2020-2021中考数学易错题专题复习-平行四边形练习题及详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021中考数学易错题专题复习-平行四边形练习题及详细答案
一、平行四边形
1.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;
(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由
(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.
【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62
或
23
.
【解析】
【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;
(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;
(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.
【详解】(1)如图1中,延长EO交CF于K,
∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,
∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,
∵△EFK是直角三角形,∴OF=1
2
EK=OE;
(2)如图2中,延长EO交CF于K,
∵∠ABC=∠AEB=∠CFB=90°,
∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,
∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,
∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,
∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;
(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,
∵|CF﹣AE|=2,3AE=CK,∴FK=2,
在Rt△EFK中,tan∠3
∴∠FEK=30°,∠EKF=60°,
∴EK=2FK=4,OF=1
2
EK=2,
∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,
在Rt△PHF中,PH=1
2
PF=1,3OH=23
∴()2
2
12362
+-=
如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°,
∴∠BOP=90°,
∴OP=33OE=233
, 综上所述:OP 的长为62 或
233. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.
2.如图,△ABC 中,AD 是边BC 上的中线,过点A 作AE ∥BC ,过点D 作DE ∥AB ,DE 与AC 、AE 分别交于点O 、点E ,连接EC .
(1)求证:AD=EC ;
(2)当∠BAC=Rt ∠时,求证:四边形ADCE 是菱形.
【答案】(1)见解析;
(2)见解析.
【解析】
【分析】
(1)先证四边形ABDE 是平行四边形,再证四边形ADCE 是平行四边形即可; (2)由∠BAC =90°,AD 是边BC 上的中线,得AD =BD =CD ,即可证明.
【详解】
(1)证明:∵AE ∥BC ,DE ∥AB ,
∴四边形ABDE 是平行四边形,
∴AE =BD ,
∵AD 是边BC 上的中线,
∴BD =DC ,
∴AE =DC ,
又∵AE ∥BC ,
∴四边形ADCE 是平行四边形.
(2) 证明:∵∠BAC=90°,AD是边BC上的中线.
∴AD=CD
∵四边形ADCE是平行四边形,
∴四边形ADCE是菱形.
【点睛】
本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.
3.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.
①求证:四边形BFDE是菱形;
②直接写出∠EBF的度数;
(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;
(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.
【答案】(1)①详见解析;②60°.(2)IH=3FH;(3)EG2=AG2+CE2.
【解析】
【分析】
(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.
②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.
(2)IH=3FH.只要证明△IJF是等边三角形即可.
(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.
【详解】
(1)①证明:如图1中,
∵四边形ABCD 是矩形,
∴AD ∥BC ,OB =OD ,
∴∠EDO =∠FBO ,
在△DOE 和△BOF 中,
EDO FBO OD OB
EOD BOF ∠∠⎧⎪⎨⎪∠∠⎩
=== , ∴△DOE ≌△BOF ,
∴EO =OF ,∵OB =OD ,
∴四边形EBFD 是平行四边形,
∵EF ⊥BD ,OB =OD ,
∴EB =ED ,
∴四边形EBFD 是菱形.
②∵BE 平分∠ABD ,
∴∠ABE =∠EBD ,
∵EB =ED ,
∴∠EBD =∠EDB ,
∴∠ABD =2∠ADB ,
∵∠ABD +∠ADB =90°,
∴∠ADB =30°,∠ABD =60°,
∴∠ABE =∠EBO =∠OBF =30°,
∴∠EBF =60°.
(2)结论:IH
=3FH .
理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .
∵四边形EBFD 是菱形,∠B =60°,
∴EB =BF =ED ,DE ∥BF ,
∴∠JDH =∠FGH ,
在△DHJ 和△GHF 中,
DHG GHF DH GH
JDH FGH ∠∠⎧⎪⎨⎪∠∠⎩
=== , ∴△DHJ ≌△GHF ,
∴DJ =FG ,JH =HF ,
∴EJ =BG =EM =BI ,
∴BE =IM =BF ,
∵∠MEJ =∠B =60°,
∴△MEJ 是等边三角形,
∴MJ =EM =NI ,∠M =∠B =60°
在△BIF 和△MJI 中,
BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩
===,
∴△BIF ≌△MJI ,
∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,
∴IH ⊥JF ,
∵∠BFI +∠BIF =120°,
∴∠MIJ +∠BIF =120°,
∴∠JIF =60°,
∴△JIF 是等边三角形,
在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,
∴∠FIH =30°,
∴IH
=3FH .
