初三数学九年级上册期末模拟试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学九年级上册期末模拟试卷
一、选择题
1.抛物线2(1)2y x =-+的顶点坐标是( )
A .(﹣1,2)
B .(﹣1,﹣2)
C .(1,﹣2)
D .(1,2)
2.已知圆锥的底面半径为3cm ,母线为5cm ,则圆锥的侧面积是 ( ) A .30πcm 2
B .15πcm 2
C .
152
π
cm 2 D .10πcm 2
3.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )
A .70°
B .65°
C .55°
D .45°
4.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( ) A .8,10 B .10,9 C .8,9 D .9,10 5.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1 B .m≤1
C .m >1
D .m <1
6.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面
积为( )
A .8
B .12
C .14
D .16
7.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .
12
B .
13
C .
14
D .
15
8.下列函数中属于二次函数的是( ) A .y =
12
x B .y =2x 2-1
C .y 23x +
D .y =x 2+
1x
+1 9.已知⊙O 的直径为4,点O 到直线l 的距离为2,则直线l 与⊙O 的位置关系是 A .相交 B .相切
C .相离
D .无法判断
10.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的
长为( )
A .9 cm
B .10 cm
C .11 cm
D .12 cm
11.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析
式为( ) A .y =32x −2
B .y =32x +2
C .y =3()2
2x -
D .y =3()2
2x +
12.方程x 2=4的解是( )
A .x=2
B .x=﹣2
C .x 1=1,x 2=4
D .x 1=2,x 2=﹣2 13.如图所示的网格是正方形网格,则sin A 的值为( )
A .
12
B .
2 C .
35
D .
45
14.如图,A 、B 、C 、D 是⊙O 上的四点,BD 为⊙O 的直径,若四边形ABCO 是平行四边形,则∠ADB 的大小为( )
A .30°
B .45°
C .60°
D .75°
15.在△ABC 中,∠C =90°,tan A =1
3
,那么sin A 的值是( ) A .
12
B .
13
C 10
D 310
二、填空题
16.已知小明身高1.8m ,在某一时刻测得他站立在阳光下的影长为0.6m .若当他把手臂竖直举起时,测得影长为0.78m ,则小明举起的手臂超出头顶______m .
17.如图,若抛物线2
y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等
式2ax b kx h -<-的解集是______.
18.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是
2200.5s t t =-,飞机着陆后滑行______m 才能停下来. 19.抛物线y =3(x+2)2+5的顶点坐标是_____.
20.二次函数y =x 2﹣bx +c 的图象上有两点A (3,﹣2),B (﹣9,﹣2),则此抛物线的对称轴是直线x =________.
21.已知点11(,)A x y ,22(,)B x y 在二次函数2
(1)1y x =-+的图象上,若121x x >>,则
1y __________2y .(填“>”“<”“=”)
22.某一时刻身高160cm 的小王在太阳光下的影长为80cm ,此时他身旁的旗杆影长10m ,则旗杆高为______.
23.如图,△ABC 中,AB >AC ,D ,E 两点分别在边AC ,AB 上,且DE 与BC 不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)
24.数据8,8,10,6,7的众数是__________.
25.如图,在ABC 中,62BC =+,45C ∠=︒,2AB AC =,则AC 的长为
________.
26.一组数据3,2,1,4,x 的极差为5,则x 为______. 27.有一块三角板ABC ,C ∠为直角,30ABC ∠=︒,将它放置在
O 中,如图,点
A 、
B 在圆上,边B
C 经过圆心O ,劣弧AB 的度数等于_______︒
28.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =12
13
,BC =12,则AD 的长_____.
29.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.
30.二次函数y =2x 2﹣4x +4的图象如图所示,其对称轴与它的图象交于点P ,点N 是其图象上异于点P 的一点,若PM ⊥y 轴,MN ⊥x 轴,则
2
MN
PM
=_____.
三、解答题
31.如图,已知菱形ABCD ,对角线AC 、BD 相交于点O ,AC =6,BD =8.点E 是AB 边上一点,求作矩形EFGH ,使得点F 、G 、H 分别落在边BC 、CD 、AD 上.设 AE =m .
(1)如图①,当m =1时,利用直尺和圆规,作出所有满足条件的矩形EFGH ;(保留作图痕迹,不写作法)
(2)写出矩形EFGH 的个数及对应的m 的取值范围.
