桥西区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桥西区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 奇函数f (x )在区间[3,6]上是增函数,在区间[3,6]上的最大值为8,最小值为﹣1,则f (6)+f (﹣3)的值为( ) A .10
B .﹣10
C .9
D .15
2. 集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( ) A .2个 B .3 个 C .4 个 D .8个
3. 对于复数
,若集合具有性质“对任意,必有”,则当
时,等于 ( )
A1 B-1 C0 D
4. 已知f (x )在R 上是奇函数,且满足f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2015)=( ) A .2 B .﹣2 C .8
D .﹣8
5. 复数z 满足z (l ﹣i )=﹣1﹣i ,则|z+1|=( )
A .0
B .1
C
.
D .2
6. 已知圆C 方程为2
2
2x y +=,过点(1,1)P -与圆C 相切的直线方程为( )
A .20x y -+=
B .10x y +-=
C .10x y -+=
D .20x y ++= 7.
以的焦点为顶点,顶点为焦点的椭圆方程为( )
A
. B
. C
.
D
.
8. 若圆22
6260x y x y +--+=上有且仅有三个点到直线10(ax y a -+=是实数)的距离为, 则a =( )
A . 1±
B .
C
. D
.±9. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A. B. C.D.
10.某几何体的三视图如图所示,则它的表面积为()
A.B.C.D.
11.若一个球的表面积为12π,则它的体积为()
A.B.C.D.
12.设a,b为实数,若复数,则a﹣b=()
A.﹣2 B.﹣1 C.1 D.2
二、填空题
13.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是米.(太阳光线可看作为平行光线)
14.已知椭圆中心在原点,一个焦点为F(﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是.
15.给出下列命题:
(1)命题p:;菱形的对角线互相垂直平分,命题q:菱形的对角线相等;则p∨q是假命题
(2)命题“若x2﹣4x+3=0,则x=3”的逆否命题为真命题
(3)“1<x<3”是“x2﹣4x+3<0”的必要不充分条件
(4)若命题p:∀x∈R,x2+4x+5≠0,则¬p:.
其中叙述正确的是.(填上所有正确命题的序号)
16.已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.
17.设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)=其中a,
b∈R.若=,则a+3b的值为.
18.已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x.给出如下结论:
①对任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k+1)”;其中所有正确结论的序号是.
三、解答题
19.已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量=并有特征值λ2=﹣1及属于特征值
﹣1的一个特征向量=,=
(Ⅰ)求矩阵M;
(Ⅱ)求M5.
20.已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<)图象如图,P是图象的最高点,Q为
图象与x轴的交点,O为原点.且|OQ|=2,|OP|=,|PQ|=.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)将函数y=f(x)图象向右平移1个单位后得到函数y=g(x)的图象,当x∈[0,2]时,求函数h(x)=f (x)•g(x)的最大值.
21.(本小题满分12分)求下列函数的定义域:
(1)()
f x=;
(2)()
f x=.
22.如图,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AB∥CD,AB⊥AD,CD=2AB,E为PA的中点,M在PD上.
(I)求证:AD⊥PB;
(Ⅱ)若,则当λ为何值时,平面BEM⊥平面PAB?
(Ⅲ)在(II)的条件下,求证:PC∥平面BEM.
23.有编号为A 1,A 2,…A 10的10个零件,测量其直径(单位:cm ),得到下面数据:
编号 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 直径
1.51
1.49
1.49
1.51
1.49
1.51
1.47
1.46
1.53 1.47
其中直径在区间[1.48,1.52]内的零件为一等品. (Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(Ⅱ)从一等品零件中,随机抽取2个. (ⅰ)用零件的编号列出所有可能的抽取结果;
(ⅱ)求这2个零件直径相等的概率.
24.如图所示,两个全等的矩形ABCD 和ABEF 所在平面相交于AB ,M AC ∈,N FB ∈,且
AM FN =,求证://MN 平面BCE .
桥西区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】C
【解析】解:由于f(x)在[3,6]上为增函数,
f(x)的最大值为f(6)=8,f(x)的最小值为f(3)=﹣1,
f(x)为奇函数,故f(﹣3)=﹣f(3)=1,∴f(6)+f(﹣3)=8+1=9.
故选:C.
2.【答案】C
【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3},
∴集合S=A∩B={1,3},
则集合S的子集有22=4个,
故选:C.