(3)结论:EG 2=AG 2+CE 2.
理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,
∵∠FAD +∠DEF =90°,
∴AFED 四点共圆,
∴∠EDF =∠DAE =45°,∠ADC =90°,
∴∠ADF +∠EDC =45°,
∵∠ADF =∠CDM ,
∴∠CDM +∠CDE =45°=∠EDG ,
在△DEM 和△DEG 中,
DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩
=== , ∴△DEG ≌△DEM ,
∴GE =EM ,
∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,
∴∠ECM=90°
∴EC2+CM2=EM2,
∵EG=EM,AG=CM,
∴GE2=AG2+CE2.
【点睛】
考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.
4.如图,在平面直角坐标系中,直线DE交x轴于点E(30,0),交y轴于点D(0,
40),直线AB:y=1
3
x+5交x轴于点A,交y轴于点B,交直线DE于点P,过点E作
EF⊥x轴交直线AB于点F,以EF为一边向右作正方形EFGH.
(1)求边EF的长;
(2)将正方形EFGH沿射线FB的方向以每秒10个单位的速度匀速平移,得到正方形E1F1G1H1,在平移过程中边F1G1始终与y轴垂直,设平移的时间为t秒(t>0).
①当点F1移动到点B时,求t的值;
②当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与△APE 重叠部分的面积.
【答案】(1)EF=15;(2)①10;②120;
【解析】
【分析】
(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-4
3
x+40,可
求出P点坐标,进而求出F点坐标即可;
(2)①易求B(0,5),当点F1移动到点B时,1010=10;
②F点移动到F'10t,F垂直x轴方向移动的距离是t,当点H运动到直线DE
上时,在Rt△F'NF中,NF
NF'
=
1
3
,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,
4
3
MH
EM
'
=,
t=4,S=1
2
×(12+
45
4
)×11=
1023
8
;当点G运动到直线DE上时,在Rt△F'PK中,
PK
F K'
=
1
3
,
PK=t-3,F'K=3t-9,在Rt△PKG'中,PK
KG'
=
3
15
39
t
t
-
-+
=
4
3
,t=7,S=15×(15-7)=120.【详解】
(1)设直线DE的直线解析式y=kx+b,
将点E(30,0),点D(0,40),
∴
300
40
k b
b
+=
⎧
⎨
=
⎩
,
∴
4
3
40
k
b
⎧
=-
⎪
⎨
⎪=
⎩
,
∴y=﹣4
3
x+40,
直线AB与直线DE的交点P(21,12),
由题意知F(30,15),
∴EF=15;
(2)①易求B(0,5),
∴BF=1010,
∴当点F1移动到点B时,t=101010
÷=10;
②当点H运动到直线DE上时,
F点移动到F'10,
在Rt△F'NF中,
NF
NF'
=
1
3
,
∴FN=t,F'N=3t,
∵MH'=FN=t,
EM=NG'=15﹣F'N=15﹣3t,
在Rt△DMH'中,
4
3
MH
EM
'
=,
∴4
1533
t
t
=
-
,
∴t =4,
∴EM =3,MH'=4,
∴S =1451023(12)11248
⨯+⨯=; 当点G 运动到直线DE 上时,
F 点移动到F'10,
∵PF =10
∴PF'10t ﹣10,
在Rt △F'PK 中,
13
PK F K =', ∴PK =t ﹣3,F'K =3t ﹣9,
在Rt △PKG'中,
PK KG '=31539t t --+=43
, ∴t =7,
∴S =15×(15﹣7)=120.
【点睛】
本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键.
5.如图1,在△ABC 中,AB =AC ,AD ⊥BC 于D ,分别延长AC 至E ,BC 至F ,且CE =EF ,延长FE 交AD 的延长线于G .
(1)求证:AE =EG ;
(2)如图2,分别连接BG ,BE ,若BG =BF ,求证:BE =EG ;
(3)如图3,取GF 的中点M ,若AB =5,求EM 的长.