32.如图,抛物线y=-x 2+bx+3与x 轴交于A ,B 两点,与y 轴交于点C ,其中点A (-1,0).过点A 作直线y=x+c 与抛物线交于点D ,动点P 在直线y=x+c 上,从点A 出发,以每秒2个单位长度的速度向点D 运动,过点P 作直线PQ ∥y 轴,与抛物线交于点Q ,设运动时间为t (s ).
(1)直接写出b ,c 的值及点D 的坐标;
(2)点 E 是抛物线上一动点,且位于第四象限,当△CBE 的面积为6时,求出点E 的坐标;
(3)在线段PQ 最长的条件下,点M 在直线PQ 上运动,点N 在x 轴上运动,当以点D 、M 、N 为顶点的三角形为等腰直角三角形时,请求出此时点N 的坐标.
33.如图,在平面直角坐标系中,一次函数13y x =-的图像与x 轴交于点A .二次函数
22y x bx c =-++的图像经过点A ,与y 轴交于点C ,与一次函数13y x =-的图像交于
另一点()2,B m -.
(1)求二次函数的表达式;
(2)当12y y >时,直接写出x 的取值范围;
(3)平移AOC ∆,使点A 的对应点D 落在二次函数第四象限的图像上,点C 的对应点E 落在直线AB 上,求此时点D 的坐标. 34.(1)x 2+2x ﹣3=0 (2)(x ﹣1)2=3(x ﹣1)
35.如图,AB 是⊙O 的弦,OP OA ⊥交AB 于点P ,过点B 的直线交OP 的延长线于点C ,且BC 是⊙O
的切线.
(1)判断CBP ∆的形状,并说明理由; (2)若6,2OA OP ==,求CB 的长;
(3)设AOP ∆的面积是1,S BCP ∆的面积是2S ,且
122
5
S S =.若⊙O 的半径为6,45BP =tan APO ∠.
四、压轴题
36.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,
①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当38
83
a t ==
,时,证明:ADF CDF S S ∆∆=.
37.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2
y x
=
在第一象限内的图象记作,H 则()1,min D H l = .
(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,
T 的半径为3,点C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范
围,
(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫
⎪⎝+-+⎭
+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.
38.已知,如图1,⊙O 是四边形ABCD 的外接圆,连接OC 交对角线BD 于点F ,延长AO 交BD 于点E ,OE=OF.
(1)求证:BE=FD ;
(2)如图2,若∠EOF=90°,BE=EF ,⊙O 的半径25AO =ABCD 的面积; (3)如图3,若AD=BC ;
①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长. 39.问题发现:
(1)如图①,正方形ABCD 的边长为4,对角线AC 、BD 相交于点O ,E 是AB 上点(点E 不与A 、B 重合),将射线OE 绕点O 逆时针旋转90°,所得射线与BC 交于点F ,则四边形OEBF 的面积为 . 问题探究:
(2)如图②,线段BQ =10,C 为BQ 上点,在BQ 上方作四边形ABCD ,使∠ABC =∠ADC =90°,且AD =CD ,连接DQ ,求DQ 的最小值; 问题解决:
(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD 中,∠ABC =∠ADC =90°,AD =CD ,AC =600米.其中AB 、BD 、BC 为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB +BD +BC 的最大值.
40.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;
(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求
tan ACB ∠;
(3)若5
tan 2
CDE ∠=
,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D 解析:D 【解析】 【分析】
根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解. 【详解】
∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ), ∴抛物线2(1)2y x =-+的顶点坐标是(1,2). 故选D .
2.B
解析:B 【解析】
试题解析:∵底面半径为3cm , ∴底面周长6πcm ∴圆锥的侧面积是1
2
×6π×5=15π(cm 2), 故选B .
3.C
解析:C 【解析】 【分析】
根据三角形的内角和定理和等腰三角形等边对等角求得∠O 的度数,再进一步根据圆周角定理求解. 【详解】
解:∵OA=OB ,∠ABO=35°, ∴∠BAO=∠ABO=35°, ∴∠O=180°-35°×2=110°,
∴∠C=
1
2∠O=55°. 故选:C . 【点睛】
本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.
4.D
解析:D 【解析】
试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,
最中间的数是9,则中位数是9;
10出现了3次,出现的次数最多,则众数是10; 故选D .
考点:众数;中位数.
