结构健康监测常用的信号处理方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SHM 中常用的信号处理方式
一、 信号处理方法
时频分析方法
时频分析最早是从傅里叶变换开始,傅里叶变换提供了信号从时域到频域的变换,从而得知信号的频率信息。
由于傅里叶频谱只有频率信息,没有时间信息,因此只适用于时不变信号,也即平稳信号,平稳信号指的是在不同时间进行采样,其统计信号不变,比如典型的正弦函数信号。
自然界的信号几乎都是时变信号,也即非平稳信号。
随机信号多半是时变信号,对于时变信号,传统的傅里叶变换已经无法满足分析的需求。
因而先后发明了短时傅里叶变换,小波变换,小波包变换,希尔伯特黄变换等进阶的时频分析方法。
1) 小波分析(wavelet transform )
原始信号被分解为多个分量的叠加:3123=+++S A D D D ,若分解层数为n ,则分解
的子信号个数等于n+1。
小波变换可以实现全局范围内,时频分辨率的变化,具体来说,在低频范围内,提高频率分辨率,在高频范围内提高时间分辨率,但是仍然收到测不准原理的制约。
基函数需要人为选择。
2) 小波包分析(wavelet packet transform )
小波包分析与小波变换的区别在于:小波包分解,高频分量在每一级也进行分解。
若分解层数为n ,则分解的子信号个数等于2的n 次方。
3)短时傅里叶变换(short-time Fourier transform)
STFT可以体现信号频率随时间变换的关系,但是时间分辨率和频率分辨率二者不可兼得。
在全局范围内,STFT的时频分辨率是相等的。
4)分数阶傅里叶变换(Fractional Fourier transform)
分数阶傅里叶变换与傅里叶变换的区别:傅里叶变换是将对信号的观察角度从时域转换到频域,分数阶傅里叶变换是将时频面转动一个角度,再观察频域信息,旋转角度以分数表示,取值在0-1,若取为1,则等于传统的傅里叶变换。
5)希尔伯特黄变换(Hilbert Huang transform,HHT)
希尔伯特黄变换是基于希尔伯特变换的基础上提出的,经验模态分解(EMD)或者先给信号加白噪声再经验模态分解(EEMD)之后进行希尔伯特变换就是希尔伯特黄变换。
其优点是自适应。
6)隐马尔可夫链(Hidden Markov chain)
包含隐状态和显状态,隐状态之间存在转换概率,显状态是观测到的值。
用于健康检测当中,具体的应用场景:通过一系列的观察值,推测对应的隐状态,也即结构的损伤状态。
对于隐马尔可夫,一个简单的例子:
掷色子,隐状态是色子的类别,显状态是掷出来的数字序列;
1)知道骰子有几种(隐含状态数量),每种骰子是什么(转换概率),根据
掷骰子掷出的结果(可见状态链),我想知道每次掷出来的都是哪种骰子(隐
含状态链)。
这个问题呢,在语音识别领域呢,叫做解码问题。
这个问题其实有两种解法,会给出两个不同的答案。
每个答案都对,只不过这些答案的意义不一样。
第一种解法求最大似然状态路径,说通俗点呢,就是我求一串骰子序列,这串骰子序列产生观测结果的概率最大。
第二种解法呢,就不是求一组骰子序列了,而是求每次掷出的骰子分别是某种骰子的概率。
比如说我看到结果后,我可以求得第一次掷骰子是D4的概率是0.5,D6的概率是0.3,D8的概率是0.2.第一种解法我会在下面说到,但是第二种解法我就不写在这里了,如果大家有兴趣,我们另开一个问题继续写吧。
2)还是知道骰子有几种(隐含状态数量),每种骰子是什么(转换概率),根据掷骰子掷出的结果(可见状态链),我想知道掷出这个结果的概率。
看似这个问题意义不大,因为你掷出来的结果很多时候都对应了一个比较大的概率。
问这个问题的目的呢,其实是检测观察到的结果和已知的模型是否吻合。
如果很多次结果都对应了比较小的概率,那么就说明我们已知的模型很有可能是错的,有人偷偷把我们的骰子給换了。
3)知道骰子有几种(隐含状态数量),不知道每种骰子是什么(转换概率),观测到很多次掷骰子的结果(可见状态链),我想反推出每种骰子是什么(转换概率)。
这个问题很重要,因为这是最常见的情况。
很多时候我们只有可见结果,不知道HMM模型里的参数,我们需要从可见结果估计出这些参数,这是建模的一个必要步骤。