深泽县高中2018-2019学年高二上学期第一次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深泽县高中2018-2019学年高二上学期第一次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:[70,90),[90,110),[100,130),[130,150),估计该班级数学成绩的平均分等于()
A.112 B.114 C.116 D.120
2.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)=()
A.{5,8} B.{7,9} C.{0,1,3} D.{2,4,6}
3.如图,设全集U=R,M={x|x>2},N={0,1,2,3},则图中阴影部分所表示的集合是()
A.{3} B.{0,1} C.{0,1,2} D.{0,1,2,3}
4.如果随机变量ξ~N (﹣1,σ2),且P(﹣3≤ξ≤﹣1)=0.4,则P(ξ≥1)等于()
A.0.1 B.0.2 C.0.3 D.0.4
5.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为( )。

A3
B4
C5
D6
6.已知条件p:x2+x﹣2>0,条件q:x>a,若q是p的充分不必要条件,则a的取值范围可以是()A.a≥1 B.a≤1 C.a≥﹣1 D.a≤﹣3
7.已知平面α∩β=l,m是α内不同于l的直线,那么下列命题中错误的是()
A.若m∥β,则m∥l B.若m∥l,则m∥βC.若m⊥β,则m⊥l D.若m⊥l,则m⊥β
8.将y=cos(2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为()
A .
B .﹣
C .﹣
D .
9. 已知命题p ;对任意x ∈R ,2x 2﹣2x+1≤0;命题q :存在x ∈R ,sinx+cosx=,则下列判断:①p 且q
是真命题;②p 或q 是真命题;③q 是假命题;④¬p 是真命题,其中正确的是( ) A .①④
B .②③
C .③④
D .②④
10.已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )
A .﹣
B .﹣
C .﹣
D .﹣或﹣
11.在△ABC 中,b=,c=3,B=30°,则a=( )
A .
B .2
C .
或2
D .2
12.数列1,,,,,,,,,,…的前100项的和等于( )
A .
B .
C .
D .
二、填空题
13.如果直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行.那么a 等于 .
14.若数列{}n a 满足2
12332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为 .
15.给出下列四个命题:
①函数f (x )=1﹣2sin 2的最小正周期为2π; ②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;
③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题; ④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0.
其中正确命题的序号是 .
16.如图,是一回形图,其回形通道的宽和OB 1的长均为1,回形线与射线OA 交于A 1,A 2,A 3,…,若从点O 到点A 3的回形线为第1圈(长为7),从点A 3到点A 2的回形线为第2圈,从点A 2到点A 3的回形线为第3圈…依此类推,第8圈的长为 .
17.一质点从正四面体A ﹣BCD 的顶点A 出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB 由A 到B ,第2次运动经过棱BC 由B 到C ,第3次运动经过棱CA 由C 到A ,第4次经过棱AD 由A 到D ,…对于N ∈n *,第3n 次运动回到点A ,第3n+1次运动经过的棱与3n ﹣1次运动经过的棱异面,
第3n+2次运动经过的棱与第3n 次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为 .
18.已知n S 是数列1{}2n n -的前n 项和,若不等式1
|12
n n n S λ-+<+|对一切n N *
∈恒成立,则λ的取值范围是___________.
【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力.
三、解答题
19.已知函数f (x0=

(1)画出y=f (x )的图象,并指出函数的单调递增区间和递减区间; (2)解不等式f (x ﹣1)≤﹣.
20.已知m ∈R ,函数f (x )=(x 2+mx+m )e x . (1)若函数f (x )没有零点,求实数m 的取值范围;
(2)若函数f (x )存在极大值,并记为g (m ),求g (m )的表达式;
(3)当m=0时,求证:f (x )≥x 2+x 3

21.在等比数列{a n }中,a 3=﹣12,前3项和S 3=﹣9,求公比q .
22.已知等差数列{a n}的前n项和为S n,公差d≠0,S2=4,且a2,a5,a14成等比数列.
(Ⅰ)求数列{a n}的通项公式;
(Ⅱ)从数列{a n}中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成一个新数列{b n},记该数列的前n项和为T n,求T n的表达式.
23.已知F1,F2分别是椭圆=1(9>m>0)的左右焦点,P是该椭圆上一定点,若点P在第一象限,
且|PF1|=4,PF1⊥PF2.
(Ⅰ)求m的值;
(Ⅱ)求点P的坐标.
24.已知函数f(x)的定义域为{x|x≠kπ,k∈Z},且对定义域内的任意x,y都有f(x﹣y)=
成立,且f(1)=1,当0<x<2时,f(x)>0.
(1)证明:函数f(x)是奇函数;
(2)试求f(2),f(3)的值,并求出函数f(x)在[2,3]上的最值.
深泽县高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)
一、选择题
1.【答案】B
【解析】解:根据频率分布直方图,得;
该班级数学成绩的平均分是
=80×0.005×20+100×0.015×20
+120×0.02×20+140×0.01×20
=114.
故选:B.
【点评】本题考查了根据频率分布直方图,求数据的平均数的应用问题,是基础题目.
2.【答案】B
【解析】解:由题义知,全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},
所以C U A={2,4,6,7,9},C U B={0,1,3,7,9},
所以(C U A)∩(C U B)={7,9}
故选B
3.【答案】C
【解析】解:由图可知图中阴影部分所表示的集合∁M∩N,
∵全集U=R,M={x|x>2},N={0,1,2,3},
∴∁M={x|x≤2},
∴∁M∩N={0,1,2},
故选:C
【点评】本题主要考查集合的基本运算,根据条件确定集合的基本关系是解决本题的关键.
4.【答案】A
【解析】解:如果随机变量ξ~N(﹣1,σ2),且P(﹣3≤ξ≤﹣1)=0.4,
∵P(﹣3≤ξ≤﹣1)
=

