数学公式(大学-高中-初中)(线性代数、高等数学)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学公式
导数公式:
基本积分表:
三角函数的有理式积分:
2
22212211cos 12sin u du
dx x tg u u u x u u x +==+-=+=, , , 
a
x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22=
'='⋅-='⋅='-='='2
2
22
11
)(11
)(11
)(arccos 11
)(arcsin x arcctgx x arctgx x x x x +-
='+=
'--
='-=
'⎰
⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C
a x x a x dx C shx chxdx C chx shxdx C
a a dx a C
x ctgxdx x C x dx tgx x C
ctgx xdx x dx C tgx xdx x dx x
x
)ln(ln csc csc sec sec csc sin sec cos 222
22
22
2C a
x
x a dx C x a x
a a x a dx C a x a
x a a x dx C a x
arctg a x a dx C
ctgx x xdx C tgx x xdx C
x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2
2222222⎰
⎰⎰⎰⎰++-=-+-+--=-+++++=+-=
==-C
a
x a x a x dx x a C
a x x a a x x dx a x C
a x x a a x x dx a x I n
n xdx xdx I n n n
n arcsin 22ln 22)ln(221
cos sin 22
2222222
2222222
22
2
22
2
π
π
一些初等函数: 两个重要极限:
三角函数公式: ·诱导公式:
·和差角公式: ·和差化积公式:
2
sin
2sin 2cos cos 2cos
2cos 2cos cos 2sin
2cos 2sin sin 2cos
2sin
2sin sin β
αβαβαβ
αβαβαβ
αβαβαβ
αβ
αβα-+=--+=+-+=--+=+α
ββαβαβαβ
αβαβ
αβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=
±⋅±=
±=±±=±1
)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμx
x
arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x x
x x
x x
x -+=-+±=++=+-=
=+=
-=
----11ln
21)1ln(1ln(:2
:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x
x
x x x x
·倍角公式:
·半角公式:
αα
αααααααααααα
α
ααα
cos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 12
2
cos 12cos 2cos 12
sin -=
+=-+±=+=-=+-±
=+±=-±=ctg tg
·正弦定理:R C
c
B b A a 2sin sin sin === ·余弦定理:
C ab b a c cos 2222-+=
·反三角函数性质:arcctgx arctgx x x -=
-=
2
arccos 2
arcsin π
π
高阶导数公式——莱布尼兹(Leibniz )公式:
)
()
()()2()1()(0
)
()()
(!
)1()1(!2)1()
(n k k n n n n n
k k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+
'+==---=-∑ΛΛΛ
中值定理与导数应用:
拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=
---'=-)(F )
()
()()()()())(()()(ξξξ
曲率:
α
ααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=
-=-=α
α
αααααααααα
αα22222212221
2sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=
-=
-=-=-==
.
1
;0.)
1(lim M s M M :.,13202a
K a K y y ds d s K M M s
K tg y dx y ds s =='+''==∆∆='∆'∆∆∆=
=''+=→∆的圆:半径为直线:点的曲率:弧长。

:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:α
ααα
α
定积分的近似计算:
⎰⎰⎰----+++++++++-≈
++++-≈
+++-≈
b
a
n n n b
a
n n b
a n y y y y y y y y n
a
b x f y y y y n a b x f y y y n
a
b x f )](4)(2)[(3)(])(2
1
[)()()(1312420110110ΛΛΛΛ抛物线法:梯形法:矩形法:
定积分应用相关公式:
⎰⎰--==⋅=⋅=b
a
b a dt t f a b dx
x f a b y k r
m
m k F A
p F s
F W )(1)(1
,2
221均方根:函数的平均值:为引力系数引力:水压力:功:
空间解析几何和向量代数:。

代表平行六面体的体积为锐角时,
向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。

与是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22
2
2
2
2
2
212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k
j i
b a
c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M M
d z
y
x z y x
z
y x
z
y
x
z y x
z
y x z y x z
z y y x x z z y y x x u u ϖ
ϖϖϖ
ϖϖϖϖϖϖϖϖϖϖϖϖϖ
ϖϖ
ϖϖϖϖϖϖϖ⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-== (马鞍面)双叶双曲面:单叶双曲面:、双曲面:
同号)
(、抛物面:、椭球面:二次曲面:
参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:
1
1
3,,2221
1};,,{,1
302),,(},,,{0)()()(122
222222
22222
222
22220000002
220000000000=+-=-+=+=++⎪⎩⎪
⎨⎧+=+=+===-=-=-+++++=
=++=+++==-+-+-c
z b y a x c z b y a x q p z q y p x c z b y a x pt
z z nt
y y mt
x x p n m s t p z z n y y m x x C B A D
Cz By Ax d c
z
b y a x D Cz By Ax z y x M C B A n z z C y y B x x A ϖϖ
多元函数微分法及应用
z
y z x y x y x y x y x F F y z
F F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u x
v
v z x u u z x z y x v y x u f z t
v
v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z
u dy y u dx x u du dy y z dx x z dz -
=∂∂-=∂∂=⋅
-∂∂
-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅
∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=
, , 隐函数+, , 隐函数隐函数的求导公式:
时,
,当