【答案】(1)证明见解析(2)证明见解析(3)5 2
【解析】
【分析】
(1)根据平行线的性质和等腰三角形的三线合一的性质得:∠CAD=∠G,可得AE=EG;(2)作辅助线,证明△BEF≌△GEC(SAS),可得结论;
(3)如图3,作辅助线,构建平行线,证明四边形DMEN是平行四边形,得EM=DN=
1
2
AC,计算可得结论.
【详解】
证明:(1)如图1,过E作EH⊥CF于H,
∵AD⊥BC,
∴EH∥AD,
∴∠CEH=∠CAD,∠HEF=∠G,
∵CE=EF,
∴∠CEH=∠HEF,
∴∠CAD=∠G,
∴AE=EG;
(2)如图2,连接GC,
∵AC =BC ,AD ⊥BC ,
∴BD =CD ,
∴AG 是BC 的垂直平分线,
∴GC =GB ,
∴∠GBF =∠BCG ,
∵BG =BF ,
∴GC =BE ,
∵CE =EF ,
∴∠CEF =180°﹣2∠F ,
∵BG =BF ,
∴∠GBF =180°﹣2∠F ,
∴∠GBF =∠CEF ,
∴∠CEF =∠BCG ,
∵∠BCE =∠CEF+∠F ,∠BCE =∠BCG+∠GCE ,
∴∠GCE =∠F ,
在△BEF 和△GCE 中,
CE GCE F CG BF EF =⎧⎪∠=∠⎨⎪=⎩
Q , ∴△BEF ≌△GEC (SAS ),
∴BE =EG ;
(3)如图3,连接DM ,取AC 的中点N ,连接DN ,
由(1)得AE=EG,
∴∠GAE=∠AGE,
在Rt△ACD中,N为AC的中点,
∴DN=1
AC=AN,∠DAN=∠ADN,
2
∴∠ADN=∠AGE,
∴DN∥GF,
在Rt△GDF中,M是FG的中点,
∴DM=1
FG=GM,∠GDM=∠AGE,
2
∴∠GDM=∠DAN,
∴DM∥AE,
∴四边形DMEN是平行四边形,
∴EM=DN=1
AC,
2
∵AC=AB=5,
∴EM=5
.
2
【点睛】
本题是三角形的综合题,主要考查了全等三角形的判定与性质,直角三角形斜边中线的性质,等腰三角形的性质和判定,平行四边形的性质和判定等知识,解题的关键是作辅助线,并熟练掌握全等三角形的判定方法,特别是第三问,辅助线的作法是关键.
6.如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.
【答案】见解析.
【解析】
【分析】
延长BF,交DA的延长线于点M,连接BD,进而求证△AFM≌△EFB,得AM=BE,
FB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一的性质即可求证BF⊥DF.
【详解】
延长BF,交DA的延长线于点M,连接BD.
∵四边形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,
∴△AFM≌△EFB,∴AM=BE,FB=FM.
∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.
∵CE=AC,∴AC=CE= BD =DM.
∵FB=FM,∴BF⊥DF.
【点睛】
本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB=DM是解题的关键.
7.如图①,在矩形ABCD中,点P从AB边的中点E出发,沿着E B C
--速运动,速度为每秒2个单位长度,到达点C后停止运动,点Q是AD上的点,10
AQ=,设PAQ
∆的面积为y,点p运动的时间为t秒,y与t的函数关系如图②所示.
(1)图①中AB= ,BC= ,图②中m= .
(2)当t=1秒时,试判断以PQ为直径的圆是否与BC边相切?请说明理由:
(3)点p在运动过程中,将矩形沿PQ所在直线折叠,则t为何值时,折叠后顶点A的对应点A'落在矩形的一边上.
【答案】(1)8,18,20;(2)不相切,证明见解析;(3)t=1
2
、5、
17
3
.
