小店区高中2018-2019学年上学期高三数学10月月考试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小店区高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A . B .12+ C .
12
2
+ D .122+ 2. 已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( ) A .m ⊂α,n ∥m ⇒n ∥α
B .m ⊂α,n ⊥m ⇒n ⊥α
C .m ⊂α,n ⊂β,m ∥n ⇒α∥β
D .n ⊂β,n ⊥α⇒α⊥β
3. 双曲线E 与椭圆C :x 29+y 2
3=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积
为π,则E 的方程为( ) A.x 23-y 2
3=1 B.x 24-y 2
2=1 C.x 25
-y 2
=1 D.x 22-y 2
4
=1 4. 某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .
34 D .3
8
【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.
5. 已知数列{}n a 的各项均为正数,12a =,114
n n n n a a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭
的前n 项和为5,
则n =( )
A .35
B . 36
C .120
D .121
6. 如图,棱长为的正方体1111D ABC A B C D -中,,E F 是侧面对角线11,BC AD 上一点,若 1BED F 是菱形,则其在底面ABCD 上投影的四边形面积( )
A .
12 B .34
C. 2
D
.34-7. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个
圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )
A .
π
1
B .
π21 C .π121- D .π
2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度. 8.
函数
的零点所在区间为( )
A .(3,4)
B .(2,3)
C .(1,2)
D .(0,1)
9. sin 15°sin 5°-2sin 80°的值为( )
A .1
B .-1
C .2
D .-2
10.抛物线y 2=6x 的准线方程是( ) A .x=3 B .x=﹣3
C .
x=
D .x=

11.“互联网+”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶 段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调 查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( ) A .10 B .20 C .30 D .40 12.如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )
D
A
B
C
O
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.若log 2(2m ﹣3)=0,则e lnm ﹣1
= .
14.圆心在原点且与直线2x y +=相切的圆的方程为_____ .
【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题. 15.设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤ 恒成立,则实数的取值范围是 .
16.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 .
三、解答题(本大共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。


17.已知椭圆C :22
221x y a b
+=(0a b >>),点3(1,)2在椭圆C 上,且椭圆C 的离心率为12.
(1)求椭圆C 的方程;
(2)过椭圆C 的右焦点F 的直线与椭圆C 交于P ,Q 两点,A 为椭圆C 的右顶点,直线PA ,QA 分别
交直线:4x =于M 、N 两点,求证:FM FN ⊥.
18.如图所示,在正方体1111ABCD A BC D -中.
(1)求11AC 与1B C 所成角的大小;
(2)若E 、F 分别为AB 、AD 的中点,求11AC 与
EF 所成角的大小.
19.(本题满分14分)已知两点)1,0(-P 与)1,0(Q 是直角坐标平面内两定点,过曲线C 上一点),(y x M 作y 轴的垂线,垂足为N ,点E 满足MN ME 3
2
=,且0=⋅. (1)求曲线C 的方程;
(2)设直线l 与曲线C 交于B A ,两点,坐标原点O 到直线l 的距离为
2
3
,求AOB ∆面积的最大值. 【命题意图】本题考查向量的基本运算、轨迹的求法、直线与椭圆的位置关系,本题知识交汇性强,最值的求解有一定技巧性,同时还要注意特殊情形时三角形的面积.总之该题综合性强,难度大.
20.已知等差数列
满足:=2,且,成等比数列。

(1) 求数列
的通项公式。

(2)记为数列
的前n 项和,是否存在正整数n ,使得若存在,求n 的最小
值;若不存在,说明理由.
21.(本小题满分12分)已知函数13
1)(23
+-=
ax x x h ,设x a x h x f ln 2)(')(-=, 222ln )(a x x g +=,其中0>x ,R a ∈.
(1)若函数)(x f 在区间),2(+∞上单调递增,求实数的取值范围;
(2)记)()()(x g x f x F +=,求证:2
1
)(≥x F .
22.(本小题满分12分)
已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;
(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足20152
2>++n
n T n 的 最小正整数n .
【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.
小店区高中2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】B 【解析】
试题分析:化简为标准形式()()1112
2
=-+-y x ,圆上的点到直线的距离的最大值为圆心到直线的距离加半
径,22
2
11=--=
d ,半径为1,所以距离的最大值是12+,故选B.
考点:直线与圆的位置关系 1 2. 【答案】D
【解析】解:在A 选项中,可能有n ⊂α,故A 错误; 在B 选项中,可能有n ⊂α,故B 错误; 在C 选项中,两平面有可能相交,故C 错误;
在D 选项中,由平面与平面垂直的判定定理得D 正确. 故选:D .
【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
3. 【答案】
【解析】选C.可设双曲线E 的方程为x 2a 2-y 2
b
2=1,
渐近线方程为y =±b
a x ,即bx ±ay =0,
由题意得E 的一个焦点坐标为(6,0),圆的半径为1, ∴焦点到渐近线的距离为1.即
|6b |b 2
+a
2
=1,
又a 2+b 2=6,∴b =1,a =5,
∴E 的方程为x 25-y 2
=1,故选C.
4. 【答案】B
5. 【答案】C
【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前n 项和.由114
n n n n
a a a a ++-=
+得
2214n n a a +-=,∴{}2n a 是等差数列,公差为4,首项为4,∴2
44(1)4n a n n =+-=,由0n a >