多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22
)
,(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F v
G u
G v F
u
F v u
G F J v u y x G v u y x F v
u v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩
⎨⎧== 隐函数方程组:
微分法在几何上的应用:
)
,,(),,(),,(30
))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(}
,,{,0
),,(0),,(0))(())(())(()()()(),,()
()()
(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x y
x y x x z x z z y z y -=
-=-=-+-+-==⎪⎩⎪⎨
⎧====-'+-'+-''-=
'-='-⎪⎩

⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:
上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ϖ
ϖωψϕωψϕωψϕ方向导数与梯度:
上的投影。

在是单位向量。

方向上的
,为,其中:它与方向导数的关系是的梯度:在一点函数的转角。

轴到方向为其中的方向导数为:沿任一方向在一点函数l y x f l
f
l j i e e y x f l
f j
y
f i x f y x f y x p y x f z l x y f
x f l f l y x p y x f z ),(grad sin cos ),(grad ),(grad ),(),(sin cos ),(),(∂∂∴⋅+⋅=⋅=∂∂∂∂+∂∂==∂∂+∂∂=∂∂=ϖϖϖ
ϖϖ
ϖϕϕϕϕ
ϕ
多元函数的极值及其求法:
⎪⎪⎪⎩
⎪⎪⎪
⎨⎧=-<-⎩⎨⎧><>-===== 不确定时值时, 无极为极小值为极大值时,则: ,令:设,00),(,0),(,00),(,),(,),(0),(),(22
000020000000000B AC B AC y x A y x A B AC C y x f B y x f A y x f y x f y x f yy xy xx y x
重积分及其应用:
⎰⎰⎰⎰⎰⎰
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰
⎰⎰⎰⎰++-=++=++==>===
=
==
⎪⎪⎭

⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+==='
D
z D
y D
x z y x D
y D
x D
D
y D
x D
D D
a y x xd y x fa F a y x yd y x f F a y x xd y x f F F F F F a a M z xoy d y x x I y d y x y I x d y x d y x y M
M y d y x d y x x M
M x dxdy y z x z A y x f z rdrd r r f dxdy y x f 2
3
22
2
2
3
22
2
2
3
22
2
22D
2
2
)
(),()
(),()
(),(},,{)0(),,0,0(),(,),(),(),(,),(),(1),()sin ,cos (),(σ
ρσ
ρσ
ρσρσρσ
ρσ
ρσ
ρσ
ρθ
θθ, , ,其中:的引力:轴上质点平面)对平面薄片(位于轴 对于轴对于平面薄片的转动惯量: 平面薄片的重心:的面积曲面
柱面坐标和球面坐标:
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰
⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
ΩΩ+=+=+====
=
=
===⋅⋅⋅=⎪⎩
⎪⎨⎧=====⎪⎩⎪
⎨⎧===dv
y x I dv z x I dv z y I dv
x M dv z M
z dv y M
y dv x M
x dr r r F d d d drd r r F dxdydz z y x f d drd r dr d r rd dv r z r y r x z r r f z r F dz rdrd z r F dxdydz z y x f z
z r y r x z y x r ρρρρρρρϕθϕϕ
θθϕϕθϕθ
ϕϕθϕϕϕθϕθϕθθθθθθθπ
πθϕ)()()(1,1,1
sin ),,(sin ),,(),,(sin sin cos sin sin cos sin )
,sin ,cos (),,(,),,(),,(,sin cos 22222220
)
,(0
2
2
2
, , 转动惯量:, 其中 重心:, 球面坐标:其中: 柱面坐标:
曲线积分:
⎩⎨
⎧==<'+'=≤≤⎩

⎧==⎰
⎰)()()()()](),([),(),(,)()(),(22t y t
x dt t t t t f ds y x f t t y t x L L y x f L
ϕβαψϕψϕβαψϕβ
α
特殊情况: 则: 的参数方程为:上连续,在设长的曲线积分):
第一类曲线积分(对弧。