5.D
解析:D 【解析】
分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.
详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2
240m =-->, 解得:m <1. 故选D .
点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
6.D
解析:D 【解析】 【分析】
直接利用三角形中位线定理得出DE ∥BC ,DE=1
2
BC ,再利用相似三角形的判定与性质得出答案. 【详解】
解:∵在△ABC 中,点D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=
1
2
BC , ∴△ADE ∽△ABC , ∵
DE BC =1
2
, ∴
1
4
ADE ABC S S ∆∆=, ∵△ADE 的面积为4, ∴△ABC 的面积为:16, 故选D . 【点睛】
考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE ∽△ABC 是解题关键.
7.D
【解析】
【分析】
由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105
=. 【详解】
解:()21P 105
=
=次品 . 故选:D .
【点睛】
本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键. 8.B
解析:B
【解析】
【分析】
根据反比例函数的定义,二次函数的定义,一次函数的定义对各选项分析判断后利用排除法求解.
【详解】
解:A. y =
12
x 是正比例函数,不符合题意; B. y =2x 2-1是二次函数,符合题意;
C. y
D. y =x 2+
1x
+1不是二次函数,不符合题意. 故选:B .
【点睛】 本题考查了二次函数的定义,解题关键是掌握一次函数、二次函数、反比例函数的定义.
9.B
解析:B
【解析】
【分析】
根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.
【详解】
∵⊙O 的直径为4,
∴⊙O 的半径为2,
∵圆心O 到直线l 的距离是2,
∴根据圆心距与半径之间的数量关系可知直线l 与⊙O 的位置关系是相切.
【点睛】
本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r,圆心到直线的距离是d,当d=r时,直线和圆相切,当d>r时,直线和圆相离,当d<r时,直线和圆相交.
10.B
解析:B
【解析】
【分析】
由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.
【详解】
解:连接OD,设⊙O半径OD为R,
∵AB是⊙O的直径,弦CD⊥AB于点M,
∴DM=1
2
CD=4cm,OM=R-2,
在RT△OMD中,
OD²=DM²+OM²即R²=4²+(R-2)²,
解得:R=5,
∴直径AB的长为:2×5=10cm.
故选B.
【点睛】
本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.11.D
解析:D
【解析】
【分析】
先确定抛物线y=3x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】
解:抛物线y=3x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),
∴平移后的抛物线解析式为:y=3(x+2)2.
故选:D.
本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12.D
解析:D
【解析】
x2=4,
x=±2.
故选D.
点睛:本题利用方程左右两边直接开平方求解.
13.C
解析:C
【解析】
【分析】
设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.
【详解】
解:设正方形网格中的小正方形的边长为1,
连接格点BC,AD,过C作CE⊥AB于E,
∵22
4225
AC BC=+=
=,BC=22,AD=2232
AC CD
+=,
∵S△ABC=1
2
AB•CE=
1
2
BC•AD,
∴CE=
223265
5
25
BC AD
AB
⨯
==,
∴
65
3
5
5
25
CE
A
sin CAB
C
∠==
=,
故选:C.
【点睛】
本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.
14.A
【解析】
【详解】
解:∵四边形ABCO 是平行四边形,且OA=OC ,
∴四边形ABCO 是菱形,
∴AB=OA=OB ,
∴△OAB 是等边三角形,
∴∠AOB=60°,
∵BD 是⊙O 的直径,
∴点B 、D 、O 在同一直线上,
∴∠ADB=
12
∠AOB=30° 故选A . 15.C
解析:C
【解析】
【分析】
根据正切函数的定义,可得BC ,AC 的关系,根据勾股定理,可得AB 的长,根据正弦函数的定义,可得答案.
【详解】
tan A =BC AC =13
,BC =x ,AC =3x , 由勾股定理,得
AB x ,
sin A =BC AB 故选:C .
【点睛】
本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x ,AC=3x 是解题关键.
二、填空题
16.54
【解析】
【分析】
在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.
【详解】
解:设小明举起的手臂超出头顶xm,根据题意得,
,
解得x=0.54
即举起的手臂超出头顶0.54m
解析:54
【解析】
【分析】
在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.
【详解】
解:设小明举起的手臂超出头顶xm,根据题意得,
1.8 1.80.60.78
x , 解得x=0.54
即举起的手臂超出头顶0.54m.
故答案为:0.54.