n a =
111
2n n a a +==+,∴数列11n n a a +⎧⎫⎨⎬+⎩⎭
的前n
项和为
1111
1)(1)52222
n +++=
=,∴120n =,选C . 6. 【答案】B 【解析】
试题分析:在棱长为的正方体1111
D ABC A B C D -中,11BC
AD ==AF x =
x
解得x =
,即菱形1BED F =
,则1BED F 在底面ABCD 上的投影四边形是底边为34,高为的平行四边形,其面积为3
4
,故选B. 考点:平面图形的投影及其作法. 7. 【答案】C
【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为
12

,扇形
OAC 的面积为π,所求概率为π
π
π
12112
-=
-=P . 8. 【答案】B
【解析】解:函数的定义域为(0,+∞),易知函数在(0,+∞)上单调递增,
∵f (2)=log 32﹣1<0,f (3)=log 33
﹣>0, ∴函数f (x )的零点一定在区间(2,3),
故选:B .
【点评】本题考查函数的单调性,考查零点存在定理,属于基础题.
9. 【答案】
【解析】解析:选A.sin 15°
sin 5°-2 sin 80°
=sin (10°+5°)sin 5°
-2cos 10°=
sin 10°cos 5°+cos 10°sin 5°-2 cos 10°sin 5°
sin 5°
=sin 10°cos 5°-cos 10°sin 5°sin5 °=sin (10°-5°)sin 5°=1,选A.
10.【答案】D
【解析】解:由抛物线方程y 2
=6x ,得2p=6,则p=3,
∴,
则抛物线y 2
=6x 的准线方程是x=


故选:D .
【点评】本题考查抛物线的简单性质,考查了抛物线直线方程的求法,是基础题.
11.【答案】B 【解析】
试题分析:设从青年人抽取的人数为800,,2050600600800
x x x ∴=∴=++,故选B . 考点:分层抽样. 12.【答案】
【解析】选B.取AP 的中点M , 则P A =2AM =2OA sin ∠AOM
=2sin x
2

PB =2OM =2OA ·cos ∠AOM =2cos x
2

∴y =f (x )=P A +PB =2sin x 2+2cos x 2=22sin (x 2+π
4),x ∈[0,π],根据解析式可知,只有B 选项符合要求,
故选B.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】

【解析】解:∵log 2(2m
﹣3)=0,
∴2m
﹣3=1,解得m=2, ∴e lnm ﹣1=e ln2
÷
e=.
故答案为:.
【点评】本题考查指数式化简求值,是基础题,解题时要注意对数方程的合理运用.
14.【答案】222x y +=
【解析】由题意,圆的半径等于原点到直线2x y +=
的距离,所以r d ==
=222x y +=.
15.【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦
【解析】
试题分析:因为12()()0f x f x +≤,故得不等式()()
()3322
12121210x x a x x a x x ++++++≤,即
()()
()()()2
2
1212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦
,由于
()()2'321f x x a x a =+++,令()'0f x =得方程()23210x a x a +++=,因()2410a a ∆=-+> , 故
()12122133x x a a
x x ⎧
+=-+⎪⎪⎨
⎪=⎪⎩
,代入前面不等式,并化简得()1a +()2
2520a a -+≥,解不等式得1a ≤-或122a ≤≤,因此, 当1a ≤-或122a ≤≤时, 不等式()()120f x f x +≤成立,故答案为1(,1],22⎡⎤
-∞-⎢⎥⎣⎦
.
考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.
【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本
题首先利用求导法则求出函数()f x 的到函数,令()'0f x =考虑判别式大于零,根据韦达定理求出
1212,x x x x +的值,代入不等式12()()0f x f x +≤,得到关于的高次不等式,再利用“穿针引线”即可求得实
数的取值范围.111] 16.【答案】12π 【解析】

点:球的体积与表面积.
【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键.
三、解答题(本大共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。


17.【答案】(1) 22
143
x y +=;(2)证明见解析. 【解析】
试题分析: (1)由题中条件要得两个等式,再由椭圆中c b a ,,的等式关系可得b a ,的值,求得椭圆的方程;(2)可设直线P Q 的方程,联立椭圆方程,由根与系数的关系得122634m y y m -+=
+,12
29
34
y y m -=+,得直线PA l ,直线QA l ,求得点 M 、N 坐标,利用0=⋅得FM FN ⊥.
试题解析: (1)由题意得222221
91,41,2,a b c a a b c ⎧+=⎪⎪
⎪=⎨⎪⎪=+⎪⎩
解得2,
a b =⎧⎪⎨=⎪⎩
∴椭圆C 的方程为22
143
x y +=.
又111x my =+,221x my =+, ∴112(4,
)1y M my -,222(4,)1y N my -,则112(3,)1y FM my =-,2
22(3,)1
y FN my =-,
12122
121212
22499111()y y y y FM FN my my m y y m y y ⋅=+⋅=+---++222
22363499906913434
m m m m m -+=+=-=---+++ ∴FM FN ⊥
考点:椭圆的性质;向量垂直的充要条件. 18.【答案】(1)60︒;(2)90︒. 【解析】