,通常设的全微分,其中:才是二元函数时,=在:二元函数的全微分求积注意方向相反!
减去对此奇点的积分,,应。

注意奇点,如=,且内具有一阶连续偏导数在,、是一个单连通区域;
、无关的条件:平面上曲线积分与路径的面积:时,得到,即:当格林公式:格林公式:的方向角。

上积分起止点处切向量分别为
和,其中系:两类曲线积分之间的关,则:的参数方程为设标的曲线积分):第二类曲线积分(对坐0),(),(),(),(·)0,0(),(),(21·212,)()()cos cos ()}()](),([)()](),([{),(),()()(00
)
,()
,(00==+=
+∂∂∂∂∂∂∂∂-===∂∂-∂∂=-=+=∂∂-∂∂+=∂∂-∂∂+=+'+'=+⎩

⎧==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰y x
dy y x Q dx y x P y x u y x u Qdy Pdx y
P
x Q y
P
x Q G y x Q y x P G ydx
xdy dxdy A D y P x Q x Q y P Qdy Pdx dxdy y P
x Q Qdy Pdx dxdy y P x Q L ds Q P Qdy Pdx dt
t t t Q t t t P dy y x Q dx y x P t y t x L y x y x D L
D L D L L
L
L
βαβαψψϕϕψϕψϕβ
α
曲面积分:
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰







++=++±=±=±=++++=ds
R Q P Rdxdy Qdzdx Pdydz dzdx z x z y x Q dzdx z y x Q dydz z y z y x P dydz z y x P dxdy y x z y x R dxdy z y x R dxdy z y x R dzdx z y x Q dydz z y x P dxdy y x z y x z y x z y x f ds z y x f zx
yz
xy
xy
D D D D y x )cos cos cos (]),,(,[),,(],),,([),,()],(,,[),,(),,(),,(),,(),(),(1)],(,,[),,(2
2γβα系:两类曲面积分之间的关号。

,取曲面的右侧时取正号;
,取曲面的前侧时取正号;,取曲面的上侧时取正
,其中:
对坐标的曲面积分:对面积的曲面积分:
高斯公式:
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω





Ω
∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂ds
A dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n n ϖϖ
ϖϖϖdiv )cos cos cos (...
,0div ,div )cos cos cos ()(
成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:
—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系:
⎰⎰⎰⎰⎰⎰⎰⎰⎰Γ
Γ

∑∑
Γ
⋅=++Γ∂∂
∂∂∂∂=
∂∂=
∂∂∂∂=∂∂∂∂=∂∂∂∂∂∂∂∂
=∂∂∂∂∂∂++=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂ds
t A Rdz Qdy Pdx A R
Q P z y x A y P
x Q x R z P z Q y R R
Q
P
z y x R Q P z y x dxdy dzdx dydz Rdz Qdy Pdx dxdy y P
x Q dzdx x R z P dydz z Q y R ϖ
ϖϖϖ的环流量:沿有向闭曲线向量场旋度:, , 关的条件:空间曲线积分与路径无上式左端又可写成:k
j i rot cos cos cos )()()(
γβ
α
常数项级数:
是发散的
调和级数:等差数列:等比数列:n
n
n n q q q q q n n 1
312112
)1(3211111
2
+++++=
++++--=
++++-ΛΛΛ 级数审敛法:
散。

存在,则收敛;否则发、定义法:
时,不确定
时,级数发散
时,级数收敛
,则设:、比值审敛法:
时,不确定时,级数发散
时,级数收敛
,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞
→+∞→∞
→+++=⎪⎩

⎨⎧=><=⎪⎩

⎨⎧=><=lim ;3111lim 2111lim 1211Λρρρρρρρρ。

的绝对值其余项,那么级数收敛且其和
如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n n
n n n n u r r u s u u u u u u u u u u u ΛΛ 绝对收敛与条件收敛:
∑∑∑∑>≤-+++++++++时收敛
1时发散p
级数: 收敛;
级数:收敛;
发散,而调和级数:为条件收敛级数。

收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中11
1
)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n
n n n Λ
ΛΛΛ 幂级数:
01
0)3(lim
)3(111
1111
221032=+∞=+∞
===
≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n
n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。

