北票市高级中学2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北票市高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||
||
PF PA 的值最小时,PAF ∆的 面积为( )
A.
2
B.2
C.
D. 4
【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.
2.
+(a ﹣4)0有意义,则a 的取值范围是( )
A .a ≥2
B .2≤a <4或a >4
C .a ≠2
D .a ≠4
3. 设函数()()21x f x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的
取值范围是( )
A .3,12e ⎡⎫-
⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫
⎪⎢⎣⎭1111] 4. 已知抛物线C :24y x =的焦点为F ,定点(0,2)A ,若射线FA 与抛物线C 交于点M ,与抛 物线C 的准线交于点N ,则||:||MN FN 的值是( )
A .
B .
C .1:
D (1 5. 函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )
A.32
-
B.1-
C.
D.
【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用. 6. 以下四个命题中,真命题的是( ) A .2
,2x R x x ∃∈≤-
B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<
C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数
D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.
7. 在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( ) A .12 B .8
C .6
D .4
8. 已知i 是虚数单位,则复数等于( )
A .﹣ +i
B .﹣ +i
C .﹣i
D .﹣i
9. 设集合3|01x A x x -⎧⎫
=<⎨⎬+⎩⎭
,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )
A .1a ≥
B .12a ≤≤ C.a 2≥ D .12a ≤< 10.记
,那么
A
B
C D
11.设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )
A .7
B .6
C .5
D .4
12.已知曲线2
:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则O
P Q ∆的面积等于( )
A .
B .
C
D 二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.若函数2
(1)1f x x +=-,则(2)f = .
14.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC
与平面ABC所成角的正弦值为______________.
【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.
15.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围.
16.数列{ a n}中,a1=2,a n+1=a n+c(c为常数),{a n}的前10项和为S10=200,则c=________.三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)17.(本小题满分10分)选修4-1:几何证明选讲1111]
CP=.
如图,点C为圆O上一点,CP为圆的切线,CE为圆的直径,3
(1)若PE交圆O于点F,16
EF=,求CE的长;
5
⊥于D,求CD的长.
(2)若连接OP并延长交圆O于,A B两点,CD OP
18.求点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标.
19.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7. (1)求()f x 的解析式;
(2)求函数[()]f f x 的解析式并确定其定义域. 20.
(本小题满分10分)如图⊙O 经过△ABC 的点B ,C 与AB 交于E ,与AC 交于F ,且AE =AF . (1)求证EF ∥BC ;
(2)过E 作⊙O 的切线交AC 于D ,若∠B =60°,EB =EF =2,求ED 的长.
21.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,已知k sin B =sin A +sin C (k 为正常数),a =4c .
(1)当k =5
4
时,求cos B ;
(2)若△ABC 面积为3,B =60°,求k 的值.
22.已知数列{a n}和{b n}满足a1•a2•a3…a n=2(n∈N*),若{a n}为等比数列,且a1=2,b3=3+b2.(1)求a n和b n;
(2)设c n=(n∈N*),记数列{c n}的前n项和为S n,求S n.
北票市高级中学2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1.【答案】B
【解析】设
2
(,)
4
y
P y
,则
2
1
||
||
y
PF
PA
+
=.又设
2
1
4
y
t
+=,则244
y t
=-,1
t…
,所以
||
||2
PF
PA
==,当且仅当2
t=,即2
y=±时,等号成立,此时点(1,2)
P±,PAF
∆的面积为
11
||||222
22
AF y
⋅=⨯⨯=,故选B.
2.【答案】B
【解析】
解:∵+(a﹣4)0有意义,
∴,
解得2≤a<4或a>4.
故选:B.
3.【答案】D
【解析】
考点:函数导数与不等式.1
【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令()0
f x=将函数变为两个函数()()()
21,
x
g x e x h x ax a
=-=-,将题意中的“存在唯一整数,使得()
g t在直线()
h x的下方”,转化为存在唯一的整数,使得()
g t在直线()
h x ax a
=-的下方.利用导数可求得函数的极值,由此可求得m的取值
范围.
4. 【答案】D 【解析】
考点:1、抛物线的定义; 2、抛物线的简单性质.
【 方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.本题就是将M 到焦点的距离转化为到准线的距离后进行解答的. 5. 【答案】D
【解析】易知周期112()1212T π5π=-=π,∴22T ωπ==.由52212k ϕπ⨯+=π(k ∈Z ),得526
k ϕπ
=-+π
(k Z ∈),可得56ϕπ=-,所以5()2cos(2)6f x x π=-
,则5(0)2cos()6
f π
=-=,故选D. 6. 【答案】D
7.【答案】B
【解析】解:展开式通项公式为T r+1=•(﹣1)r•x3n﹣4r,
则∵二项式(x3﹣)n(n∈N*)的展开式中,常数项为28,
∴,
∴n=8,r=6.
故选:B.
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
8.【答案】A
【解析】解:复数===,
故选:A.
【点评】本题考查了复数的运算法则,属于基础题.
9.【答案】A
【解析】
考点:集合的包含关系的判断与应用.
【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键. 10.【答案】B
【解析】【解析1】,
所以
【解析2】,
11.【答案】D
【解析】解:由题意,S k+2﹣S k=,
即3×2k=48,2k=16,
∴k=4.
故选:D.
【点评】本题考查等比数列的通项公式,考查了等比数列的前n项和,是基础题.