【解析】
【分析】
(1)由题意得出AB=2BE,t=2时,BE=2×2=4,求出AB=2BE=8,AE=BE=4,t=11时,
2t=22,得出BC=18,当t=0时,点P在E处,m=△AEQ的面积=1
2
AQ×AE=20即可;
(2)当t=1时,PE=2,得出AP=AE+PE=6,由勾股定理求出34PQ为直径的圆的圆心为O',作O'N⊥BC于N,延长NO'交AD于M,则MN=AB=8,O'M∥AB,
MN=AB=8,由三角形中位线定理得出O'M=1
2
AP=3,求出O'N=MN-O'M=5<圆O'的半径,
即可得出结论;
(3)分三种情况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,则
QF=AB=8,BF=AQ=10,由折叠的性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,由勾股定
理求出A'F=22
AQ QF
'-=6,得出A'B=BF-A'F=4,在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,由勾股定理得出方程,解方程即可;
②当点P在BC边上,A'落在BC边上时,由折叠的性质得:A'P=AP,证出∠APQ=∠AQP,得出AP=AQ=A'P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可;
③当点P在BC边上,A'落在CD边上时,由折叠的性质得:A'P=AP,A'Q=AQ=10,在
Rt△DQA'中,DQ=AD-AQ=8,由勾股定理求出DA'=6,得出A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=22-2t,由勾股定理得出方程,解方程即可.
【详解】
(1)∵点P从AB边的中点E出发,速度为每秒2个单位长度,
∴AB=2BE,
由图象得:t=2时,BE=2×2=4,
∴AB=2BE=8,AE=BE=4,
t=11时,2t=22,
∴BC=22-4=18,
当t=0时,点P在E处,m=△AEQ的面积=1
2
AQ×AE=
1
2
×10×4=20;
故答案为8,18,20;
(2)当t=1秒时,以PQ为直径的圆不与BC边相切,理由如下:
当t=1时,PE=2,
∴AP=AE+PE=4+2=6,
∵四边形ABCD是矩形,
∴∠A=90°,
∴PQ=2222
106234
AQ AP
+=+=,
设以PQ为直径的圆的圆心为O',作O'N⊥BC于N,延长NO'交AD于M,如图1所示:
则MN=AB=8,O'M∥AB,MN=AB=8,
∵O'为PQ的中点,
∴O''M是△APQ的中位线,
∴O'M=1
2
AP=3,
∴O'N=MN-O'M=534
∴以PQ为直径的圆不与BC边相切;
(3)分三种情况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,如图2所示:
则QF=AB=8,BF=AQ=10,
∵四边形ABCD是矩形,
∴∠A=∠B=∠BCD=∠D=90°,CD=AB=8,AD=BC=18,
由折叠的性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,
∴A'F=22
AQ QF
'-=6,
∴A'B=BF-A'F=4,
在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,
由勾股定理得:42+(4-2t)2=(4+2t)2,
解得:t=1
2
;
②当点P在BC边上,A'落在BC边上时,连接AA',如图3所示:
由折叠的性质得:A'P=AP,
∴∠APQ'=∠A'PQ,
∵AD∥BC,
∴∠AQP=∠A'PQ,
∴∠APQ=∠AQP,
∴AP=AQ=A'P=10,
在Rt△ABP中,由勾股定理得:22
108
-,
又∵BP=2t-4,
∴2t-4=6,解得:t=5;
③当点P在BC边上,A'落在CD边上时,连接AP、A'P,如图4所示:
由折叠的性质得:A'P=AP,A'Q=AQ=10,
在Rt△DQA'中,DQ=AD-AQ=8,
由勾股定理得:DA'=22
108
=6,
∴A'C=CD-DA'=2,
在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t,由勾股定理得:AP2=82+(2t-4)2,A'P2=22+(22-2t)2,
∴82+(2t-4)2=22+(22-2t)2,
解得:t=17
3
;
综上所述,t为1
2
或5或
17
3
时,折叠后顶点A的对应点A′落在矩形的一边上.
【点睛】
四边形综合题目,考查了矩形的性质、折叠变换的性质、勾股定理、函数图象、直线与圆的位置关系、三角形中位线定理、等腰三角形的判定、以及分类讨论等知识.
8.猜想与证明:
如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.
拓展与延伸:
(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.
(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立.
【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.
【解析】
试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据
RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.
试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,
又∵∠FME=∠AMH,FM=AM,
在△FME和△AMH中,
∴△FME≌△AMH(ASA)
∴HM=EM,
在RT△HDE中,HM=DE,
∴DM=HM=ME,
∴DM=ME.