,其中时不定
时发散时收敛
,使在数轴上都收敛,则必存收敛,也不是在全
,如果它不是仅在原点 对于级数时,发散
时,收敛于
ρρρ
ρρΛΛΛΛ
函数展开成幂级数:
Λ
ΛΛ
Λ+++''+'+===-+=+-++-''+-=∞→++n
n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f !
)0(!2)0()0()0()(00lim )(,)()!1()
()(!
)()(!2)())(()()(2010)1(00)(2
0000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ
一些函数展开成幂级数:
)
()!12()1(!5!3sin )11(!
)1()1(!2)1(1)1(1
21532+∞<<-∞+--+-+-=<<-++--++-+
+=+--x n x
x x x x x x n n m m m x m m mx x n n n
m ΛΛΛΛΛ 欧拉公式:
⎪⎪⎩
⎪⎪⎨⎧-=+=+=--2sin 2cos sin cos ix
ix ix
ix ix e e x e e x x i x e 或
三角级数:。

上的积分=在任意两个不同项的乘积正交性:。

,,,其中,0],[cos ,sin 2cos ,2sin ,cos ,sin ,1cos sin )
sin cos (2)sin()(00101
0ππωϕϕϕω-====++=++=∑∑∞
=∞
=ΛΛnx nx x x x x x t A b A a aA a nx b nx a a t n A A t f n n n n n n n n n n n n
傅立叶级数:
是偶函数 ,余弦级数:是奇函数
,正弦级数:(相减)
(相加)
其中,周期∑⎰
∑⎰⎰⎰∑+=
==
======+-+-=++++=
+++=
+++⎪⎪⎩

⎪⎨⎧=====++=--∞
=nx a a x f n nxdx x f a b nx b x f n xdx x f b a n nxdx x f b n nxdx x f a nx b nx a a x f n n n n
n n n n n n n cos 2
)(2,1,0cos )(2
0sin )(3,2,1n sin )(2
012413121164
1312112461412185
1311)3,2,1(sin )(1)2,1,0(cos )(1
2)sin cos (2)(0
2
2222
2222
2
222
221
0ΛΛΛΛΛΛΛΛπ
π
π
ππ
ππ
π
πππππππ
周期为l 2的周期函数的傅立叶级数:
⎪⎪⎩

⎪⎨⎧=====++=⎰⎰∑--∞=l
l n l l n n n n n dx l x n x f l b n dx l x
n x f l a l
l
x n b l x n a a x f )3,2,1(sin )(1)2,1,0(cos
)(12)sin cos (2)(10ΛΛ 其中,周期ππππ
微分方程的相关概念:
即得齐次方程通解。


代替分离变量,积分后将,,,则设的函数,解法:,即写成程可以写成齐次方程:一阶微分方称为隐式通解。

得:的形式,解法:
为:一阶微分方程可以化可分离变量的微分方程 或 一阶微分方程:u x y u u du x dx u dx du u dx du x u dx dy x y u x
y
y x y x f dx dy C x F y G dx x f dy y g dx x f dy y g dy y x Q dx y x P y x f y -=∴=++====+====+='⎰⎰)()(),(),()()()()()()(0
),(),(),(ϕϕϕ 一阶线性微分方程:
)
1,0()()(2))((0)(,0)()
()(1)()()(≠=+⎰
+⎰=≠⎰
===+⎰--n y x Q y x P dx
dy
e C dx e x Q y x Q Ce y x Q x Q y x P dx
dy
n dx
x P dx x P dx
x P ,、贝努力方程:时,为非齐次方程,当为齐次方程,时当、一阶线性微分方程:
全微分方程:
通解。

应该是该全微分方程的,,其中:分方程,即:中左端是某函数的全微如果C y x u y x Q y u
y x P x u dy y x Q dx y x P y x du dy y x Q dx y x P =∴=∂∂=∂∂=+==+),(),(),(0),(),(),(0),(),(
二阶微分方程:
时为非齐次
时为齐次,0)(0)()()()(2
2≠≡=++x f x f x f y x Q dx dy
x P dx y d 二阶常系数齐次线性微分方程及其解法:
2
122,)(2,,(*)0)(1,0(*)r r y y y r r q pr r q p qy y p y 式的两个根、求出的系数;式中的系数及常数项恰好是,,其中、写出特征方程:求解步骤:
为常数;,其中∆'''=++∆=+'+''
式的通解:出的不同情况,按下表写、根据(*),321r r

