贵州省普通高中学高三复数复习专题百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复数选择题
1.在复平面内,复数534i
i
-(i 为虚数单位)对应的点的坐标为( ) A .()3,4
B .()4,3-
C .43,55⎛⎫-
⎪⎝
⎭ D .43,55⎛⎫
-
⎪⎝⎭
2.若复数z 满足()13i z i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A .z 的实部是1 B .z 的虚部是1
C .z =
D .复数z 在复平面内对应的点在第四象限
3.已知i 为虚数单位,则复数
23i
i
-+的虚部是( ) A .35 B .35i - C .15- D .15i -
4.已知a 为正实数,复数1ai +(i 为虚数单位)的模为2,则a 的值为( )
A 3
B .1
C .2
D .3
5.复数312i
z i
=-的虚部是( ) A .65i -
B .35
i
C .
35
D .65
-
6.已知复数5
12z i
=+,则z =( )
A .1
B
C
D .5
7.若复数2i
1i
a -+(a ∈R )为纯虚数,则1i a -=( )
A B C .3
D .5
8.设复数z 满足方程4z z z z ⋅+⋅=,其中z 为复数z 的共轭复数,若z ,则z 为( )
A .1
B
C .2
D .4
9.若复数()4
1i 34i
z +=
+,则z =( )
A .
4
5
B .
35
C .
25
D .
5
10.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )
A B .2 C .10
D
11.复数11z =,2z 由向量1OZ 绕原点O 逆时针方向旋转3
π而得到.则21
arg()2z z -的值为( ) A .
6
π B .
3
π
C .
23
π D .
43
π 12.复数z 对应的向量OZ 与(3,4)a =共线,对应的点在第三象限,且10z =,则z =( ) A .68i +
B .68i -
C .68i --
D .68i -+
13.已知复数z 满足()1+243i z i =+,则z 的虚部是( ) A .-1
B .1
C .i -
D .i
14.已知i 是虚数单位,设11i
z i
,则复数2z +对应的点位于复平面( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
15.设复数满足(12)i z i +=,则||z =( )
A .
15
B C D .5
二、多选题
16.已知复数2020
11i z i
+=
-(i 为虚数单位),则下列说法错误的是( )
A .z 的实部为2
B .z 的虚部为1
C .z i =
D .||z =17.已知复数cos sin 2
2z i π
πθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是
( )
A .复数z 在复平面上对应的点可能落在第二象限
B .z 可能为实数
C .1z =
D .
1
z
的虚部为sin θ 18.已知复数(),z x yi x y R =+∈,则( ) A .2
0z
B .z 的虚部是yi
C .若12z i =+,则1x =,2y =
D .z =
19.下面是关于复数2
1i
z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z =
B .22z i =
C .z 的共轭复数为1i +
D .z 的虚部为1-
20.复数z 满足
233232i
z i i
+⋅+=-,则下列说法正确的是( )
A .z 的实部为3-
B .z 的虚部为2
C .32z i =-
D .||z =
21.若复数z 满足()1z i i +=,则( )
A .1z i =-+
B .z 的实部为1
C .1z i =+
D .22z i =
22.已知i 为虚数单位,复数322i
z i
+=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为
75
i C .3z =
D .z 在复平面内对应的点在第一象限
23.已知复数122,2z i z i =-=则( ) A .2z 是纯虚数 B .12z z -对应的点位于第二象限
C .123z z +=
D .12z z =24.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )
A .3||5
z = B .12i
5
z +=-
C .复数z 的实部为1-
D .复数z 对应复平面上的点在第二象限
25.若复数2
1i
z =
+,其中i 为虚数单位,则下列结论正确的是( )
A .z 的虚部为1-
B .||z =
C .2z 为纯虚数
D .z 的共轭复数为1i --
26.已知i 为虚数单位,下列说法正确的是( ) A .若,x y R ∈,且1x yi i +=+,则1x y == B .任意两个虚数都不能比较大小
C .若复数1z ,2z 满足22
12
0z z +=,则120z z == D .i -的平方等于1
27.以下命题正确的是( )
A .0a =是z a bi =+为纯虚数的必要不充分条件
B .满足210x +=的x 有且仅有i
C .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件
D .已知()f x =()1
878
f x x '=
28.复数21i
z i
+=
-,i 是虚数单位,则下列结论正确的是( )
A .|z |=
B .z 的共轭复数为
3122
i + C .z 的实部与虚部之和为2
D .z 在复平面内的对应点位于第一象限
29.已知复数z ,下列结论正确的是( ) A .“0z z +=”是“z 为纯虚数”的充分不必要条件 B .“0z z +=”是“z 为纯虚数”的必要不充分条件 C .“z z =”是“z 为实数”的充要条件 D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件
30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数 B .若z 的共轭复数为z ,且z z =,则z 是实
数
C .若||z z =,则z 是实数
D .||z 可以等于
12
【参考答案】***试卷处理标记,请不要删除
一、复数选择题 1.D 【分析】
运用复数除法的运算法则化简复数的表示,最后选出答案即可. 【详解】 因为,
所以在复平面内,复数(为虚数单位)对应的点的坐标为. 故选:D 解析:D 【分析】
运用复数除法的运算法则化简复数534i
i
-的表示,最后选出答案即可. 【详解】 因为
55(34)152043
34(34)(34)2555
i i i i i i i i ⋅+-===-+--+, 所以在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为43,55⎛⎫
- ⎪⎝⎭
. 故选:D
2.C 【分析】
利用复数的除法运算求出,即可判断各选项. 【详解】 , ,
则的实部为2,故A 错误;的虚部是,故B 错误; ,故C 正;
对应的点为在第一象限,故D 错误. 故选:C.