(1)、如图1,延长EM交AD于点H,
∵四边形ABCD和CEFG是矩形,
∴AD∥EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,FM=AM,
在△FME和△AMH中,
∴△FME≌△AMH(ASA)
∴HM=EM ,
在RT △HDE 中,HM=EM
∴DM=HM=ME ,
∴DM=ME ,
(2)、如图2,连接AE ,
∵四边形ABCD 和ECGF 是正方形,
∴∠FCE=45°,∠FCA=45°,
∴AE 和EC 在同一条直线上,
在RT △ADF 中,AM=MF ,
∴DM=AM=MF ,
在RT △AEF 中,AM=MF ,
∴AM=MF=ME ,
∴DM=ME .
考点:(1)、三角形全等的性质;(2)、矩形的性质.
9.问题情境
在四边形ABCD 中,BA =BC ,DC ⊥AC ,过点D 作DE ∥AB 交BC 的延长线于点E ,M 是边AD 的中点,连接MB ,ME.
特例探究
(1)如图1,当∠ABC =90°时,写出线段MB 与ME 的数量关系,位置关系;
(2)如图2,当∠ABC =120°时,试探究线段MB 与ME 的数量关系,并证明你的结论; 拓展延伸
(3)如图3,当∠ABC =α时,请直接用含α的式子表示线段MB 与ME 之间的数量关系.
【答案】(1)MB =ME ,MB ⊥ME ;(2)ME 3.证明见解析;(3)ME =MB·tan 2
. 【解析】
【分析】
(1)如图1中,连接CM .只要证明△MBE 是等腰直角三角形即可;
(2)结论:EM=3MB .只要证明△EBM 是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM•tan
2 .证明方法类似;
【详解】
(1) 如图1中,连接CM .
∵∠ACD=90°,AM=MD ,
∴MC=MA=MD ,
∵BA=BC ,
∴BM 垂直平分AC ,
∵∠ABC=90°,BA=BC ,
∴∠MBE=
12
∠ABC=45°,∠ACB=∠DCE=45°, ∵AB ∥DE ,
∴∠ABE+∠DEC=180°,
∴∠DEC=90°,
∴∠DCE=∠CDE=45°,
∴EC=ED ,∵MC=MD ,
∴EM 垂直平分线段CD ,EM 平分∠DEC ,
∴∠MEC=45°,
∴△BME 是等腰直角三角形,
∴BM=ME ,BM ⊥EM .
故答案为BM=ME ,BM ⊥EM . (2)ME =3MB .
证明如下:连接CM ,如解图所示.
∵DC ⊥AC ,M 是边AD 的中点,
∴MC =MA =MD .
∵BA =BC ,
∴BM 垂直平分AC .
∵∠ABC =120°,BA =BC ,
∴∠MBE =12∠ABC =60°,∠BAC =∠BCA =30°,∠DCE =60°. ∵AB ∥DE ,
∴∠ABE +∠DEC =180°,
∴∠DEC =60°,
∴∠DCE =∠DEC =60°,
∴△CDE 是等边三角形, ∴EC =ED .
∵MC =MD ,
∴EM 垂直平分CD ,EM 平分∠DEC , ∴∠MEC =12
∠DEC =30°, ∴∠MBE +∠MEB =90°,即∠BME =90°.
在Rt △BME 中,∵∠MEB =30°,
∴ME =3MB .
(3) 如图3中,结论:EM=BM•tan 2
α.
理由:同法可证:BM ⊥EM ,BM 平分∠ABC ,
所以EM=BM•tan
2
α. 【点睛】
本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
10.(问题发现)
(1)如图(1)四边形ABCD 中,若AB =AD ,CB =CD ,则线段BD ,AC 的位置关系为 ;
(拓展探究)
(2)如图(2)在Rt △ABC 中,点F 为斜边BC 的中点,分别以AB ,AC 为底边,在Rt △ABC 外部作等腰三角形ABD 和等腰三角形ACE ,连接FD ,FE ,分别交AB ,AC 于点M ,N .试猜想四边形FMAN 的形状,并说明理由;
(解决问题)
(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.