为常数;型,为常数,]sin )(cos )([)()()(,)(x x P x x P e x f x P e x f q p x f qy y p y n l x m x ωωλλλ+===+'+''
1、行列式
1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;
2.
代数余子式的性质:
①、ij A 和ij a 的大小无关;
②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ;
3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-
4.
设n 行列式D :
将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2
1(1)
n n D D -=-; 将D 顺时针或逆时针旋转90o
,所得行列式为2D ,则(1)2
2(1)n n D D -=-;
将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;
将D 主副角线翻转后,所得行列式为4D ,则4D D =;
5.
行列式的重要公式:
①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2
(1)
n n -⨯ -;
③、上、下三角行列式( = ◥◣):主对角元素的乘积;
④、 ◤和 ◢:副对角元素的乘积(1)2
(1)n n -⨯ -;
⑤、拉普拉斯展开式:
A O A C A
B C
B O
B
==、
(1)m n C
A O
A A
B B O
B C
==-g
⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;
6. 对于n 阶行列式A ,恒有:1(1)n
n
k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;
7.
证明0A =的方法:
①、A A =-; ②、反证法;
③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;
2、矩阵
1.
A 是n 阶可逆矩阵:
⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;
⇔A 与E 等价;
⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;
⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;
2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;
3.
1**111**()()()()()()T T T T A A A A A A ----=== ***
111()()()T T T
AB B A AB B A AB B A ---===
4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;
5.
关于分块矩阵的重要结论,其中均A 、B 可逆:
若12
s A A A A ⎛⎫ ⎪
⎪= ⎪ ⎪

⎭O ,则: Ⅰ、12s A A A A =L ;
Ⅱ、1111
2
1s A A A A ----⎛⎫ ⎪
⎪= ⎪ ⎪ ⎪⎝

O
; ②、1
11A O A O O B O B ---⎛⎫
⎛⎫
=
⎪ ⎪⎝⎭⎝⎭
;(主对角分块) ③、1
11O A O B B O A O ---⎛⎫
⎛⎫= ⎪ ⎪
⎝⎭⎝⎭
;(副对角分块) ④、1
1111A C A A CB O B O
B -----⎛⎫
-⎛⎫=
⎪ ⎪⎝⎭⎝⎭
;(拉普拉斯) ⑤、1
111
1A O A O C B B CA
B -----⎛⎫
⎛⎫
= ⎪ ⎪-⎝⎭⎝⎭
;(拉普拉斯) 3、矩阵的初等变换与线性方程组
1.
一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:r
m n
E O
F O O ⨯⎛⎫
= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ :;
2.
行最简形矩阵:
①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;
③、每行首个非0元素所在列的其他元素必须为0;
3.
初等行变换的应用:(初等列变换类似,或转置后采用初等行变换) ①、 若(,)(,)r
A E E X :,则A 可逆,且1X A -=;
②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)c
A B E A B - ~ ;
③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)r
A b E x :,则A 可逆,且1x A b -=;
4.
初等矩阵和对角矩阵的概念:
①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;
②、1
2
n ⎛⎫

⎪Λ= ⎪ ⎪⎝

O
λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,i
λ乘A 的各列元素;
③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1
111111-⎛⎫⎛⎫ ⎪ ⎪
= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭

④、倍乘某行或某列,符号(())E i k ,且1
1(())(())E i k E i k -=,例如:11
11(0)11k k k -⎛⎫⎛⎫


⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭


; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:1
11
11(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪
=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭

5.
矩阵秩的基本性质:
①、0()min(,)m n r A m n ⨯≤≤;
②、()()T r A r A =;
③、若A B :,则()()r A r B =;
④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)
⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);
Ⅱ、()()r A r B n +≤
⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;
6.
三种特殊矩阵的方幂:
①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;
②、型如101001a c b ⎛⎫ ⎪
⎪ ⎪⎝⎭
的矩阵:利用二项展开式;
二项展开式:0111
1110
()n
n
n
n m n m
m
n n n n
m m n m
n
n
n
n
n
n m a b C a C a b C a b C
a b
C b C a b -----=+=++++++=∑L L ;
注:Ⅰ、()n a b +展开后有1n +项;
Ⅱ、0(1)(1)!
1123!()!
--+==
==-L L g g g L g m n n n n n n n m n C C C m m n m
Ⅲ、组合的性质:11
1
1
2---+-===+==∑n
m
n m m
m m r n
r r n
n
n n n
n
n n r C C C
C C
C
rC nC ; ③、利用特征值和相似对角化:
7.
伴随矩阵:
①、伴随矩阵的秩:*()()1
()10()1
n
r A n r A r A n r A n = ⎧⎪
==-⎨⎪<-⎩
; ②、伴随矩阵的特征值:*1*(,)A
A
AX X A A A A X X λλ
λ
- == ⇒ =