解析:C 【分析】
利用复数的除法运算求出z ,即可判断各选项. 【详解】
()13i z i +=+,
()()()()
3132111i i i z i i i i +-+∴===-++-, 则z 的实部为2,故A 错误;z 的虚部是1-,故B 错误;
z ==,故C 正;
2z i =+对应的点为()2,1在第一象限,故D 错误.
故选:C.
3.A 【分析】
先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】
因为,所以其虚部是. 故选:A.
解析:A 【分析】
先由复数的除法运算化简复数23i
i
-+,再由复数的概念,即可得出其虚部. 【详解】 因为
22(3)2613
3(3)(3)1055
i i i i i i i i -----===--++-,所以其虚部是35
. 故选:A.
4.A 【分析】
利用复数的模长公式结合可求得的值.
,由已知条件可得,解得. 故选:A.
解析:A 【分析】
利用复数的模长公式结合0a >可求得a 的值. 【详解】
0a >,由已知条件可得12ai +==,解得a =
故选:A.
5.C 【分析】
由复数除法法则计算出后可得其虚部. 【详解】 因为,
所以复数z 的虚部是. 故选:C .
解析:C 【分析】
由复数除法法则计算出z 后可得其虚部. 【详解】
因为
33(12)3663
12(12)(12)555
i i i i i i i i +-===-+--+, 所以复数z 的虚部是3
5
. 故选:C .
6.C 【分析】
根据模的运算可得选项. 【详解】 . 故选:C.
解析:C 【分析】
根据模的运算可得选项. 【详解】
512z i =
===+
7.B 【分析】
把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模. 【详解】 由
复数()为纯虚数,则 ,则 所以 故选:B
解析:B 【分析】
把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模. 【详解】
由()()()()
()()21i 2221112a i a a i
a i i i i ----+-==++- 复数2i
1i a -+(a ∈R )为纯虚数,则2
02202
a a -⎧=⎪⎪⎨+⎪≠⎪⎩ ,则2a =
所以112ai i -=-=故选:B
8.B 【分析】
由题意,设复数,根据共轭复数的概念,以及题中条件,即可得出结果. 【详解】
因为的实部为,所以可设复数, 则其共轭复数为,又, 所以由,可得,即,因此. 故选:B.
解析:B 【分析】
由题意,设复数(),z yi x R y R =∈∈,根据共轭复数的概念,以及题中条件,即可得出结果. 【详解】
因为z
,所以可设复数(),z yi x R y R =∈∈,
则其共轭复数为z yi =
,又z z =,
所以由4z z z z ⋅+⋅=,可得()4z z z ⋅+=
,即4z ⋅=
,因此z =
故选:B.
9.A 【分析】
首先化简复数,再计算求模. 【详解】 , . 故选:A
解析:A 【分析】
首先化简复数z ,再计算求模. 【详解】
()()()2
24
2112434343434i i i z i i i i
⎡⎤++⎣⎦====-
++++ ()()()
()4344341216
3434252525i i i i i --=-
=-=-++-,
45z ∴==.
故选:A
10.D 【分析】
求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为, 所以,, 所以, 故选:D.
解析:D 【分析】
求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为1z i =+,
所以1z i =-,12z i +=+,
所以()()()1123z z i i i ⋅+=-⋅+=-== 故选:D.
11.C 【分析】
写出复数的三角形式,绕原点逆时针方向旋转得到复数的三角形式,从而求得的三角形式得解. 【详解】 ,,
所以复数在第二象限,设幅角为, 故选:C 【点睛】
在复平面内运用复数的三
解析:C 【分析】
写出复数11z =的三角形式1cos 0sin 0z i =+,绕原点O 逆时针方向旋转3
π
得到复数2z 的三角形式,从而求得21
2
z z -的三角形式得解. 【详解】
11z =,1cos 0sin 0z i ∴=+,
121(cos
sin )332Z i O OZ π
π=+=
2111()2222
z z i --∴
=+
所以复数在第二象限,设幅角为θ,tan θ=
23π
θ∴=
故选:C 【点睛】
在复平面内运用复数的三角形式是求得幅角的关键.