【答案】(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8
或16﹣8
【解析】
【分析】
(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC 垂直平分BD;
(2)根据Rt△ABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形;
(3)分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别依据旋转的性质以及勾股定理,即可得到结论.
【详解】
(1)∵AB=AD,CB=CD,
∴点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,
∴AC垂直平分BD,
故答案为:AC垂直平分BD;
(2)四边形FMAN是矩形.理由:
如图2,连接AF,
∵Rt△ABC中,点F为斜边BC的中点,
∴AF=CF=BF,
又∵等腰三角形ABD和等腰三角形ACE,
∴AD=DB,AE=CE,
∴由(1)可得,DF⊥AB,EF⊥AC,
又∵∠BAC=90°,
∴∠AMF=∠MAN=∠ANF=90°,
∴四边形AMFN是矩形;
(3)BD′的平方为16+8或16﹣8.
分两种情况:
①以点A为旋转中心将正方形ABCD逆时针旋转60°,
如图所示:过D'作D'E⊥AB,交BA的延长线于E,
由旋转可得,∠DAD'=60°,
∴∠EAD'=30°,
∵AB=2=AD',
∴D'E=AD'=,AE=,
∴BE=2+,
∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8
②以点A为旋转中心将正方形ABCD顺时针旋转60°,
如图所示:过B作BF⊥AD'于F,
旋转可得,∠DAD'=60°,
∴∠BAD'=30°,
∵AB=2=AD',
∴BF=AB=,AF=,
∴D'F=2﹣,
∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8
综上所述,BD′平方的长度为16+8或16﹣8.
【点睛】
本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性质,线段垂直
平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解.解题时注意:有三个角是直角的四边形是矩形.
11.如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.
(1)求证:四边形DEFG为菱形;
(2)若CD=8,CF=4,求的值.
【答案】(1)证明见试题解析;(2).
【解析】
试题分析:(1)由折叠的性质,可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再证明 FG=FE,即可得到四边形DEFG为菱形;
(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,从而求出的值.
试题解析:(1)由折叠的性质可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四边形DEFG为菱形;
(2)设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,,
即,解得:x=5,CE=8﹣x=3,∴=.
考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形的判定与性质;4.矩形的性质;5.综合题.
12.如图,点E是正方形ABCD的边A B上一点,连结CE,过顶点C作CF⊥CE,交AD延长线于F.求证:BE=DF.
【答案】证明见解析.
【解析】
分析:根据正方形的性质,证出BC=CD,∠B=∠CDF,∠BCD=90°,再由垂直的性质得到∠BCE=∠DCF,然后根据“ASA”证明△BCE≌△BCE即可得到BE=DF
详解:证明:∵CF⊥CE,
∴∠ECF=90°,
又∵∠BCG=90°,
∴∠BCE+∠ECD =∠DCF+∠ECD
∴∠BCE=∠DCF,
在△BCE与△DCF中,
∵∠BCE=∠DCF,BC=CD,∠CDF=∠EBC,
∴△BCE≌△BCE(ASA),
∴BE=DF.
点睛:本题考查的是正方形的性质,熟知正方形的性质及全等三角形的判定与性质是解答此题的关键.
13.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.
(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;
(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不须证明)
(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;
(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F 的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP 的最小值.
【答案】(1)AE=DF,AE⊥DF;
(2)是;
(3)成立,理由见解析;
(4)CP=QC﹣QP=.
【解析】
试题分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;
(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以
△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;
(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;
(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD 的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.
试题解析:(1)AE=DF,AE⊥DF.
理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.
在△ADE和△DCF中,,∴△ADE≌△DCF(SAS).
∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;
(3)成立.
理由:由(1)同理可证AE=DF,∠DAE=∠CDF
延长FD交AE于点G,
则∠CDF+∠ADG=90°,
∴∠ADG+∠DAE=90°.
∴AE⊥DF;
(4)如图:
由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,
设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,
在Rt△QDC中,QC=,
∴CP=QC﹣QP=.
考点:四边形的综合知识.