③、*1A A A -=、1
*n A A
-=
8.
关于A 矩阵秩的描述:
①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)
②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;
9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:
①、m 与方程的个数相同,即方程组Ax b =有m 个方程;
②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;
10. 线性方程组Ax b =的求解:
①、对增广矩阵B 进行初等行变换(只能使用初等行变换);
②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;
11. 由n 个未知数m 个方程的方程组构成n 元线性方程:
①、1111221121122222
1122n n n n m m nm n n
a x a x a x
b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L L ;
②、111211121
22
22212
n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪
=⇔= ⎪⎪ ⎪
⎪⎪ ⎪⎝⎭⎝⎭⎝⎭
L L M M O M M M L
(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)
③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭L
M (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭
M ); ④、1122n n a x a x a x β+++=L (线性表出)
⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)
4、向量组的线性相关性
1.
m 个n 维列向量所组成的向量组A :12,,,m αααL 构成n m ⨯矩阵12(,,,)m A =L ααα;
m 个n 维行向量所组成的向量组B :12,,,T T T
m βββL 构成m n ⨯矩阵12T T T m B βββ⎛⎫
⎪ ⎪= ⎪ ⎪ ⎪⎝⎭
M ;
含有有限个向量的有序向量组与矩阵一一对应;
2.
①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组) ②、向量的线性表出
Ax b ⇔=是否有解;(线性方程组)
③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4.
()()T r A A r A =;(101P 例15)
5.
n 维向量线性相关的几何意义:
①、α线性相关 ⇔0α=;
②、,αβ线性相关
⇔,αβ坐标成比例或共线(平行);
③、,,αβγ线性相关 ⇔,,αβγ共面;
6.
线性相关与无关的两套定理:
若12,,,s αααL 线性相关,则121,,,,s s αααα+L 必线性相关;
若12,,,s αααL 线性无关,则121,,,s ααα-L 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :
若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;
7.
向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7); 向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示
AX B ⇔=有解;
()(,)r A r A B ⇔=(85P 定理2)
向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8.
方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P L ,使12l A P
P P =L ; ①、矩阵行等价:~r
A B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆);
9.
对于矩阵m n A ⨯与l n B ⨯:
①、若A 与B 行等价,则A 与B 的行秩相等;
②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关
性;
③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:
①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;
②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)
11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;
①、0ABx = 只有零解0Bx ⇒ =只有零解; ②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;
12. 设向量组12:,,,n r r B b b b ⨯L 可由向量组12:,,,n s s A a a a ⨯L 线性表示为:(110P 题19结论)
1212(,,,)(,,,)r s b b b a a a K =L L (B AK =)
其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关
性)
(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q ;充分性:反证法)
注:当r s =时,K 为方阵,可当作定理使用;
13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E =
()r A m ⇔=、Q 的列向量线性无关;(87P )
②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关;
14. 12,,,s αααL 线性相关
⇔存在一组不全为0的数12,,,s k k k L ,使得11220s s k k k ααα+++=L 成立;(定义)
⇔1212(,,,)0s s x x
x ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭L M 有非零解,即0Ax =有非零解;
⇔12(,,,)s r s ααα<L ,系数矩阵的秩小于未知数的个数;
15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;
16. 若*η为Ax b =的一个解,12,,,n r ξξξ-L 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-L 线性无关;(111P 题
33结论)
5、相似矩阵和二次型
1.
正交矩阵T A A E ⇔=或1T A A -=(定义),性质: ①、A 的列向量都是单位向量,且两两正交,即1
(,1,2,)0
T i j i j a a i j n i j
=⎧==⎨
≠⎩L ;
②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2.
施密特正交化:12(,,,)r a a a L
11b a =;
1222111[,]
[,]
b a b a b b b =-
g L L L 121121112211[,][,][,]
[,][,][,]
r r r r r r r r r b a b a b a b a b b b b b b b b b ----=-
---g g L g ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关; 对于实对称阵,不同特征值对应的特征向量正交; 4.
①、A 与B 等价
⇔A 经过初等变换得到B ;
⇔=PAQ B ,P 、Q 可逆;
()()⇔=r A r B ,A 、B 同型;
②、A 与B 合同 ⇔=T C AC B ,其中可逆;
⇔T x Ax 与T x Bx 有相同的正、负惯性指数;
③、A 与B 相似
1-⇔=P AP B ;
5.
相似一定合同、合同未必相似;
若C 为正交矩阵,则T C AC B =⇒A B :,(合同、相似的约束条件不同,相似的更严格);
6. A 为对称阵,则A 为二次型矩阵;
7.
n 元二次型T x Ax 为正定:
A ⇔的正惯性指数为n ;
A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数;
A ⇔的各阶顺序主子式均大于0;
0,0ii a A ⇒>>;(必要条件)
高中数学基本公式手册
第一章:集合与函数
1.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==I U U I .
2.U U A B A A B B A B C B C A =⇔=⇔⊆⇔⊆I U U A C B ⇔=ΦI U C A B R ⇔=U
3.()()card A B cardA cardB card A B =+-U I
()()card A B C cardA cardB cardC card A B =++-U U I
()()()()card A B card B C card C A card A B C ---+I I I I I .
4.二次函数的解析式的三种形式 ①一般式2
()(0)f x ax bx c a =++≠;② 顶点式
2()()(0)f x a x h k a =-+≠;③零点式12()()()(0)f x a x x x x a =--≠.
5.设[]2121,,x x b a x x ≠∈⋅那么
[]1212()()()0x x f x f x -->⇔[]1212()()
0(),f x f x f x a b x x ->⇔-在上是增函数;
[]1212()()()0x x f x f x --<⇔
[]1212
()()
0(),f x f x f x a b x x -<⇔-在上是减函数.
设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.
6.函数()y f x =的图象的对称性:①函数()y f x =的图象关于直线x a =对称
()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.②函数()y f x =的图象关于直线2
a b
x +=
对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.
7.两个函数图象的对称性:①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.②函数
()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m
+=对称.③函数)(x f y =和)(1
x f y -=的图象关于直线y=x 对称. 8.分数指数幂
m n
a
=
(0,,a m n N *
>∈,且1n >).
1m n
m n
a
a
-
=
(0,,a m n N *
>∈,且1n >).
9. log (0,1,0)b a N b a N a a N =⇔=>≠>. 10.对数的换底公式 log log log m a m N N a =
.推论 log log m n a a n
b b m
=.
第二章:不等式 30.常用不等式:
(1),a b R ∈⇒22
2a b ab +≥(当且仅当a =b 时取“=”号).
(2),a b R +


