2021年中考一轮复习数学九年级二次函数综合题培优提升专题训练(附答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年九年级数学中考一轮复习二次函数综合题培优提升专题训练(附答案)
1.如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:
①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;
③使得M大于2的x值不存在;④使得M=1的x值是或.
其中正确的是()
A.①②B.①④C.②③D.③④
2.如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C﹣D﹣E上移动,若点C、
D、E的坐标分别为(﹣1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A
的横坐标的最大值为()
A.1B.2C.3D.4
3.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动(抛物线随顶点一起平移),与x轴交于C、D两点(C在D的左侧),点C 的横坐标最小值为﹣3,则点D的横坐标最大值为()
A.﹣3B.1C.5D.8
4.已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81个格点中的多少个()
A.6B.7C.8D.9
5.如图,记抛物线y=﹣x2+1的图象与x正半轴的交点为A,将线段OA分成n等份,设分点分别为P1,P2,…P n﹣1,过每个分点作x轴的垂线,分别与抛物线交于点Q1,Q2,…,Q n﹣1,再记直角三角形OP1Q1,P1P2Q2,…,P n﹣2P n﹣1Q n﹣1的面积分别为S1,S2,…,这样就有S1=,S2=,…;记W=S1+S2+…+S n﹣1,当n越来越大时,你猜想W最接近的常数是()
A.B.C.D.
6.抛物线y=ax2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a的取值范围是()
A.≤a≤1B.≤a≤2C.≤a≤1D.≤a≤2
7.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是()
A.16B.15C.24D.13
8.如图,在平面直角坐标系xOy中,若动点P在抛物线y=ax2上,⊙P恒过点F(0,n),且与直线y=﹣n始终保持相切,则n=(用含a的代数式表示).
9.如图,已知一动圆的圆心P在抛物线y=x2﹣3x+3上运动.若⊙P半径为1,点P的坐标为(m,n),当⊙P与x轴相交时,点P的横坐标m的取值范围是.
10.如图,已知⊙P的半径为2,圆心P在抛物线y=﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为.
11.已知二次函数的图象与x轴分别交于A、B两点(如图所示),与y轴交于点C,点P是其对称轴上一动点,当PB+PC取得最小值时,点P的坐标为.
12.如图,抛物线y=ax2+bx+c与x轴的一个交点A在点(﹣2,0)和(﹣1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则:(1)abc0(填“>”或“<”);
(2)a的取值范围是.
13.如图正方形ABCD的边长为2cm,O是AB的中点,也是抛物线的顶点,OP⊥AB,两半圆的直径分别为OA与OB.抛物线经过C、D两点,且关于OP对称,则图中阴影部分的面积之和为cm2.(π取3.14,结果保留2个有效数字)
14.直角坐标系xOy中,O是坐标原点,抛物线y=x2﹣x﹣6与x轴交于A,B两点(点A 在点B左侧),与y轴交于点C.如果点M在y轴右侧的抛物线上,S△AMO=S△COB,那么点M的坐标是.
15.已知:如图所示,一次函数有y=﹣2x+3的图象与x轴、y轴分别交于A、C两点,二次函数y=x2+bx+c的图象过点C,且与一次函数在第二象限交于另一点B,若AC:CB =1:2,那么这二次函数的顶点坐标为.
16.在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x=t(t>0)分别相交于点P,Q.
(1)如图,函数F1为y=x+1,当t=2时,PQ的长为;
(2)函数F1为y=,当PQ=6时,t的值为;
(3)函数F1为y=ax2+bx+c(a≠0),
①当t=时,求△OPQ的面积;
②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),当c≤
x≤c+1时,设函数F1的最大值和函数F2的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.
17.如图,已知二次函数的图象顶点在原点,且点(2,1)在二次函数的图象上,过点F (0,1)作x轴的平行线交二次函数的图象于M、N两点.