∴P(ξ≥1)=.
【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.
5.【答案】B
【解析】由题意知x=a+b,a∈A,b∈B,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B 6.【答案】A
【解析】解:∵条件p:x2+x﹣2>0,
∴条件q:x<﹣2或x>1
∵q是p的充分不必要条件
∴a≥1
故选A.
7.【答案】D
【解析】【分析】由题设条件,平面α∩β=l,m是α内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可
【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;
B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;
C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;
D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;
综上D选项中的命题是错误的
故选D
8.【答案】D
【解析】解:将y=cos(2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数y=cos=cos(2x+φ﹣
)的图象,
∴φ﹣=kπ+,即φ=kπ+,k∈Z,则φ的一个可能值为,
故选:D.
9.【答案】D
【解析】解:∵命题p;对任意x∈R,2x2﹣2x+1≤0是假命题,
命题q:存在x∈R,sinx+cosx=是真命题,
∴①不正确,②正确,③不正确,④正确.
故选D.
10.【答案】B
【解析】解:当a >1时,f (x )单调递增,有f (﹣1)
=+b=﹣1,f (0)=1+b=0,无解; 当0<a <1时,f (x )单调递减,有f (﹣1)
==0,f (0)=1+b=﹣1,
解得
a=,b=﹣2; 所以
a+b==
﹣;
故选:B
11.【答案】C 【解析】解:∵b=,c=3,B=30°,
∴由余弦定理b 2=a 2+c 2﹣2accosB ,可得:3=9+a 2

3
,整理可得:a 2

3
a+6=0,
∴解得:
a=

2

故选:C .
12.【答案】A 【解析】
解:
=1
×
故选A .
二、填空题
13.【答案】

【解析】解:∵直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行,
∴3aa=1(1﹣2a ),解得a=﹣1或
a=, 经检验当a=﹣1时,两直线重合,应舍去
故答案为:.
【点评】本题考查直线的一般式方程和平行关系,属基础题.
14.【答案】 6,12
,2,n n a n n n n *
=⎧⎪
=+⎨≥∈⎪⎩N
【解析】【解析】()()12312n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅
11:6n a ==;
()()()
123112312:12 1n n n n a a a a a n n a a a a n n --≥⋅=++=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
故2
2:n n n a n
+≥=
15.【答案】 ①③④ .
【解析】解:①