【点睛】
本题考查同一时刻物体的高度和影长成比例的投影规律,根据规律列比例式求解是解答此题的关键.,
17.【解析】
【分析】
观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.
【
解析:23x -<<
【解析】
【分析】
观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.
【详解】
解:设21y ax h =+,2y kx b =+,
∵2ax b kx h -<-
∴2ax h kx b +<+,
∴12y y <
即二次函数值小于一次函数值,
∵抛物线与直线交点为()3,A m ,()2,B n -,
∴由图象可得,x 的取值范围是23x -<<.
【点睛】
本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.
18.200
【解析】
【分析】
要求飞机从滑行到停止的路程就,即求出函数的最大值即可.
【详解】
解:
所以当t=20时,该函数有最大值200.
故答案为200.
【点睛】
本题主要考查了二次函数的应用
解析:200
【解析】
【分析】
要求飞机从滑行到停止的路程就,即求出函数的最大值即可.
【详解】
解:()()2
22200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.
故答案为200.
【点睛】
本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.
19.(﹣2,5)
【解析】
【分析】
已知抛物线的顶点式,可直接写出顶点坐标.
【详解】
解:由y =3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).
故答案为:(﹣2,5).
【点
解析:(﹣2,5)
【解析】
【分析】
已知抛物线的顶点式,可直接写出顶点坐标.
【详解】
解:由y =3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).
故答案为:(﹣2,5).
【点睛】
本题考查二次函数的性质,熟知二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,顶点坐标为(h ,k ),对称轴为x=h .
20.-3
【解析】
【分析】
观察A (3,﹣2),B (﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B 两点关于抛物线对称轴对称,对称轴为经过线段AB 中点且平行于y 轴的直线.
【详解】
解:∵ A(3,﹣
解析:-3
【解析】
【分析】
观察A (3,﹣2),B (﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B 两点关于抛物线对称轴对称,对称轴为经过线段AB 中点且平行于y 轴的直线.
【详解】
解:∵ A (3,﹣2),B (﹣9,﹣2)两点纵坐标相等,
∴A,B 两点关于对称轴对称,
根据中点坐标公式可得线段AB 的中点坐标为(-3,-2),
∴抛物线的对称轴是直线x= -3.
【点睛】
本题考查二次函数图象的对称性及对称轴的求法,常见确定对称轴的方法有,已知解析式则利用公式法确定对称轴,已知对称点利用对称性确定对称轴,根据条件确定合适的方法求对称轴是解答此题的关键.
21.【解析】
抛物线的对称轴为:x=1,
∴当x>1时,y 随x 的增大而增大.
∴若x1>x2>1 时,y1>y2 .
故答案为>
解析:12y y >
【解析】
抛物线()2
y x 11=-+的对称轴为:x=1,
∴当x>1时,y 随x 的增大而增大.
∴若x1>x2>1 时,y1>y2 .
故答案为>
22.20m
【解析】
【分析】
根据相同时刻的物高与影长成比例列出比例式,计算即可.
【详解】
解:设旗杆的高度为xm,
根据相同时刻的物高与影长成比例,得到160::10,
解得.
故答案是:20m.
解析:20m
【解析】
【分析】
根据相同时刻的物高与影长成比例列出比例式,计算即可.
【详解】
解:设旗杆的高度为xm,
根据相同时刻的物高与影长成比例,得到160:80x
=:10,
解得x20
=.
故答案是:20m.
【点睛】
本题考查的是相似三角形的应用,掌握相似三角形的性质是解题的关键.
23.∠B=∠1或
【解析】
【分析】
此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可. 【详解】
此题答案不唯
解析:∠B=∠1或AE AD AC AB
=
【解析】
【分析】
此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.
【详解】
此题答案不唯一,如∠B=∠1或AD AE AB AC
=.
∵∠B=∠1,∠A=∠A,
∴△ADE∽△ABC;
∵AD AE
AB AC
=,∠A=∠A,∴△ADE∽△ABC;
故答案为∠B=∠1或AD AE AB AC
=
【点睛】
此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.
24.8
【解析】
【分析】
根据众数的概念即可得出答案.
【详解】
众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是
8
故答案为:8.
【点睛】
本题主要考查众数,掌握众数的概念是解
解析:8
【解析】
【分析】
根据众数的概念即可得出答案.