(1)求二次函数的表达式;
(2)P为平面内一点,当△PMN是等边三角形时,求点P的坐标;
(3)在二次函数的图象上是否存在一点E,使得以点E为圆心的圆过点F和点N,且与直线y=﹣1相切.若存在,求出点E的坐标,并求⊙E的半径;若不存在,说明理由.
18.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(4,0),与y轴交于点C,连接BC,点P是线段BC上的动点(与点B,C不重合),连接AP并延长AP交抛物线于点Q,连接CQ,BQ,设点Q的横坐标为m.
(1)求抛物线的解析式和点C的坐标;
(2)当△BCQ的面积等于2时,求m的值;
(3)在点P运动过程中,是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
19.在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣2,﹣4)和点C(2,0),与y轴交于点D,与x轴的另一交点为点B.
(1)求抛物线的解析式;
(2)如图1,连接BD,在抛物线上是否存在点P,使得∠PBC=2∠BDO?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)如图2,连接AC,交y轴于点E,点M是线段AD上的动点(不与点A,点D重合),将△CME沿ME所在直线翻折,得到△FME,当△FME与△AME重叠部分的面积是△AMC面积的时,请直接写出线段AM的长.
20.在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;
(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.
①试求抛物线y=x2﹣2x的“不动点”的坐标;
②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴
与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.
21.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣1,0),D(5,﹣6),P点为抛物线y=﹣x2+bx+c上一动点(不与A、D重合).(1)求抛物线和直线l的解析式;
(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y 轴交直线l于点F,求PE+PF的最大值;
(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
22.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
23.如图,在平面直角坐标系中,已知点B的坐标为(﹣1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.
(1)求A,C两点的坐标;
(2)求抛物线的解析式;
(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.
24.如图1,在平面直角坐标系中,一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于B点,抛物线y=﹣x2+bx+c经过A,B两点,在第一象限的抛物线上取一点D,过点D作DC⊥x轴于点C,交直线AB于点E.
(1)求抛物线的函数表达式;
(2)是否存在点D,使得△BDE和△ACE相似?若存在,请求出点D的坐标,若不存在,请说明理由;
(3)如图2,F是第一象限内抛物线上的动点(不与点D重合),点G是线段AB上的动点.连接DF,FG,当四边形DEGF是平行四边形且周长最大时,请直接写出点G的坐标.
25.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点且与x轴的负半轴交于点C.
(1)求该抛物线的解析式;
(2)若点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;
(3)已知E,F分别是直线AB和抛物线上的动点,当以B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.
参考答案
1.解:∵当x>0时,利用函数图象可以得出y2>y1;∴①错误;
∵抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;
∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②错误;
∵抛物线y1=﹣2x2+2,直线y2=2x+2,与y轴交点坐标为:(0,2),当x=0时,M=2,抛物线y1=﹣2x2+2,最大值为2,故M大于2的x值不存在;
∴使得M大于2的x值不存在,∴③正确;
∵当﹣1<x<0时,
使得M=1时,可能是y1=﹣2x2+2=1,解得:x1=,x2=﹣,
当y2=2x+2=1,解得:x=﹣,
由图象可得出:当x=>0,此时对应y1=M,
∵抛物线y1=﹣2x2+2与x轴交点坐标为:(1,0),(﹣1,0),
∴当﹣1<x<0,此时对应y2=M,
故M=1时,x1=,x2=﹣,
使得M=1的x值是或.∴④正确;
故正确的有:③④.
故选:D.
2.解:由图知:当点B的横坐标为1时,抛物线顶点取C(﹣1,4),设该抛物线的解析式为:y=a(x+1)2+4,代入点B坐标,得:
0=a(1+1)2+4,a=﹣1,
即:B点横坐标取最小值时,抛物线的解析式为:y=﹣(x+1)2+4.
当A点横坐标取最大值时,抛物线顶点应取E(3,1),则此时抛物线的解析式:y=﹣(x﹣3)2+1=﹣x2+6x﹣8=﹣(x﹣2)(x﹣4),即与x轴的交点为(2,0)或(4,0)(舍去),
∴点A的横坐标的最大值为2.