12.D 【分析】
设,根据复数对应的向量与共线,得到,再结合求解. 【详解】 设,
则复数对应的向量, 因为向量与共线, 所以, 又, 所以, 解得或,
因为复数对应的点在第三象限, 所以, 所以,,
解析:D 【分析】
设(,)z a bi a R b R =+∈∈,根据复数z 对应的向量OZ 与(3,4)a =共线,得到
43a b =,再结合10z =求解.
【详解】
设(,)z a bi a R b R =+∈∈, 则复数z 对应的向量(),OZ a b =, 因为向量OZ 与(3,4)a =共线, 所以43a b =, 又10z =, 所以22100+=a b ,
解得68a b =-⎧⎨=-⎩或68a b =⎧⎨=⎩
,
因为复数z 对应的点在第三象限,
所以68a b =-⎧⎨=-⎩
,
所以68z i =--,68z i =-+, 故选:D
13.B 【分析】
利用复数代数形式的乘除运算化简,再由共轭复数的概念求得,则答案可求. 【详解】 由,
,
则的虚部是1.
故选:.
解析:B
【分析】 利用复数代数形式的乘除运算化简,再由共轭复数的概念求得z ,则答案可求.
【详解】
由(12)43i z i +=+, 得43(43)(12)105212(12)(12)5
i i i i z i i i i ++--====-++-, ∴2z i =+, 则z 的虚部是1.
故选:B .
14.A
【分析】
由复数的除法求出,然后得出,由复数的几何意义得结果.
【详解】
由已知,
,对应点为,在第一象限,
故选:A.
解析:A
【分析】
由复数的除法求出z i =-,然后得出2z +,由复数的几何意义得结果.
【详解】 由已知(1)(1)(1)(1)
i i z i i i --==-+-, 222z i i +=-+=+,对应点为(2,1),在第一象限,
故选:A.
15.B
【分析】
利用复数除法运算求得,再求得.
【详解】
依题意,
所以.
故选:B
【分析】
利用复数除法运算求得z,再求得z.【详解】
依题意
()
()()
12221 121212555
i i
i i
z i
i i i
-+
====+ ++-
,
所以
5
z==
故选:B
二、多选题
16.AC
【分析】
根据复数的运算及复数的概念即可求解. 【详解】
因为复数,
所以z的虚部为1,,
故AC错误,BD正确.
故选:AC
解析:AC
【分析】
根据复数的运算及复数的概念即可求解.
【详解】
因为复数
20204505
11()22(1)
1 1112
i i i
z i
i i i
+++
=====+ ---
,
所以z的虚部为1,||z=
故AC错误,BD正确.
故选:AC
17.BC
【分析】
分、、三种情况讨论,可判断AB选项的正误;利用复数的模长公式可判断C选项的正误;化简复数,利用复数的概念可判断D选项的正误.
【详解】
对于AB选项,当时,,,此时复数在复平面内的点
解析:BC
【分析】
分02θπ-<<、0θ=、02
πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数
1z ,利用复数的概念可判断D 选项的正误. 【详解】
对于AB 选项,当02θπ-
<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;
当0θ=时,1z R =-∈; 当02π
θ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.
A 选项错误,
B 选项正确;
对于C 选项,1z ==,C 选项正确;
对于D 选项,()()
11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数
1z
的虚部为sin θ-,D 选项错误. 故选:BC. 18.CD
【分析】
取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.
【详解】
对于A 选项,取,则,A 选项错误;
对于B 选项,复数的虚部为,B 选项错误;
解析:CD
【分析】
取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.
【详解】
对于A 选项,取z i ,则210z =-<,A 选项错误;
对于B 选项,复数z 的虚部为y ,B 选项错误;
对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;
对于D 选项,z =
D 选项正确.
故选:CD.
【点睛】
本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基
础题.
19.BD
【分析】
把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.
【详解】
解:,
,A错误;
,B正确;
z的共轭复数为,C错误;
z的虚部为,D正确.
故选:BD.
【点
解析:BD
【分析】
把
2
1i
z=
-+
分子分母同时乘以1i
--,整理为复数的一般形式,由复数的基本知识进行判
断即可.【详解】
解:
22(1)
1
1(1)(1)
i
z i
i i i
--
===--
-+-+--
,
||z
∴=A错误;
22i
z=,B正确;
z的共轭复数为1i
-+,C错误;
z的虚部为1-,D正确.
故选:BD.
【点睛】
本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.
20.AD
【分析】
由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.