【详解】
众数是指一组数据中出现次数最多的数,题中的8出现次数最多,所以众数是8
故答案为:8.
【点睛】
本题主要考查众数,掌握众数的概念是解题的关键.
25.【解析】
【分析】
过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长. 【详解】
过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则.
【点睛】
本题考查勾股定
解析:2 【解析】 【分析】 过A 点作BC 的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求AC 的长.
【详解】
过A 作AD BC ⊥于D 点,设2AC x =,则2AB x =,因为45C ∠=︒,所以
AD CD x ==,则由勾股定理得223BD AB AD x =-=,因为62BC =+,所以362BC x x =+=+,则2x =.则2AC =.
【点睛】
本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解.
26.-1或6
【解析】
【分析】
由题意根据极差的公式即极差=最大值-
最小值.可能是最大值,也可能是最小值,分两种情况讨论.
【详解】
解:当x 是最大值,则x-(1)=5,
所以x=6;
当x 是最小值,
解析:-1或6
【解析】
【分析】
由题意根据极差的公式即极差=最大值-最小值.x 可能是最大值,也可能是最小值,分两种情况讨论.
【详解】
解:当x 是最大值,则x-(1)=5,
所以x=6;
当x 是最小值,则4-x=5,
所以x=-1;
故答案为-1或6.
【点睛】
本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据
中的最大值减去最小值,同时注意分类的思想的运用.
27.120° 【解析】 【分析】
因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案. 【详解】 如图,连接OA , ∵OA,OB 为半径, ∴, ∴,
∴劣弧的度数等于, 故答案为:1
解析:120° 【解析】 【分析】
因为半径相等,根据等边对等角结合三角形内角和定理即可求得AOB ∠,继而求得答案. 【详解】 如图,连接OA , ∵OA ,OB 为半径, ∴30OAB ABO ∠=∠=︒,
∴180120AOB OAB ABO ∠=︒-∠-∠=︒, ∴劣弧AB 的度数等于120︒, 故答案为:120.
【点睛】
本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握.
28.8 【解析】 【分析】
在Rt△ADC 中,利用正弦的定义得sinC ==,则可设AD =12x ,所以AC =
13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sinC得到tanB=,接着在Rt△A
解析:8
【解析】
【分析】
在Rt△ADC中,利用正弦的定义得sin C=AD
AC
=
12
13
,则可设AD=12x,所以AC=13x,利
用勾股定理计算出DC=5x,由于cos∠DAC=sin C得到tan B=12
13
,接着在Rt△ABD中利用
正切的定义得到BD=13x,所以13x+5x=12,解得x=2
3
,然后利用AD=12x进行计算.
【详解】
在Rt△ADC中,sin C=AD
AC
=
12
13
,
设AD=12x,则AC=13x,
∴DC=5x,
∵cos∠DAC=sin C=12 13
,
∴tan B=12 13
,
在Rt△ABD中,∵tan B=AD
BD
=
12
13
,
而AD=12x,∴BD=13x,
∴13x+5x=12,解得x=2
3
,
∴AD=12x=8.
故答案为8.
【点睛】
本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.
29.y=-5(x+2)2-3
【解析】
【分析】
根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.
【详解】
解:∵抛物线y=-5x2先向左平移2个单位长度,再
解析:y=-5(x+2)2-3
【解析】 【分析】
根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可. 【详解】
解:∵抛物线y=-5x 2先向左平移2个单位长度,再向下平移3个单位长度, ∴新抛物线顶点坐标为(-2,-3),
∴所得到的新的抛物线的解析式为y=-5(x+2)2-3. 故答案为:y=-5(x+2)2-3. 【点睛】
本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.
30.【解析】 【分析】
根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算即可解答本题. 【详解】
解:∵二次函数y =2x2﹣4x+4=2(x ﹣1)2+2, ∴点P 的坐标为(1
解析:【解析】 【分析】
根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算
2
MN
PM 即可解答本题. 【详解】
解:∵二次函数y =2x 2﹣4x +4=2(x ﹣1)2+2, ∴点P 的坐标为(1,2),
设点M 的坐标为(a ,2),则点N 的坐标为(a ,2a 2﹣4a +4),
∴2MN
PM =()
222442(1)a a a -+--=()
22222212422121
a a a a a a a a -+-+=-+-+=2, 故答案为:2. 【点睛】
本题考查了二次函数与几何的问题,解题的关键是求出点P 左边,设出点M 、点N 的坐标,表达出
2
MN
PM
. 三、解答题
31.(1)见解析;(2)①当m =0时,存在1个矩形EFGH ;②当0<m <
9
5
时,存在2
个矩形EFGH;③当m=9
5
时,存在1个矩形EFGH;④当
9
5
<m≤
18
5
时,存在2个矩形
EFGH;⑤当18
5
<m<5时,存在1个矩形EFGH;⑥当m=5时,不存在矩形EFGH.