2
a b
+≥(当且仅当a =b 时取“=”号). (3)333
3(0,0,0).a b c abc a b c ++≥>>>
(4)柯西不等式22222
()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (5)b a b a b a +≤+≤- 31.极值定理 已知y x ,都是正数,则有
(1)如果积xy 是定值p ,那么当y x =时和y x +有最小值p
2; (2)如果和y x +是定值s
,那么当y x =时积
xy 有最大值2
4
1s .
32.一元二次不等式
20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a

2ax bx c
++同号,则其解集在两根之外;如果a 与
2ax bx c ++异号,则其解集在两根之
间.简言之:同号两根之外,异号两根之间.
121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.
33.含有绝对值的不等式 当a> 0时,有
2
2x a x a a x a
<⇔<⇔-<<.
22x a x a x a >⇔>⇔>或
x a
<-.
34.无理不等式(1
()0()0()()f x g x f x g x ≥⎧⎪
>⇔≥⎨⎪>⎩
.
(2
2()0
()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪
⇔≥⎨⎨<⎩⎪>⎩或.
(3
2()0()()0()[()]f x g x g x f x g x ≥⎧⎪
⇔>⎨⎪<⎩
.
35.指数不等式与对数不等式 (1)当1a >时,
()
()
()()f x g x a
a
f x
g x >⇔>; ()0
log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.
(2)当01a <<时,
()
()
()()f x g x a
a
f x
g x >⇔<;()0
log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩
第三章:数列 11.11,
1,2
n n n s n a s s n -=⎧=⎨
-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++L ).
12.等差数列的通项公式*
11(1)()n a a n d dn a d n N =+-=+-∈;
其前n 项和公式 1()2n n n a a s +=
1(1)2n n na d -=+211
()22
d n a d n =+-. 13.等比数列的通项公式1*
11()n n n a a a q q n N q
-==⋅∈;
其前n 项的和公式11
(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a q
q q s na q -⎧≠⎪
-=⎨⎪=⎩.
14.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为
1(1),1
(),11n n n b n d q a bq d b q d q q -+-=⎧⎪
=+--⎨≠⎪-⎩