【详解】
解:由知,,即
,所以的实部为,A正确;的虚部为-2,B错误;
,C错误;,D正确;
故选:A
解析:AD
【分析】
由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.
【详解】 解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313
i i i z i i ---=-=+ 39263213
i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;
32z i =-+,C 错误;||z =
=D 正确; 故选:AD.
【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.
21.BC
【分析】
先利用复数的运算求出复数z ,然后逐个分析判断即可
【详解】
解:由,得,
所以z 的实部为1,,,
故选:BC
【点睛】
此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC
【分析】
先利用复数的运算求出复数z ,然后逐个分析判断即可
【详解】
解:由()1z i i +=,得2(1)2(1)1(1)(1)2
i i z i i i --====-+-, 所以z 的实部为1,1z i =+,22z i =-,
故选:BC
【点睛】
此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题
22.AD
【分析】
先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.
【详解】
,故,故A 正确.
的虚部为,故B 错,,故C 错,
在复平面内对应的点为,故D 正确.
故选:AD.
【点睛】
本题考
解析:AD
【分析】
先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.
【详解】
()()32232474725555
i i i i i z i ++++====+-,故4755i z =-,故A 正确.
z 的虚部为75,故B 错,355
z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭
,故D 正确. 故选:AD.
【点睛】
本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.
23.AD
【分析】
利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.
【详解】
利用复数的相关概念可判断A 正确;
对于B 选项,对应的
解析:AD
【分析】
利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.
【详解】
利用复数的相关概念可判断A 正确;
对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;
对于C 选项,122+=+z z i ,则12z z +==,故C 错;
对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z =
=D 正确.
故选:AD
【点睛】
本题考查复数的相关概念及复数的计算,较简单. 24.BD
【分析】
因为复数满足,利用复数的除法运算化简为,再逐项验证判断.
【详解】
因为复数满足,
所以
所以,故A 错误;
,故B 正确;
复数的实部为 ,故C 错误;
复数对应复平面上的点在第二象限
解析:BD
【分析】
因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-
+,再逐项验证判断. 【详解】
因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55
i i i z i i i i +===-+--+
所以z ==,故A 错误; 1255
z i =-
-,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,
55⎛⎫- ⎪⎝⎭
在第二象限,故D 正确. 故选:BD
【点睛】
本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题. 25.ABC
【分析】
首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求
逐一求解判断即可.
【详解】
因为,
对于A :的虚部为,正确;
对于B :模长,正确;
对于C :因为,故为纯虚数,
解析:ABC
【分析】
首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.
【详解】 因为()()()2122211i 1i 12
i i z i i --====-++-, 对于A :z 的虚部为1-,正确;
对于B :模长z =
对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;
对于D :z 的共轭复数为1i +,错误.
故选:ABC .
【点睛】
本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.
26.AB
【分析】
利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.
【详解】
对于选项A ,∵,且,根据复数相等的性质,则,故正确;
对于选项B ,
解析:AB
【分析】
利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.
【详解】
对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;
对于选项B ,∵虚数不能比较大小,故正确;
对于选项C ,∵若复数1=z i ,2=1z 满足2212
0z z +=,则120z z ≠≠,故不正确;
对于选项D ,∵复数()2
=1i --,故不正确;
故选:AB .
【点睛】
本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 27.AC
【分析】
利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式
解析:AC
【分析】
利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.
【详解】
对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,
所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;
对于B 选项,解方程210x +=得x i =±,B 选项错误;
对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.
反之,取()3f x x =,()2
3f x x '=,当()1,1x ∈-时,()0f x '≥, 此时,函数()y f x =在区间()1,1-上单调递增,
即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.
所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.
C 选项正确;
对于D 选项,()11172488
f x x x ++=
==,()1878f x x -'∴=,D 选项错误. 故选:AC.
【点睛】
本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 28.CD
【分析】
根据复数的四则运算,整理复数,再逐一分析选项,即得.
【详解】
由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一
解析:CD
【分析】
根据复数的四则运算,整理复数z ,再逐一分析选项,即得.
【详解】 由题得,复数22(2)(1)13131(1)(1)122
i i i i z i i i i i ++++====+--+-,可得
||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22
,位于第一象限,则D 正确.综上,正确结论是CD.
故选:CD
【点睛】
本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.
29.BC
【分析】
设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.
【详解】
设,则,
则,若,则,,若,则不为纯虚数,
所以,“”是“为纯虚数”必要不充分
解析:BC
【分析】
设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.
【详解】
设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;
22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条
件.
故选:BC.
【点睛】
本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.
30.BC
【分析】
根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.
【详解】
当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由
解析:BC
【分析】
根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.
【详解】
当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则
a bi a bi +=-,因此0
b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1
||2z =得2214
a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于
12,D 错误. 故选:BC
【点睛】
本小题主要考查复数的有关知识,属于基础题.。