【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础.
3.【答案】B
【解析】由题意,可取,所以
4.【答案】B
【解析】解:∵f(x+4)=f(x),
∴f(2015)=f(504×4﹣1)=f(﹣1),
又∵f(x)在R上是奇函数,
∴f(﹣1)=﹣f(1)=﹣2.
故选B.
【点评】本题考查了函数的奇偶性与周期性的应用,属于基础题.
5.【答案】C
【解析】解:∵z(l﹣i)=﹣1﹣i,
∴z(1﹣i)(1+i)=﹣(1+i)2,
∴2z=﹣2i,
∴z=﹣i,
∴z+1=1﹣i,
则|z+1|=,
故选:C.
【点评】本题考查了复数的化简与模的计算.
6.【答案】A
【解析】
试题分析:圆心(0,0),C r ,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=
,由
,1d r k =∴=,所以切线方程为20x y -+=,故选A.
考点:直线与圆的位置关系. 7. 【答案】D 【解析】
解:双曲线的顶点为(0,﹣
2
)和(0,
2
),焦点为(0,
﹣4)和(0,4).
∴椭圆的焦点坐标是为(0,﹣
2)和(0,
2
),顶点为(0,﹣4)和(0,4). ∴
椭圆方程为.
故选D .
【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.
8. 【答案】B 【解析】
试题分析:由圆226260x y x y +--+=,可得22(3)(1)4x y -+-=,所以圆心坐标为(3,1),半径为2r =,要使得圆上有且仅有三个点到直线10(ax y a -+=是实数)的距离为,则圆心到直线的距离等于
1
2
r
,即1=
,解得a =,故选B. 1 考点:直线与圆的位置关系.
【方法点晴】本题主要考查了直线与圆的位置关系,其中解答中涉及到圆的标准方程、圆心坐标和圆的半径、点到直线的距离公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化的思想方法,本题的解答中,把圆上有且仅有三个点到直线的距离为,转化为圆心到直线的距离等于1
2
r 是解答的关键.
9. 【答案】B
【解析】解:以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系, 则B (2,0,0),E (0,0,1),A (0,0,0),C (2,2,0),
=(﹣2,0,1
),
=(2,2,0),
设异面直线BE 与AC 所成角为θ, 则cos θ
=
=
=
.
故选:B .
10.【答案】A
【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,
∴母线长为,
圆锥的表面积S=S
底面+S侧面=×π×12+×2×2+×π×=2+.
故选A.
【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.
11.【答案】A
【解析】解:设球的半径为r,
因为球的表面积为12π,
所以4πr2
=12π,所以r=,
所以球的体积V==4π.
故选:A.
【点评】本题考查球的表面积、体积公式的应用,考查计算能力.
12.【答案】C
【解析】解:,因此.a﹣b=1.
故选:C.
二、填空题
13.【答案】 3.3
【解析】
解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子.
设BC=x,则根据题意
=,
AB=x,
在AE=AB﹣BE=x﹣1.4,
则=,即=,求得
x=3.3(米)
故树的高度为3.3米,
故答案为:3.3.
【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题.
14.【答案】.
【解析】解:已知∴∴为所求;
故答案为:
【点评】本题主要考查椭圆的标准方程.属基础题.
15.【答案】(4)
【解析】解:(1)命题p:菱形的对角线互相垂直平分,为真命题.命题q:菱形的对角线相等为假命题;则p∨q是真命题,故(1)错误,
(2)命题“若x2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由x2﹣4x+3<0得1<x<3,则“1<x<3”是“x2﹣4x+3<0”的充要条件,故(3)错误,
(4)若命题p:∀x∈R,x2+4x+5≠0,则¬p:.正确,
故答案为:(4)
【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.
16.【答案】63
【解析】解:解方程x2﹣5x+4=0,得x1=1,x2=4.
因为数列{a n}是递增数列,且a1,a3是方程x2﹣5x+4=0的两个根,
所以a1=1,a3=4.
设等比数列{a n}的公比为q,则,所以q=2.
则.
故答案为63.
【点评】本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.
17.【答案】﹣10.
【解析】解:∵f(x)是定义在R上且周期为2的函数,f(x)=,
∴f()=f(﹣)=1﹣a,f()=;又=,
∴1﹣a=①
又f(﹣1)=f(1),
∴2a+b=0,②
由①②解得a=2,b=﹣4;
∴a+3b=﹣10.