其前n 项和公式为(1),11(),1111n n nb n n d q s d q d
b n q q q q +-=⎧⎪
=-⎨-+≠⎪---⎩
. 15.分期付款(按揭贷款) 每次还款(1)(1)1
n
n
ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 第四章:三角
16.同角三角函数的基本关系式 22sin cos 1θθ+=,tan θ=θ
θ
cos sin ,tan 1cot θθ⋅=. 17.正弦、余弦的诱导公式
21
2(1)sin ,sin()2(1)s ,
n
n n co απαα-⎧
-⎪+=⎨⎪-⎩ 212(1)s ,s()2(1)sin ,
n
n co n co απαα+⎧
-⎪+=⎨⎪-⎩
18.和角与差角公式
sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=m ;
tan tan tan()1tan tan αβ
αβαβ
±±=m .
22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式
);
22cos()cos()cos sin αβαβαβ+-=-.
sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b
a
ϕ=
). 积化和差公式
sin()sin()
sin cos 2
αβαβαβ++-=
sin()sin()
cos sin 2
αβαβαβ+--=
cos()cos()
cos cos 2
αβαβαβ++-=
cos()cos()
sin sin 2
αβαβαβ--+=
(特别注意这里的大小关系) 19.二倍角公式 sin 2sin cos ααα=.
2222cos 2cos sin 2cos 112sin ααααα=-=-=-.2
2tan tan 21tan α
αα
=-. 降幂公式 221cos 21cos 2sin ,cos 22
αα
αα-+==
20.三角函数的周期公式 函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A
≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z π
π≠+∈(A,ω,ϕ为常数,且A ≠0,ω>
0)的周期T πω
=
. 通用周期公式:函数sin cos m
n
y x x =的周期2T m n
π
=+ 21.正弦定理
2sin sin sin a b c
R A B C
===. 22.余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-; 2222cos c a b ab C =+-.
余弦定理另一表达形式:222
cos 2b c a A bc
+-=(通常用来求角)
23.面积定理(1)111
222
a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).
(2)111
sin sin sin 222
S ab C bc A ca B ===.
(3)OAB S ∆=24.三角形内角和定理 在△ABC 中,有
()222
C A B
A B C C A B πππ+++=⇔=-+⇔
=-
222()C A B π⇔=-+.
第五章:向量
25.平面两点间的距离公式
,A B d =||AB =u u u r =11(,)x y ,B 22(,)x y ).
26.向量的平行与垂直 设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 a P b ⇔b =λa 22
122111
0y x x y x y y x ⇔-=⇔
=. a ⊥b(a ≠0)⇔a ·b=022
121211
01y x x x y y y x ⇔+=⇔
=-g (联想记忆直线平行与垂直的性质). 27.线段的定比分公式 设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=u u u r u u u r


1212
11x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩
⇔12
1OP OP OP λλ+=+u u u r u u u r u u u r ⇔12
(1)OP tOP t OP =+-u u u r u u u r u u u r (11t λ=+). 特例:中点坐标公式121
2
,22
x x y y x y ++=
= 28.三角形的重心坐标公式 △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(
,)33
x x x y y y G ++++. 29.点的平移公式 ''''
x x h x x h y y k y y k
⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''
OP OP PP ⇔=+u u u r u u u r u u u r (图形F 上的任意一点P(x ,y)在平移后图形'
F 上的对应点为'''(,)P x y ,且'PP uuu r 的坐标为(,)h k ).
第六章:不等式 30.常用不等式:
(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).
(2),a b R +


2
a b
+≥(当且仅当a =b 时取“=”号). (3)333
3(0,0,0).a b c abc a b c ++≥>>>
(4)柯西不等式22222
()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (5)b a b a b a +≤+≤- 31.极值定理 已知y x ,都是正数,则有
(1)如果积xy 是定值p ,那么当y x =时和y x +有最小值p 2;
(2)如果和y x +是定值s ,那么当y x =时积xy 有最大值
24
1s . 32.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2
ax bx c ++同号,则其解
集在两根之外;如果a 与2
ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.
121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.
33.含有绝对值的不等式 当a> 0时,有
2
2x a x a a x a <⇔<⇔-<<.
22x a x a x a >⇔>⇔>或x a <-.
34.无理不等式(1
()0()0
()()f x g x f x g x ≥⎧⎪
⇔≥⎨⎪>⎩
. (2
2()0
()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪
>⇔≥⎨⎨
<⎩⎪>⎩或. (3
2()0()()0
()[()]f x g x g x f x g x ≥⎧⎪
<⇔>⎨⎪<⎩
. 35.指数不等式与对数不等式 (1)当1a >时,
()()
()()f x g x a a f x g x >⇔>; ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪
>⇔>⎨⎪>⎩.
(2)当01a <<时,
()()
()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪
>⇔>⎨⎪<⎩
第七章:解析几何 36.斜率公式 21
21
y y k x x -=
-(111(,)P x y 、222(,)P x y ).
37.直线的四种方程
(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式
11
2121
y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).
(4)一般式 0Ax By C ++=(其中A 、B 不同时为0).
38.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212,l l k k b b ⇔=≠P ;②12121l l k k ⊥⇔=-.
(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,
①111
12222
A B C l l A B C ⇔
=≠
P ;②1212120l l A A B B ⊥⇔+=; 39.夹角公式 2
1
21
tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) 1221
1212
tan A B A B A A B B α-=
+(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).。

相关文档
最新文档