,∴T=2π,故①正确;
②当x=5时,有x 2﹣4x ﹣5=0,但当x 2﹣4x ﹣5=0时,不能推出x 一定等于5,故“x=5”是“x 2﹣4x ﹣5=0”成立
的充分不必要条件,故②错误; ③易知命题p
为真,因为>0,故命题q 为真,所以p ∧(¬q )为假命题,故③正确;
④∵f ′(x )=3x 2﹣6x ,∴f ′(1)=﹣3,∴在点(1,f (1))的切线方程为y ﹣(﹣1)=﹣3(x ﹣1),即3x+y ﹣2=0,故④正确.
综上,正确的命题为①③④.
故答案为①③④.
16.【答案】 63 .
【解析】解:∵第一圈长为:1+1+2+2+1=7 第二圈长为:2+3+4+4+2=15
第三圈长为:3+5+6+6+3=23 …
第n 圈长为:n+(2n ﹣1)+2n+2n+n=8n ﹣1 故n=8时,第8圈的长为63, 故答案为:63.
【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第1,2,3,…圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特殊情形.
17.【答案】 D .
【解析】解:根据题意,质点运动的轨迹为:
A →
B →
C →A →
D →B →A →C →D →A
接着是→B →C →A →D →B →A →C →D →A … 周期为9.
∵质点经过2015次运动, 2015=223×9+8, ∴质点到达点D . 故答案为:D .
【点评】本题考查了函数的周期性,本题难度不大,属于基础题.
18.【答案】31λ-<<
【解析】由221111
1123(1)22
22n n n S n n
--=+⨯
+⨯++-⋅
+,2
11112222
n S =⨯+⨯+…111(1)22n n n n -+-⋅+⋅,两式相减,得2111111212222222n n n n n S n -+=++++-⋅=-,所以12
42
n n n S -+=-,
于是由不等式12
|142
n λ-+<-|对一切N n *∈恒成立,得|12λ+<|,解得31λ-<<.
三、解答题
19.【答案】
【解析】解:(1)图象如图所示:由图象可知函数的单调递增区间为 (﹣∞,0),(1,+∞), 丹迪减区间是(0,1) (2)由已知可得
或,
解得x ≤﹣1或≤x ≤, 故不等式的解集为(﹣∞,﹣1]∪ [,
].
【点评】本题考查了分段函数的图象的画法和不等式的解集的求法,属于基础题.20.【答案】
【解析】解:(1)令f(x)=0,得(x2+mx+m)e x=0,所以x2+mx+m=0.
因为函数f(x)没有零点,所以△=m2﹣4m<0,所以0<m<4.
(2)f'(x)=(2x+m)e x+(x2+mx+m)e x=(x+2)(x+m)e x,
令f'(x)=0,得x=﹣2,或x=﹣m,
当m>2时,﹣m<﹣2.列出下表:
x (﹣∞,﹣m)﹣m (﹣m,﹣2)﹣2 (﹣2,+∞)
f'(x)+0 ﹣0 +
f(x)↗me﹣m↘(4﹣m)e﹣2↗
当x=﹣m时,f(x)取得极大值me﹣m.
当m=2时,f'(x)=(x+2)2e x≥0,f(x)在R上为增函数,
所以f(x)无极大值.
当m<2时,﹣m>﹣2.列出下表:
x (﹣∞,﹣2)﹣2 (﹣2,﹣m)﹣m (﹣m,+∞)
f'(x)+0 ﹣0 +
f(x)↗(4﹣m)e﹣2↘me﹣m↗
当x=﹣2时,f(x)取得极大值(4﹣m)e﹣2,
所以
(3)当m=0时,f(x)=x2e x,令ϕ(x)=e x﹣1﹣x,则ϕ'(x)=e x﹣1,
当x>0时,φ'(x)>0,φ(x)为增函数;当x<0时,φ'(x)<0,φ(x)为减函数,
所以当x=0时,φ(x)取得最小值0.
所以φ(x)≥φ(0)=0,e x﹣1﹣x≥0,所以e x≥1+x,
因此x2e x≥x2+x3,即f(x)≥x2+x3.
【点评】本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键.
21.【答案】
【解析】解:由已知可得方程组,
第二式除以第一式得=,
整理可得q2+4q+4=0,解得q=﹣2.
22.【答案】
【解析】解:(Ⅰ)依题意得:,解得.
∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.
即a n=2n﹣1;
(Ⅱ)由已知得,.
∴T n=b1+b2+…+b n=(22﹣1)+(23﹣1)+…+(2n+1﹣1)
=(22+23+…+2n+1)﹣n=.
【点评】本题主要考查等比数列和等差数列的性质,考查了等比数列的前n项和的求法,考查了化归与转化思想方法,是中档题.
23.【答案】
【解析】解:(Ⅰ)由已知得:|PF2|=6﹣4=2,
在△PF1F2中,由勾股定理得,,
即4c2=20,解得c2=5.
∴m=9﹣5=4;
(Ⅱ)设P点坐标为(x0,y0),由(Ⅰ)知,,,
∵,,
∴,解得.
∴P().
【点评】本题考查椭圆方程的求法,考查了椭圆的简单性质,属中档题.
24.【答案】
【解析】(1)证明:函数f(x)的定义域为{x|x≠kπ,k∈Z},关于原点对称.
又f(x﹣y)=,
所以f(﹣x)=f[(1﹣x)﹣1]===
===,
故函数f(x)奇函数.
(2)令x=1,y=﹣1,则f(2)=f[1﹣(﹣1)]==,
令x=1,y=﹣2,则f(3)=f[1﹣(﹣2)]===,
∵f(x﹣2)==,
∴f(x﹣4)=,
则函数的周期是4.
先证明f(x)在[2,3]上单调递减,先证明当2<x<3时,f(x)<0,
设2<x<3,则0<x﹣2<1,
则f(x﹣2)=,即f(x)=﹣<0,
设2≤x1≤x2≤3,
则f(x1)<0,f(x2)<0,f(x2﹣x1)>0,
则f(x1)﹣f(x2)=,
∴f(x1)>f(x2),
即函数f(x)在[2,3]上为减函数,
则函数f(x)在[2,3]上的最大值为f(2)=0,最小值为f(3)=﹣1.
【点评】本题主要考查了函数奇偶性的判断,以及函数的最值及其几何意义等有关知识,综合性较强,难度较大.。

相关文档
最新文档