环的成绩。
【答案】8
【考点】一元一次不等式的特殊解,一元一次不等式的应用
【解析】【解答】解:为了使第8次的环数最少,可使后面的2次射击都达到最高环数,即10环.
设第8次射击环数为x环,根据题意列出一元一次不等式
62+x+2×10>89
解之,得
x>7
x表示环数,故x为正整数且x>7,则
x的最小值为8
即第8次至少应打8环.
【分析】为了使第8次的环数最少,可使后面的2次射击都达到最高环数,即10环,又他要打破89环的记录,故总成绩要大于89环,设第8次射击环数为x环,从而列出不等式,求解并取出最小整数解即可。
18、(2分)在下列各数:-2,-2.5,0,1,6中,不等式x>1的解有________;不等式-x>1的解有________.
【答案】6;-2,-2.5
【考点】不等式的解及解集
【解析】【解答】解:(1)∵当时,;
当时,;
当时,;
当时,;
当时,;
∴上述各数中,属于不等式的解的有6;
(2 )∵当时,;
当时,;
当时,;
当时,;
当时,.
∴上述各数中,属于不等式的解集是:和.
故答案为:(1)6;(2)和.
【分析】不等式的解就是使不等式成立的所有未知数的值。
把所给的数分别代入不等式检验即可作出判断。
三、解答题
19、(5分)一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题扣1分.在这次竞赛中,小明获得优秀(90或90分以上),则小明至少答对了多少道题?
【答案】解:设小明答对了x道题,
4x+(30﹣x)≥90
解得x≥24
答:小明至少答对24道题.
【考点】一元一次不等式的应用
【解析】【分析】解本题时需注意找不等量中的关键词“至少”,也就是. 这是解决此题的关键.
20、(20分)计算:
(1)
(2)
(3)
(4)(用乘法公式)
【答案】(1)解:原式=2+1-8=-5
(2)解:原式=a5(-8a3)+a69a2
=-8a8+9a8
(3)解:
(4)解:原式=2018 2−(2018-1)×(2018+1)
=20182-20182+1
=1
【考点】实数的运算,整式的混合运算,含乘方的有理数混合运算
【解析】【分析】(1)先算乘方运算,再算加减法即可。
(2)先算乘方运算,再算乘法,然后再合并同类项即可求解。
(3)利用多项式除以单项式的法则,求解即可。
(4)将2017×2019转化为(2018-1)×(2018+1),利用平方差公式计算即可。
21、(10分)如图,已知BE平分∠ABD,DE平分∠BDC,且∠EBD+∠EDB=90°.
(1)试说明:AB∥CD;
(2)H是BE的延长线与直线CD的交点,BI平分∠HBD,写出∠EBI与∠BHD的数量关系,并说明理由.【答案】(1)解:∵BE平分∠ABD,DE平分∠BDC,
∴∠ABD=2∠EBD,∠BDC=2∠EDB.
∵∠EBD+∠EDB=90°,
∴∠ABD+∠BDC=2(∠EBD+∠EDB)=180°.
∴AB∥CD.
(2)解:∠EBI=∠BHD.
理由如下:∵AB∥CD,
∴∠ABH=∠BHD.
∵BI平分∠EBD,BH平分∠ABD,
∴∠EBI=∠EBD=∠ABH=∠BHD
【考点】角的平分线,平行线的判定与性质
【解析】【分析】(1)根据角平分线的定义得∠ABD=2∠EBD,∠BDC=2∠EDB,结合已知条件可得∠ABD +∠BDC=2(∠EBD+∠EDB)=180°,由平行线的判定:同旁内角互补,两直线平行即可得证.
(2)根据平行线的性质得∠ABH=∠BHD,再由角平分线的定义即可得证.
22、(5分)把下列各数填在相应的括号内:
①整数{ };
②正分数{ };
③无理数{ }.