14.数学活动课上,老师给出如下问题:如图,将等腰直角三角形纸片沿斜边上的高AC
剪开,得到等腰直角三角形△ABC与△EFD,将△EFD的直角顶点在直线BC上平移,在平移的过程中,直线AC与直线DE交于点Q,让同学们探究线段BQ与AD的数量关系和位置关系.
请你阅读下面交流信息,解决所提出的问题.
展示交流:
小敏:满足条件的图形如图甲所示图形,延长BQ与AD交于点H.我们可以证明
△BCQ≌△ACD,从而易得BQ=AD,BQ⊥AD.
小慧:根据图甲,当点F在线段BC上时,我们可以验证小慧的说法是正确的.但当点F在线段CB的延长线上(如图乙)或线段CB的反向延长线上(如图丙)时,我对小慧说法的正确性表示怀疑.
(1)请你帮助小慧进行分析,小敏的结论在图乙、图丙中是否成立?请说明理由.
(选择图乙或图丙的一种情况说明即可).
(2)小慧思考问题的方式中,蕴含的数学思想是.
拓展延伸:
根据你上面选择的图形,分别取AB、BD、DQ、AQ的中点M、N、P、T.则四边形MNPT 是什么样的特殊四边形?请说明理由.
【答案】成立;分类讨论思想;正方形.
【解析】
试题分析:利用等腰直角三角形的性质结合全等三角形的判定与性质得出BQ=AD,
BQ⊥AD;利用已知条件分类得出,体现数学中的分类讨论思想,
拓展延伸:利用三角形中位线定理结合正方形的判定方法,首先得出四边形MNPT是平行四边形进而得出它是菱形,再求出一个内角是90°,即可得出答案.
试题解析:(1)、成立,
理由:如图乙:由题意可得:∠FDE=∠QDC=∠ABC=∠BAC=45°,则DC=QC,AC=BC,
在△ADC和△BQC中∵,∴△ADC≌△BQC(SAS),∴AD=BQ,
∠DAC=∠QBC,
延长AD交BQ于点F,则∠ADC=∠BDF,∴∠BFD=∠ACD=90°,∴AD⊥BQ;
(2)、小慧思考问题的方式中,蕴含的数学思想是:分类讨论思想;
拓展延伸:四边形MNPT是正方形,
理由:∵取AB、BD、DQ、AQ的中点M、N、P、T,∴MN AD,TP AD,
∴MN TP,
∴四边形MNPT是平行四边形,∵NP BQ,BQ=AD,∴NP=MN,∴平行四边形MNPT 是菱形,
又∵AD⊥BQ,NP∥BQ,MN∥AD,∴∠MNP=90°,∴四边形MNPT是正方形.
考点:几何变换综合题
15.已知:如图,四边形ABCD和四边形AECF都是矩形,AE与BC交于点M,CF与AD交于点N.
(1)求证:△ABM≌△CDN;
(2)矩形ABCD和矩形AECF满足何种关系时,四边形 AMCN是菱形,证明你的结论.【答案】(1)证明见解析;(2)当AB=AF时,四边形AMCN是菱形.证明见解析;【解析】
试题分析:(1)由已知条件可得四边形AMCN是平行四边形,从而可得AM=CN,再由AB=CD,∠B=∠D=90°,利用HL即可证明;
(2)若四边形AMCN为菱形,则有AM=AN,从已知可得∠BAM=∠FAN,又∠B=∠F=90°,所以有△ABM≌△AFN,从而得AB=AF,因此当AB=AF时,四边形AMCN是菱形.
试题解析:(1)∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD∥BC.
∵四边形AECF是矩形,∴AE∥CF.∴四边形AMCN是平行四边形.∴AM=CN.在
Rt△ABM和Rt△CDN中,AB=CD,AM=CN,∴Rt△ABM≌Rt△CDN.
(2)当AB=AF时,四边形AMCN是菱形.
∵四边形ABCD、AECF是矩形,∴∠B=∠BAD=∠EAF=∠F=90°.∴∠BAD-∠NAM=∠EAF-∠NAM,即∠BAM=∠FAN.又∵AB=AF,∴△ABM≌△AFN.∴AM=AN.由(1)知四边形AMCN是平行四边形,∴平行四边形AMCN是菱形.
考点:1.矩形的性质;2.三角形全等的判定与性质;3.菱形的判定.。