故答案为:﹣10.
18.【答案】①②④.
【解析】解:∵x∈(1,2]时,f(x)=2﹣x.
∴f(2)=0.f(1)=f(2)=0.
∵f(2x)=2f(x),
∴f(2k x)=2k f(x).
①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;
②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.
若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.
…
一般地当x∈(2m,2m+1),
则∈(1,2],f(x)=2m+1﹣x≥0,
从而f(x)∈[0,+∞),故正确;
③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,
∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,
即2n﹣1=9,∴2n=10,
∵n∈Z,
∴2n=10不成立,故错误;
④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,
∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.故答案为:①②④.
三、解答题
19.【答案】
【解析】解:(Ⅰ)设M=
则=4=,∴①
又=(﹣1)=,∴②
由①②可得a=1,b=2,c=3,d=2,∴M=;
(Ⅱ)易知=0•+(﹣1),
∴M5=(﹣1)6=.
【点评】本题考查矩阵的运算法则,考查学生的计算能力,比较基础.
20.【答案】
【解析】解:(Ⅰ)由余弦定理得cos∠POQ==,…
∴sin∠POQ=,得P点坐标为(,1),∴A=1,=4(2﹣),∴ω=.…
由f()=sin(+φ)=1 可得φ=,∴y=f(x)的解析式为f(x)=sin(x+).…
(Ⅱ)根据函数y=Asin(ωx+∅)的图象变换规律求得g(x)=sin x,…
h (x )=f (x )g (x )=sin (x+) sin
x=
+sin xcos x
=
+
sin
=sin (﹣)+.…
当x ∈[0,2]时,∈[﹣,
],
∴当
,
即 x=1时,h max (x )=.…
【点评】本题主要考查由函数y=Asin (ωx+∅)的部分图象求函数的解析式,函数y=Asin (ωx+∅)的图象变换规律,正弦函数的定义域和值域,属于中档题.
21.【答案】(1)()[),11,-∞-+∞;(2)[)(]1,23,4-.
【解析】
考
点:函数的定义域. 1
【方法点晴】本题主要考查了函数的定义域的求解,其中解答中涉及到分式不等式的求解、一元二次不等式的求解、集合的交集运算等综合考查,着重考查了学生的推理与运算能力,属于中档试题,本题的解答中正确把握函数的定义域,列出相应的不等式或不等式组是解答的关键,同时理解函数的定义域的概念,也是解答的一个重要一环. 22.【答案】
【解析】(I )证明:∵平面PAB ⊥平面ABCD ,AB ⊥AD ,平面PAB ∩平面ABCD=AB ,
∴AD ⊥平面PAB .又PB ⊂平面PAB ,
∴AD ⊥PB .
(II )解:由(I )可知,AD ⊥平面PAB ,又E 为PA 的中点, 当M 为PD 的中点时,EM ∥AD , ∴EM ⊥平面PAB ,∵EM ⊂平面BEM , ∴平面BEM ⊥平面PAB .
此时,
.
(III )设CD 的中点为F ,连接BF ,FM
由(II)可知,M为PD的中点.
∴FM∥PC.
∵AB∥FD,FD=AB,
∴ABFD为平行四边形.
∴AD∥BF,又∵EM∥AD,
∴EM∥BF.
∴B,E,M,F四点共面.
∴FM⊂平面BEM,又PC⊄平面BEM,
∴PC∥平面BEM.
【点评】本题考查了线面垂直的性质,线面平行,面面垂直的判定,属于中档题.
23.【答案】
【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.
设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==;
(Ⅱ)(i)一等品零件的编号为A1,A2,A3,A4,A5,A6.
从这6个一等品零件中随机抽取2个,
所有可能的结果有:{A1,A2},{A1,A3},{A1,A4},{A1,A5},
{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},
{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6}共有15种.
(ii)“从一等品零件中,随机抽取的2个零件直径相等”记为事件B
B的所有可能结果有:{A1,A4},{A1,A6},{A4,A6},
{A2,A3},{A2,A5},{A3,A5},共有6种.
∴P(B)=.
【点评】本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力.
24.【答案】证明见解析.
【解析】
考点:直线与平面平行的判定与证明.。