【解析】
【分析】
(1)以O点为圆心,OE长为半径画圆,与菱形产生交点,顺次连接圆O与菱形每条边的同侧交点即可;
(2)分别考虑以O为圆心,OE为半径的圆与每条边的线段有几个交点时的情形,共分五种情况.
【详解】
(1)如图①,如图②(也可以用图①的方法,取⊙O与边BC、CD、AD的另一个交点即可)
(2)∵O到菱形边的距离为12
5
,当⊙O与AB相切时AE=
9
5
,当过点A,C时,⊙O与AB交
于A,E两点,此时AE=9
5
×2=
18
5
,根据图像可得如下六种情形:
①当m=0时,如图,存在1个矩形EFGH;
②当0<m<9
5
时,如图,存在2个矩形EFGH;
③当m=9
5
时,如图,存在1个矩形EFGH;
④当9
5
<m≤
18
5
时,如图,存在2个矩形EFGH;
⑤当18
5
<m<5时,如图,存在1个矩形EFGH;
⑥当m=5时,不存在矩形EFGH.
【点睛】
本题考查了尺规作图,菱形的性质,以及圆与直线的关系,将能作出的矩形个数转化为圆O与菱形的边的交点个数,综合性较强.
32.(1)b=2,c=1,D(2,3);(2)E(4,-5) ;(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)
【解析】
【分析】
(1)将点A
分别代入y=-x 2+bx+3,y=x+c 中求出b 、c 的值,确定解析式,再解两个函数关系式组成的方程组即可得到点D 的坐标;
(2))过点E 作EF ⊥y 轴,设E (x ,-x 2+2x+3),先求出点B 、C 的坐标,再利用面积加减关系表示出△CBE 的面积,即可求出点E 的坐标.
(3)分别以点D 、M 、N 为直角顶点讨论△MND 是等腰直角三角形时点N 的坐标. 【详解】
(1)将A (-1,0)代入y=-x 2+bx+3中,得-1-b+3=0,解得b=2, ∴y=-x 2+2x+3,
将点A 代入y=x+c 中,得-1+c=0,解得c=1, ∴y=x+1,
解2
1
23y x y x x =+⎧⎨=-++⎩,解得11
23x y =⎧⎨=⎩,2210x y =-⎧⎨=⎩(舍去), ∴D (2,3).
∴b= 2 ,c= 1 ,D (2,3). (2)过点E 作EF⊥y 轴, 设E (x ,-x 2+2x+3),
当y=-x 2+2x+3中y=0时,得-x 2+2x+3=0,解得x 1=3,x 2=-1(舍去), ∴B(3,0). ∵C(0,3), ∴CBE
CBO
CFE
S
S S 梯形OFEB -S
,
∴22111
6
33(3)(23)(2)222x x x x x x , 解得x 1=4,x 2=-1(舍去), ∴E(4,-5).
