歙县第一中学2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
歙县第一中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知变量,x y 满足约束条件20
170
x y x x y -+≤⎧⎪
≥⎨⎪+-≤⎩
,则y x 的取值范围是( )
A .9[,6]5
B .9(,][6,)5
-∞+∞ C .(,3][6,)-∞+∞ D .[3,6] 2.
以的焦点为顶点,顶点为焦点的椭圆方程为( )
A
. B
. C
.
D
.
3. 设复数z 满足z (1+i )=2,i 为虚数单位,则复数z 的虚部是( )
A1 B ﹣1 Ci D ﹣i
4. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )
A .a=3
B .a=﹣3
C .a=±
3
D .a=5
或a=±3
5. 函数f (x )=1﹣xlnx 的零点所在区间是( ) A .(0,) B .(,1) C .(1,2) D .(2,3)
6. 已知集合{}|5A x N x =∈<,则下列关系式错误的是( )
A .5A ∈
B .1.5A ∉
C .1A -∉
D .0A ∈ 7. 集合{}{}
2|ln 0,|9A x x B x x =≥=<,则A
B =( )
A .()1,3
B .[)1,3
C .[]1,+∞
D .[],3e 8. 若命题“p 或q ”为真,“非p ”为真,则( )
A .p 真q 真
B .p 假q 真
C .p 真q 假
D .p 假q 假 9. 直线l 过点P (2,﹣2),且与直线x+2y ﹣3=0垂直,则直线l 的方程为( )
A .2x+y ﹣2=0
B .2x ﹣y ﹣6=0
C .x ﹣2y ﹣6=0
D .x ﹣2y+5=0
10.函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )
A.32
-
B.1-
C.
D.
【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用. 11.设n S 是等差数列{}n a 的前项和,若5359a a =,则95
S
S =( ) A .1 B .2 C .3 D .4
12.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c
,若
﹣
+1=0,则角B 的度数是( )
A .60°
B .120°
C .150°
D .60°或120°
二、填空题
13.如果直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行.那么a 等于 .
14.过原点的直线l 与函数
y=的图象交于B ,C 两点,A 为抛物线x 2=﹣8y 的焦点,则
|
+
|= .
15.已知数列{a n }中,2a n ,a n+1是方程x 2﹣3x+b n =0的两根,a 1=2,则b 5= .
16.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”
的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)
三、解答题
17.(本题满分15分)
如图AB 是圆O 的直径,C 是弧AB 上一点,VC 垂直圆O 所在平面,D ,E 分别为VA ,VC 的中点. (1)求证:DE ⊥平面VBC ;
(2)若6VC CA ==,圆O 的半径为5,求BE 与平面BCD 所成角的正弦值.
【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力.
18.如图:等腰梯形ABCD,E为底AB的中点,AD=DC=CB=AB=2,沿ED折成四棱锥A﹣BCDE,使AC=.
(1)证明:平面AED⊥平面BCDE;
(2)求二面角E﹣AC﹣B的余弦值.
19.已知函数()2
ln f x x bx a x =+-.
(1)当函数()f x 在点()()
1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式; (2)在(1)的条件下,若0x 是函数()f x 的零点,且()*
0,1,x n n n N ∈+∈,求的值;
(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且12
02
x x x +=,求证:()00f x '>.
20.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图. (Ⅰ)求图中实数a 的值;
(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;
(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.
21.从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试. (Ⅰ)若选出的4名同学是同一性别,求全为女生的概率;
(Ⅱ)若设选出男生的人数为X,求X的分布列和EX.
22.若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f()=f(x)﹣f(y)(1)求f(1)的值,
(2)若f(6)=1,解不等式f(x+3)﹣f()<2.
歙县第一中学2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题
1. 【答案】A 【解析】
试题分析:作出可行域,如图ABC ∆内部(含边界),y
x 表示点(,)x y 与原点连线的斜率,易得59(,)22
A ,(1,6)
B ,
9
9
2552
OA
k ==,661OB k ==,所以965y x ≤≤.故选A .
考点:简单的线性规划的非线性应用. 2. 【答案】D
【解析】解:双曲线的顶点为(0,﹣2
)和(0,2
),焦点为(0,
﹣4)和(0,4).
∴椭圆的焦点坐标是为(0,﹣2)和(0,2
),顶点为(0,﹣4)和(0,4).
∴椭圆方程为.
故选D .
【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.
3.【答案】B
【解析】解:由z(1+i)=2,得,
∴复数z的虚部是﹣1.
故选:B.
考查方向
本题考查复数代数形式的乘除运算.
解题思路
把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.
易错点
把﹣i作为虚部.
4.【答案】B
【解析】解:∵A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},
∴2a﹣1=9或a2=9,
当2a﹣1=9时,a=5,A∩B={4,9},不符合题意;
当a2=9时,a=±3,若a=3,集合B违背互异性;
∴a=﹣3.
故选:B.
【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题.