故选:B.
3.解:当点C横坐标为﹣3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;
当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,且CD=8,故C(0,0),D(8,0);
由于此时D点横坐标最大,
故点D的横坐标最大值为8;
故选:D.
4.解:由题意,建立如图坐标系,水平为x轴,竖直为y轴,
设抛物线解析式为:y=ax2+bx+c,
要使得格点最多,抛物线如图所示:
取整数点D(0,1),E(1,1),F(2,2)代入抛物线的解析式得,
1=a×02+0×b+c,
1=a×12+1×b+c,
2=a×22+2b+c,
解得a=,b=,c=1,
故y=x2﹣x+1,
∴A(﹣3,7);B(﹣2,4);C(﹣1,2);D(0,1);E(1,1)
F(3,4);G(3,4);H(4,7)共8个.
建立坐标系的方法:设方格左下角为(0,0),沿着方格的边沿建立直角坐标系.
取抛物线为y=(x﹣3)(x﹣4),
则它能经过8个格点:(0,6),(1,3),(2,1),(3,0),(4,0),(5,1),(6,3),(7,6).
对于任意的二次函数,如果我们依次考察x=0,1,2,…,8时的值,并依次用后一个值减去前一个值,总得到一个等差数列.要使经过的格点尽量多,则这个等差数列的公
差要尽量小,且为整数.因此,令公差为1,这相当于取二次项系数为.
验证:如果抛物线经过9个格点,那么在抛物线的顶点及一侧至少经过5个格点,由于这5个格点的横坐标都差1,考虑到抛物线的递增或递减趋势,这5点的纵坐标的极差不小于1+2+3+4=10,显然这5个格点不全在8×8网格之内.
故选:C.
5.解:由图象知S3=,总结出规律:,则w=S1+S2+…+S n﹣1=++…+=
=
=
=﹣﹣+﹣
=﹣﹣,
当n越来越大时,可知W最接近的常数为.
故选:C.
6.解:由右图知:A(1,2),B(2,1),
再根据抛物线的性质,|a|越大开口越小,
把A点代入y=ax2得a=2,
把B点代入y=ax2得a=,
则a的范围介于这两点之间,故≤a≤2.
故选:D.
7.解:①如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=﹣x2+4x,
然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,
可平移6次,
所以,一共有7条抛物线,
同理可得开口向上的抛物线也有7条,
所以,满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=14.
②当经过点(0,0),(3,3),(6,4)的抛物线的解析式为y=﹣x2+x,
将抛物线向上、向右平移一个单位,得到符合条件的新抛物线;
可平移4次;
∴开口向下共有5条符合条件的抛物线;
同理,开口向上的也有5条;
∴共有10条.
10+14=24(条).
故选:C.
8.解:如图,连接PF.设⊙P与直线y=﹣n相切于点E,连接PE.则PE⊥AE.∵动点P在抛物线y=ax2上,
∴设P(m,am2).
∵⊙P恒过点F(0,n),
∴PF=PE,即=am2+n.
∴n=.
故答案为:.
9.解:∵圆心P在抛物线y=x2﹣3x+3上运动,点P的坐标为(m,n),∴n=m2﹣3m+3,
∵⊙P半径为1,⊙P与x轴相交,
∴|n|<1,
∴|m2﹣3m+3|<1,
∴﹣1<m2﹣3m+3<1,
解m2﹣3m+3<1,得:3﹣<m<3+,
解m2﹣3m+3>﹣1,得:m<2或m>4,
∴点P的横坐标m的取值范围是:3﹣<m<2或4<m<3+.
故答案为:3﹣<m<2或4<m<3+.
10.解:当⊙P与x轴相切时,P点纵坐标为±2;
当y=2时,x2﹣1=2,
解得x=±;
当y=﹣2时,x2﹣1=﹣2,
x无解;
故P点坐标为(,2)或(﹣,2).