12.【答案】C
【解析】
∴1122(1,)2(1,)(0,0)x y x y -+-=, ∴1220y y +=③, 联立①②③可得2
18
m =,
∴12y y -==.
∴12122
S OF y y =
-=
. (由1212420y y y y =-⎧⎨+=⎩
,得12y y ⎧=⎪⎨=⎪⎩
12y y ⎧=-⎪⎨=⎪⎩
考点:抛物线的性质.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】0 【解析】
111]
考点:函数的解析式. 14.
【
解
析
】
15.【答案】[,1].
【解析】解:设两个向量的夹角为θ,
因为|2﹣|=1,|﹣2|=1,
所以,,
所以,=
所以5=1,所以,所以5a2﹣1∈[],
[,1],
所以;
故答案为:[,1].
【点评】本题考查了向量的模的平方与向量的平方相等的运用以及通过向量的数量积定义,求向量数量积的范围.
16.【答案】
【解析】解析:由a 1=2,a n +1=a n +c ,知数列{a n }是以2为首项,公差为c 的等差数列,由S 10=200得 10×2+10×9
2×c =200,∴c =4.
答案:4
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.【答案】(1)4CE =;(2)13
CD =. 【解析】
试题分析:(1)由切线的性质可知ECP ∆∽EFC ∆,由相似三角形性质知::EF CE CE EP =,可得4CE =;(2)由切割线定理可得2
(4)CP BP BP =+,求出,BP OP ,再由CD OP OC CP ⋅=⋅,求出CD 的值. 1 试题解析:
(1)因为CP 是圆O 的切线,CE 是圆O 的直径,所以CP CE ⊥,0
90CFE ∠=,所以ECP ∆∽EFC ∆,
设CE x =,EP =,又因为ECP ∆∽EFC ∆,所以::EF CE CE EP =,
所以2
x =
4x =.
考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质. 18.【答案】
【解析】解:设点A (3,﹣2)关于直线l :2x ﹣y ﹣1=0的对称点A ′的坐标为(m ,n ),
则线段A ′A 的中点B (
,
),
由题意得B 在直线l :2x ﹣y ﹣1=0上,故 2×
﹣
﹣1=0 ①.
再由线段A ′A 和直线l 垂直,斜率之积等于﹣1得 ×=﹣1 ②,
解①②做成的方程组可得:
m=﹣
,n=,
故点A ′的坐标为(﹣,).
【点评】本题考查求一个点关于直线的对称点的坐标的方法,注意利用垂直及中点在轴上两个条件.
19.【答案】(1)()5f x x =+,[]3,2x ∈-;(2)[]()10f f x x =+,{}3x ∈-. 【
解
析
】
试
题解析:
(1)设()(0)f x kx b k =+>,111] 由题意有:32,27,k b k b -+=⎧⎨
+=⎩解得1,5,k b =⎧⎨=⎩
∴()5f x x =+,[]3,2x ∈-. (2)(())(5)10f f x f x x =+=+,{}3x ∈-.
考点:待定系数法. 20.【答案】
【解析】解:(1)证明:∵AE =AF , ∴∠AEF =∠AFE .
又B ,C ,F ,E 四点共圆, ∴∠ABC =∠AFE ,
∴∠AEF =∠ACB ,又∠AEF =∠AFE ,∴EF ∥BC . (2)由(1)与∠B =60°知△ABC 为正三角形, 又EB =EF =2, ∴AF =FC =2,
设DE =x ,DF =y ,则AD =2-y , 在△AED 中,由余弦定理得 DE 2=AE 2+AD 2-2AD ·AE cos A .
即x 2=(2-y )2+22-2(2-y )·2×1
2,
∴x 2-y 2=4-2y ,①
由切割线定理得DE 2=DF ·DC , 即x 2=y (y +2), ∴x 2-y 2=2y ,②
由①②联解得y =1,x =3,∴ED = 3. 21.【答案】
【解析】解:(1)∵54sin B =sin A +sin C ,由正弦定理得5
4
b =a +
c ,
又a =4c ,∴5
4b =5c ,即b =4c ,
由余弦定理得cos B =a 2+c 2-b 22ac =(4c )2+c 2-(4c )22×4c ·c =1
8.
(2)∵S △ABC =3,B =60°.
∴1
2
ac sin B = 3.即ac =4. 又a =4c ,∴a =4,c =1.
由余弦定理得b 2=a 2+c 2-2ac cos B =42+12-2×4×1×1
2=13.
∴b =13,
∵k sin B =sin A +sin C ,
由正弦定理得k =a +c b =513
=513
13,
即k 的值为513
13.
22.【答案】
【解析】解:(1)设等比数列{a n }的公比为q ,∵数列{a n }和{b n }满足a 1•a 2•a 3…a n =2(n ∈N *
),a 1=2,
∴,,
,
∴b 1=1,
=2q >0,
=2q 2,
又b 3=3+b 2.∴23=2q 2
,解得q=2. ∴a n =2n
.
∴=a 1•a 2•a 3…a n =2×22×…×2n =
,
∴
.
(2)c n =
==﹣
=
,
∴数列{c n }的前n 项和为S n =
﹣
+…+
=﹣2
=﹣2+
=
﹣
﹣1.
【点评】本题考查了等差数列与等比数列的通项公式及其前n 项和公式、递推式的应用、“裂项求和”,考查了推理能力与计算能力,属于中档题.。