题解析:(1)连接AC ,1AB ,由1111ABCD A BC D -是正方体,知11AAC C 为平行四边形,
所以11//AC AC ,从而1B C 与AC 所成的角就是11AC 与1B C 所成的角.
由11AB AC B C ==可知160B CA ∠=︒,
即11AC 与
BC 所成的角为60︒.
考点:异面直线的所成的角.
【方法点晴】本题主要考查了异面直线所成的角的求解,其中解答中涉及到异面直线所成角的概念、三角形中位线与正方形的性质、正方体的结构特征等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,本题的解答中根据异面直线所成角的概念确定异面直线所成的角是解答的关键,属于中档试题. 19.【答案】
【解析】(1)依题意知),0(y N ,∵)0,32()0,(3232x x MN ME -=-==
,∴),3
1
(y x E 则)1,(-=y x QM ,)1,3
1
(+=y x PE …………2分
∵0=⋅PE QM ,∴0)1)(1(31=+-+⋅y y x x ,即
1322
=+y x ∴曲线C 的方程为13
22
=+y x …………4分
20.【答案】见解析。

【解析】(1)设数列{a n}的公差为d,依题意,2,2+d,2+4d成比数列,故有(2+d)2=2(2+4d),化简得d2﹣4d=0,解得d=0或4,
当d=0时,a n=2,
当d=4时,a n=2+(n﹣1)•4=4n﹣2。

(2)当a n =2时,S n =2n ,显然2n <60n+800, 此时不存在正整数n ,使得S n >60n+800成立, 当a n =4n ﹣2时,S n =
=2n 2,
令2n 2>60n+800,即n 2﹣30n ﹣400>0,
解得n >40,或n <﹣10(舍去),
此时存在正整数n ,使得S n >60n+800成立,n 的最小值为41, 综上,当a n =2时,不存在满足题意的正整数n , 当a n =4n ﹣2时,存在满足题意的正整数n ,最小值为41 21.【答案】(1)]3
4,(-∞.(2)证明见解析. 【




题解析:解:(1)函数13
1)(23
+-=
ax x x h ,ax x x h 2)('2-=,1111] 所以函数x a ax x x a x h x f ln 22ln 2)(')(2--=-=,∵函数)(x f 在区间),2(+∞上单调递增,
∴0222ln 2)(')('2≥--=-=x a ax x x a x h x f 在区间),2(+∞上恒成立,所以1
2
+≤x x a 在),2(+∞∈x 上恒成
立.
令1)(2+=x x x M ,则2
222)1(2)1()1(2)('++=+-+=x x
x x x x x x M ,当),2(+∞∈x 时,0)('>x M , ∴3
4
)2(1)(2=>+=
M x x x M ,∴实数的取值范围为]34,(-∞. (2)]2
ln )ln ([22ln ln 22)(222
2
2
2
x
x a x x a a x x a ax x x F ++
+-=++--=,
令2
ln )ln ()(222
x
x a x x a a P +++-=,则111]
4
)ln (4)ln ()2ln (2ln )2ln ()2ln ()(2
222222x x x x x x a x x x x x x a a P +≥+-+-=+++-+-=.
令x x x Q ln )(-=,则x x x x Q 1
11)('-=-=,显然)(x Q 在区间)1,0(上单调递减,在区间),1[+∞上单调递增,
则1)1()(min ==Q x Q ,则41)(≥a P ,故2
1
412)(=⨯≥x F .
考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.
【方法点晴】本题主要考查导数在解决函数问题中的应用.考查利用导数证明不等式成立.(1)利用导数的工具性求解实数的取值范围;(2)先写出具体函数()x F ,通过观察()x F 的解析式的形式,能够想到解析式里可能存在完全平方式,所以试着构造完全平方式并放缩,所以只需证明放缩后的式子大于等于4
1
即可,从而对新函数求导判单调性求出最值证得成立.
22.【答案】
【解析】(1)当111,12n a a =+=时,解得11a =. (1分)
当2n ≥时,2n n S n a +=,
① 11(1)2n n S n a --+-=,

①-②得,1122n n n a a a -+=-即121n n a a -=+, (3分) 即112(1)(2)n n a a n -+=+≥,又112a +=. 所以{}1n a +是以2为首项,2为公比的等比数列.
即12n n a +=故21n n a =-(*
n N ∈).
(5分)。

相关文档
最新文档