5.【答案】C
【解析】解:∵f(1)=1>0,f(2)=1﹣2ln2=ln<0,
∴函数f(x)=1﹣xlnx的零点所在区间是(1,2).
故选:C.
【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.
6.【答案】A
【解析】
试题分析:因为{}|5A x N x =∈< ,而1.5,1,.5,1N N A A ∉-∉∴∉-∉,即B 、C 正确,又因为0N ∈且
05<,所以0A ∈,即D 正确,故选A. 1
考点:集合与元素的关系. 7. 【答案】B
【解析】
试题分析:因为{}{}|ln 0|1A x x A x x =≥==≥,{}
{}2|9|33B x x B x x =<==-<<,所以
A B ={}|13x x ≤<,故选B.
考点:1、对数函数的性质及不等式的解法;2、集合交集的应用. 8. 【答案】B
【解析】解:若命题“p 或q ”为真,则p 真或q 真,
若“非p ”为真,则p 为假,
∴p 假q 真, 故选:B .
【点评】本题考查了复合命题的真假的判断,是一道基础题.
9. 【答案】B 【解析】解:∵直线x+2y ﹣3=0
的斜率为﹣,
∴与直线x+2y ﹣3=0垂直的直线斜率为2, 故直线l 的方程为y ﹣(﹣2)=2(x ﹣2),
化为一般式可得2x ﹣y ﹣6=0
故选:B
【点评】本题考查直线的一般式方程和垂直关系,属基础题.
10.【答案】D 【解析】易知周期112(
)1212T π5π=-=π,∴22T ωπ==.由52212k ϕπ⨯+=π(k ∈Z ),得526
k ϕπ
=-+π(k Z ∈),可得56ϕπ=-,所以5()2cos(2)6f x x π=-
,则5(0)2cos()6
f π
=-=,故选D.
11.【答案】A 【解析】1111]
试题分析:19951553
9()
9215()52
a a S a a a S a +===+.故选A .111]
考点:等差数列的前项和.
12.【答案】A
【解析】解:根据正弦定理有:=,
代入已知等式得:﹣+1=0,
即﹣1=,
整理得:2sinAcosB﹣cosBsinC=sinBcosC,
即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),
又∵A+B+C=180°,
∴sin(B+C)=sinA,
可得2sinAcosB=sinA,
∵sinA≠0,
∴2cosB=1,即cosB=,
则B=60°.
故选:A.
【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.二、填空题
13.【答案】.
【解析】解:∵直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行,
∴3aa=1(1﹣2a),解得a=﹣1或a=,
经检验当a=﹣1时,两直线重合,应舍去
故答案为:.
【点评】本题考查直线的一般式方程和平行关系,属基础题.
14.【答案】4.
【解析】解:由题意可得点B和点C关于原点对称,∴|+|=2||,
再根据A为抛物线x2=﹣8y的焦点,可得A(0,﹣2),
∴2||=4,
故答案为:4.
【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用|+|=2||是解题的关键.
15.【答案】 ﹣1054 .
【解析】解:∵2a n ,a n+1是方程x 2
﹣3x+b n =0的两根,
∴2a n +a n+1=3,2a n a n+1=b n , ∵a 1=2,∴a 2=﹣1,同理可得a 3=5,a 4=﹣7,a 5=17,a 6=﹣31.
则b 5=2×17×(﹣31)=1054.
故答案为:﹣1054.
【点评】本题考查了一元二次方程的根与系数的关系、递推关系,考查了推理能力与计算能力,属于中档题.
16.【答案】必要而不充分 【解析】
试题分析:充分性不成立,如2
y x =图象关于y 轴对称,但不是奇函数;必要性成立,()y f x =是奇函数,
|()||()||()|f x f x f x -=-=,所以|()|y f x =的图象关于y 轴对称.
考点:充要关系
【名师点睛】充分、必要条件的三种判断方法.
1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.
2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.
3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.
三、解答题
17.【答案】(1)详见解析;(2. 【解析】(1)∵D ,E 分别为VA ,VC 的中点,∴//DE AC ,…………2分 ∵AB 为圆O 的直径,∴AC BC ⊥,…………4分 又∵VC ⊥圆O ,∴VC AC ⊥,…………6分
∴DE BC ⊥,DE VC ⊥,又∵VC BC C =,∴DE VBC ⊥面;…………7分
(2)设点E 平面BCD 的距离为d ,由D BCE E BCD V V --=得11
33
BCE BCD DE S d S ∆∆⨯⨯=⨯⨯,解得
2
d =,…………12分 设BE 与平面BCD 所成角为θ,∵8BC ==,
BE =sin 146
d BE θ=
=.…………15分 18.【答案】 【解析】(1)证明:取ED 的中点为O ,
由题意可得△AED 为等边三角形, ,,
∴AC 2=AO 2+OC 2,AO ⊥OC ,
又AO ⊥ED ,ED ∩OC=O ,AO ⊥面ECD ,又AO ⊆AED ,
∴平面AED ⊥平面BCDE ;…
(2)如图,以O 为原点,OC ,OD ,OA 分别为x ,y ,z 轴,建立空间直角坐标系,
则E (0,﹣1,0),A (0,0,
),C (,0,0),B (,﹣2,0),
,,,
设面EAC 的法向量为
,
面BAC 的法向量为
由,得,∴,
∴
,
由,得,∴,
∴
,
∴
,
∴二面角E ﹣AC ﹣B 的余弦值为.…
2016年5月3日
19.【答案】(1)()26ln f x x x x =--;(2)3n =;(3)证明见解析.