11.解:如图,连接AC交对称轴于P点,连接PB,P点即为所求,
由二次函数y=﹣x2﹣x+2,得C(0,2),
令y=0,得x1=﹣3,x2=1,故A(﹣3,0),B(1,0),故对称轴为x==﹣1,设直线AC的解析式为y=kx+b,则,解得,
直线AC:y=x+2,
把x=﹣1代入直线AC的解析式,得y=,
∴P的坐标为(﹣1,).
故本题答案为:(﹣1,).
12.解:(1)观察图形发现,抛物线的开口向下,
∴a<0,
∵顶点坐标在第一象限,
∴﹣>0,
∴b>0,
而抛物线与y轴的交点在y轴的上方,
∴c>0,
∴abc<0;
(2)顶点C是矩形DEFG上(包括边界和内部)的一个动点,
当顶点C与D点重合,顶点坐标为(1,3),则抛物线解析式y=a(x﹣1)2+3,
由,解得﹣≤a≤﹣;
当顶点C与F点重合,顶点坐标为(3,2),则抛物线解析式y=a(x﹣3)2+2,
由,解得﹣≤a≤﹣;
∵顶点可以在矩形内部,
∴﹣≤a≤﹣.
解法二:由题意及图可知:当抛物线经过(﹣2,0),顶点为F(3,2)时,抛物线开口最大,解得a=﹣;
当抛物线经过(﹣1,0),顶点为D(1,3)时,抛物线开口最小,解得a=﹣,∵当a<0时,a越小抛物线的开口越小,a越大抛物线的开口越大,∴﹣≤a≤﹣13.解:由题意可得,圆的半径为AB的
即0.5cm,
根据对称性可知,阴影部分面积为半圆的面积=×π()2≈0.39cm2.
14.解:在抛物线y=x2﹣x﹣6中,
当y=0时,x=﹣2或3,
即A(﹣2,0),B(3,0);
当x=0时,y=﹣6,
即C(0,﹣6);
故S△COB=9,
设点M的纵坐标为y,必有×AO•|y|=9,
解可得y=±9,
将其代入解析式可得x的值为,(舍去),
故点M的坐标是(,9).
15.解:∵一次函数有y=﹣2x+3的图象与x轴、y轴分别交于A、C两点,∴分别令x=0、y=0,可求出A(,0),C(0,3),
因为点B在直线y=﹣2x+3的图象上,
所以设B点(x,﹣2x+3),
由AC:CB=1:2可知=2,
则﹣2x+3=9,
解得x=﹣3,把B(﹣3,9)C(0,3)代入二次函数解析式得,解得,
故二次函数的解析式为y=x2+x+3,
故其顶点坐标为(﹣,).
16.解:(1)∵F1:y=x+1,
F1和F2关于y轴对称,
∴F2:y=﹣x+1,
分别令x=2,则2+1=3,﹣2+1=﹣1,
∴P(2,3),Q(2,﹣1),
∴PQ=3﹣(﹣1)=4,
故答案为:4;
(2)∵F1:,
可得:F2:,
∵x=t,可得:P(t,),Q(t,),
∴PQ=﹣==6,
解得:t=1,
经检验:t=1是原方程的解,
故答案为:1;
(3)①∵F1:y=ax2+bx+c,
∴F2:y=ax2﹣bx+c,
∵t=,分别代入F1,F2,
可得:P(,),Q(,),
∴PQ=||=,
∴S△OPQ==1;
②∵函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),
而函数F1和F2的图象关于y轴对称,
∴函数F1的图象经过A(5,0)和(﹣1,0),
∴设F1:y=a(x+1)(x﹣5)=ax2﹣4ax﹣5a,
则F2:y=ax2+4ax﹣5a,
∴F1的图象的对称轴是直线x=2,且c=﹣5a,
∴a=,
∵c>0,则a<0,c+1>1,
而F2的图象在x>0时,y随x的增大而减小,
当0<c<1时,