【答案】解:∵
∴整数包括:|-2|,,-3,0;
正分数:0.,,10%;
无理数:2,,1.1010010001(每两个1之间依次多一个0)
【考点】实数及其分类
【解析】【分析】根据实数的相关概念和分类进行判断即可得出答案。
23、(5分)
【答案】解:,
(1)×2003-(2)×2002得:
(20032-20022)y=6007×2003-6008×2002,
4005y=6007×2003-(6007+1)×2002,
4005y=6007×2003-6007×2002-2002,
4005y=6007×(2003-2002)-2002,
4005y=4005,
∴y=1,
将y=1代入(1)得:
x=2,
∴原方程组的解为:.
【考点】解二元一次方程组
【解析】【分析】(1)×2003-(2)×2002将二元方程组转化成一元一次方程,解之可求得y的值,将y值代
入(1)可求得x值,从而得出原方程组的解.
24、(5分)解方程组
【答案】解:令=k
x=2k,y=3k.z=4k
将它们代入②得
解得k=2
所以x=4,y=6,z=8
原方程组的解为
【考点】三元一次方程组解法及应用
【解析】【分析】“遇到连比,设比值为k”,用含k的代数式表示x、y、z,再将x、y、z带入方程5x+2y−3z=8即可求解,这是非常有用的方法.
25、(15分)某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.
(1)求购进甲、乙两种花卉,每盆各需多少元?
(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W元,求W与x之间的函数关系式;(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?
【答案】(1)解:设购进甲种花卉每盆x元,乙种花卉每盆y元,
解得,
即购进甲种花卉每盆16元,乙种花卉每盆8元
(2)解:由题意可得,
W=6x+800−16x8×1,
化简,得
W=4x+100,
即W与x之间的函数关系式是:W=4x+100
(3)解:
解得,
故有三种购买方案,
由W=4x+100可知,W随x的增大而增大,
故当x=12时,800−16x8=76,即购买甲种花卉12盆,一种花卉76盆时,获得最大利润,此时W=4×12+100=148,即该花店共有几三种购进方案,在所有的购进方案中,购买甲种花卉12盆,一种花卉76盆时,获利最大,最大利润是148元.
【考点】一元一次不等式组的应用,一次函数与不等式(组)的综合应用,二元一次方程组的实际应用-销售问题
【解析】【分析】(1)设购进甲种花卉每盆x元,乙种花卉每盆y元,根据“ 购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆”可列出相应的二元一次方程组,从而可以求得购进甲、乙两种花卉,每盆各需多少元;
(2)购进甲种花卉x盆,则购进乙种花卉盆,根据总获利可写出W与x的函数关系式;
(3)由(2)知购进乙种花卉的盆数,再根据“ 购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍”可列出相应的不等式组,从而可以得到有几种购进方案,哪种方案获利最大,最大利润是多少
26、(5分)近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?
【答案】解:设今年年初猪肉价格为每千克x元;
根据题意得:2.5×(1+60%)x≥100,
解得:x≥25.
答:今年年初猪肉的最低价格为每千克25元
【考点】一元一次不等式的应用
【解析】【分析】设今年年初猪肉价格为每千克x元;从而得出某市民在今年5月20日购买猪肉的价格为(1+60%)x元,某市民在今年5月20日购买2.5千克猪肉需要的总钱数为:2.5×(1+60%)x元,根据某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,列出不等式,求解即可。
27、(10分)现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元. (1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x 节,试定出用车厢节数x表示总费用y的公式.
(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?
【答案】(1)解:6000元=0.6万元,8000元=0.8万元,
设用A型车厢x节,则用B型车厢(40−x)节,总运费为y万元,
依题意,得y=0.6x+0.8(40−x)=−0.2x+32
(2)解:依题意,得,
解得:,
∴24⩽x⩽26,
∵x取整数,故A型车厢可用24节或25节或26节,相应有三种装车方案:
①24节A型车厢和16节B型车厢;
②25节A型车厢和15节B型车厢;
③26节A型车厢和14节B型车厢.
【考点】一元一次不等式组的应用
【解析】【分析】(1)这列货车挂A型车厢x节,则挂B型车厢(40-x)节,根据总费用=两种车厢的费用和可得出y与x的表达式;
(2)设A型车厢x节,则挂B型车厢(40-x)节,根据所装的甲货物不少于1240吨,乙货物不少于880吨,可得出不等式组,求出解集,再求解集内的整数解可得方案.。