【解析】
试
题解析: (1)()2a f'x x b x =+-,所以(1)251(1)106
f'b a b f b a =+-=-=-⎧⎧⇒⎨⎨=+==⎩⎩, ∴函数()f x 的解析式为2()6ln (0)f x x x x x =-->;
(2)22
626()6ln '()21x x f x x x x f x x x x
--=--⇒=--=, 因为函数()f x 的定义域为0x >, 令(23)(2)3'()02
x x f x x x +-==⇒=-或2x =, 当(0,2)x ∈时,'()0f x <,()f x 单调递减, 当(2,)x ∈+∞时,'()0f x >,函数()f x 单调递增,
且函数()f x 的定义域为0x >,
(3)当1a =时,函数2
()ln f x x bx x =+-, 21111()ln 0f x x bx x =+-=,22222()ln 0f x x bx x =+-=, 两式相减可得22121212()ln ln 0x x b x x x x -+--+=,121212
ln ln ()x x b x x x x -=
-+-. 1'()2f x x b x =+-,0001'()2f x x b x =+-,因为1202
x x x +=, 所以12120121212ln ln 2'()2()2x x x x f x x x x x x x +-=⋅+-+--+ 212121221221122112211121ln ln 2()211ln ln ln 1x x x x x x x x x x x x x x x x x x x x x x ⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤--⎝⎭⎢⎥=-=--=-⎢⎥⎢⎥-+-+-⎣⎦+⎢⎥⎢⎥⎣⎦
设211x t x =>,2(1)()ln 1
t h t t t -=-+, ∴22
222
14(1)4(1)'()0(1)(1)(1)t t t h t t t t t t t +--=-==>+++, 所以()h t 在(1,)+∞上为增函数,且(1)0h =,
∴()0h t >,又21
10x x >-,所以0'()0f x >.
考点:1、导数几何意义及零点存在定理;2、构造函数证明不等式.
【方法点睛】本题主要考查导数几何意义及零点存在定理、构造函数证明不等式,属于难题.涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.
20.【答案】
【解析】解:(Ⅰ)由频率分布直方图,得:
10×(0.005+0.01+0.025+a+0.01)=1,
解得a=0.03.
(Ⅱ)由频率分布直方图得到平均分:
=0.05×45+0.1×55+0.2×65+0.3×75+0.25×85+0.1×95=74(分).
(Ⅲ)由频率分布直方图,得数学成绩在[40,50)内的学生人数为40×0.05=2,这两人分别记为A,B,
数学成绩在[90,100)内的学生人数为40×0.1=4,这4人分别记为C,D,E,F,
若从数学成绩在[40,50)与[90,100)两个分数段内的学生中随机选取2名学生,
则所有的基本事件有:
(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),
(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个,
如果这两名学生的数学成绩都在[40,50)或都在[90,100)内,
则这两名学生的数学成绩之差的绝对值不大于10,
记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,
则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,
所以这两名学生的数学成绩之差的绝对值不大于10的概率P=.
【点评】本题考查频率和概率的求法,二查平均分的求法,是中档题,解题时要认真审题,注意频率分布直方图和列举法的合理运用.
21.【答案】
【解析】解:(Ⅰ)若4人全是女生,共有C74=35种情况;若4人全是男生,共有C84=70种情况;
故全为女生的概率为=.…
(Ⅱ)共15人,任意选出4名同学的方法总数是C154,选出男生的人数为X=0,1,2,3,4…
P(X=0)==;P(X=1)==;P(X=2)==;
P(X=3)==;P(X=4)==.…
EX=0×+1×+2×+3×+4×=.…
【点评】本题考查离散型随机变量的分布列、期望及古典概型的概率加法公式,正确理解题意是解决问题的基础.
22.【答案】
【解析】解:(1)在f()=f(x)﹣f(y)中,
令x=y=1,则有f(1)=f(1)﹣f(1),
∴f(1)=0;
(2)∵f(6)=1,∴2=1+1=f(6)+f(6),
∴不等式f(x+3)﹣f()<2
等价为不等式f(x+3)﹣f()<f(6)+f(6),
∴f(3x+9)﹣f(6)<f(6),
即f()<f(6),
∵f(x)是(0,+∞)上的增函数,
∴,解得﹣3<x<9,
即不等式的解集为(﹣3,9).。