(3)∵A(-1,0),D(2,3), ∴直线AD 的解析式为y=x+1,
设P (m ,m+1),则Q (m ,-m 2+2m+3), ∴线段PQ 的长度h=-m 2+2m+3-(m+1)=219()24
m , ∴当1
2
m =
=0.5,线段PQ 有最大值. 当∠D 是直角时,不存在△MND 是等腰直角三角形的情形;
当∠M是直角时,如图1,点M在线段DN的垂直平分线上,此时N1(2,0);
当∠M是直角时,如图2,作DE⊥x轴,M2E⊥HE,N2H⊥HE,
∴∠H=∠E=90︒,
∵△M2N2D是等腰直角三角形,
∴N2M2=M2D,∠N2M2D=90︒,
∵∠N2M2H=∠M2DE,
∴△N2M2H≌△M2DE,
∴N2H=M2E=2-0.5=1.5,M2H=DE,
∴E(2,-1.5),
∴M2H=DE=3+1.5=4.5,
∴ON2=4.5-0.5=4,
∴N2(-4,0);
当∠N是直角时,如图3,作DE⊥x轴,
∴∠N3HM3=∠DEN3=90︒,
∵△M3N3D是等腰直角三角形,
∴N3M3=N3D,∠DN3M3=90︒,
∵∠DN3E=∠N3M3H,
∴△DN3E≌△N3M3H,
∴N3H=DE=3,
∴N3O=3-0.5=2.5,
∴N3(-2.5,0);
当∠N是直角时,如图4,作DE⊥x轴,
∴∠N4HM4=∠DEN4=90︒,
∵△M4N4D是等腰直角三角形,
∴N4M4=N4D,∠DN4M4=90︒,
∵∠DN4E=∠N4M4H,
∴△DN4E≌△N4M4H,
∴N4H=DE=3,
∴N4O=3+0.5=3.5,
∴N4(3.5,0);
综上,N(2,0),N(-4,0),N(-2.5,0),N(3.5,0). 【点睛】
此题是二次函数的综合题,考查待定系数法求函数解析式;根据函数性质得到点坐标,由此求出图象中图形的面积;还考查了图象中构成的等腰直角三角形的情况,此时依据等腰直角三角形的性质,求出点N 的坐标.
33.(1)2y x 2x 3=-++;(2)2x <-或3x >;(3)()4,5D -. 【解析】 【分析】
(1)先求出A,B 的坐标,再代入二次函数即可求解; (2)根据函数图像即可求解;
(3)先求出C 点坐标,再根据平移的性质得到3EF FD ==,设点(),3E a a -,则
()3,6D a a +-,把D 点代入二次函数即可求解.
【详解】
解:(1)令0y =,得3x =,∴()3,0A .把()2,B m -代入3y x =-,解得()2,5B --. 把()3,0A ,()2,5B --代入2
y x bx c =-++,
得093542b c b c =-++⎧⎨-=--+⎩,∴
2
3b c =⎧⎨=⎩
, ∴二次函数的表达式为2y x 2x 3=-++. (2)由图像可知,当12y y >时,2x <-或3x >. (3)令0x =,则3y =,∴()0,3C .
∵平移,∴AOC DFE ∆≅∆,∴3EF FD ==. 设点(),3E a a -,则()3,6D a a +-,
∴()()2
63233a a a -=-++++,∴11a =,26a =-(舍去).
∴()4,5D -. 【点睛】
此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法的运用. 34.(1)x =﹣3或x =1;(2)x =1或x =4. 【解析】 【分析】
(1)用因式分解法求解即可; (2)先移项,再用因式分解法求解即可. 【详解】
解:(1)∵x 2+2x ﹣3=0, ∴(x+3)(x ﹣1)=0, ∴x =﹣3或x =1;
(2)∵(x ﹣1)
2=3(x ﹣1), ∴(x ﹣1)[(x ﹣1)﹣3]=0, ∴(x ﹣1)(x ﹣4)=0, ∴x =1或x =4; 【点睛】
本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.
35.(1)CBP ∆是等腰三角形,理由见解析;(2)BC 的长为8;(3)3tan 2
APO ∠=. 【解析】 【分析】
(1)首先连接OB ,根据等腰三角形的性质由OA =OB 得A OBA ∠=∠,由点C 在过点B 的切线上,且OP OA ⊥,根据等角的余角相等,易证得∠PBC =∠CPB ,即可证得△CBP 是等腰三角形;
(2)设BC =x ,则PC =x ,在Rt △OBC 中,根据勾股定理得到222
6(2)x x +=+,然后解
方程即可;
(3)作CD ⊥BP 于D ,由等腰三角形三线合一的性质得1
252
PD BD PB ==
=,由1225S S =,通过证得~AOP CDP ∆∆,得出2
2
45AOP PCD S OA S CD ∆∆== 即可求得CD ,然后解直角三角形即可求得. 【详解】
(1)CBP ∆是等腰三角形,理由: 连接OB ,
OA OB =
A OBA ∴∠=∠
⊙O 与BC 相切与点B ,
OB BC ∴⊥,即90OBC ∠=,90OBA PBC ∠+∠= OP OA ⊥
90APO A ∴∠+∠=,
APO CPB ∠=∠
90CPB A ∴∠+∠=
CPB PBC ∴∠=∠
CB CP ∴=。