F1的图象y随x的增大而增大,F2的图象y随x的增大而减小,
∴当x=c+1时,y=ax2﹣4ax﹣5a的最大值为a(c+1)2﹣4a(c+1)﹣5a,
y=ax2+4ax﹣5a的最小值为a(c+1)2+4a(c+1)﹣5a,
则h=a(c+1)2﹣4a(c+1)﹣5a﹣[a(c+1)2+4a(c+1)﹣5a]=﹣8ac﹣8a,
又∵a=,
∴h=;
当1≤c≤2时,
F1的最大值为=﹣9a,F2的图象y随x的增大而减小,
∴F2的最小值为:a(c+1)2+4a(c+1)﹣5a,
则h=﹣9a﹣[a(c+1)2+4a(c+1)﹣5a]=﹣a(c+1)2﹣4a(c+1)﹣4a=﹣ac2﹣6ac ﹣9a,
又∵a=,
∴h=,
当c>2时,
F1的图象y随x的增大而减小,F2的图象y随x的增大而减小,
∴当x=c时,y=ax2﹣4ax﹣5a的最大值为ac2﹣4ac﹣5a,
当x=c+1时,y=ax2+4ax﹣5a的最小值为a(c+1)2+4a(c+1)﹣5a,
则h=ac2+4ac﹣5a﹣[a(c+1)2+4a(c+1)﹣5a],
又∵a=,
∴h=2c2+c;
综上:h关于x的解析式为:h=.
17.解:(1)∵二次函数的图象顶点在原点,
故设二次函数表达式为:y=ax2,将(2,1)代入上式并解得:a=,
故二次函数表达式为:y=x2;
(2)将y=1代入y=x2并解得:x=±2,故点M、N的坐标分别为(﹣2,1)、(2,1),则MN=4,
∵△PMN是等边三角形,
∴点P在y轴上且PM=4,
∴PF=2;
∵点F(0,1),
∴点P的坐标为(0,1+2)或(0,1﹣2);
(3)假设二次函数的图象上存在一点E满足条件,
设点Q是FN的中点,则点Q(1,1),
故点E在FN的中垂线上.
∴点E是FN的中垂线与y=x2图象的交点,
∴y=×12=,则点E(1,),
EN==,
同理EF==,
点E到直线y=﹣1的距离为|﹣(﹣1)|=,
故存在点E,使得以点E为圆心半径为的圆过点F,N且与直线y=﹣1相切.18.解:(1)∵抛物线经过A(﹣1,0),B(4,0),可得:
,
解得:,
∴抛物线的解析式为:,
令x=0,则y=2,
∴点C的坐标为(0,2);
(2)连接OQ,
∵点Q的横坐标为m,
∴Q(m,),
∴S=S△OCQ+S△OBQ﹣S△OBC
=﹣
=﹣m2+4m,
令S=2,
解得:m=或,
(3)如图,过点Q作QH⊥BC于H,连接AC,
∵AC=,BC=,AB=5,
满足AC2+BC2=AB2,
∴∠ACB=90°,又∠QHP=90°,∠APC=∠QPH,
∴△APC∽△QPH,
∴,
∵S△BCQ=BC•QH=QH,
∴QH=,
∴=,
∴当m=2时,存在最大值.
19.解:(1)∵抛物线y=ax2+bx+2经过点A(﹣2,﹣4)和点C(2,0),则,解得:,
∴抛物线的解析式为y=﹣x2+x+2;
(2)存在,理由是:
在x轴正半轴上取点E,使OB=OE,过点E作EF⊥BD,垂足为F,在y=﹣x2+x+2中,
令y=0,解得:x=2或﹣1,
∴点B坐标为(﹣1,0),
∴点E坐标为(1,0),
可知:点B和点E关于y轴对称,
∴∠BDO=∠EDO,即∠BDE=2∠BDO,
∵D(0,2),
∴DE===BD,
在△BDE中,×BE×OD=×BD×EF,
即2×2=×EF,解得:EF=,
∴DF=,
∴tan∠BDE=,
若∠PBC=2∠BDO,
则∠PBC=∠BDE,
∵BD=DE=,BE=2,
则BD2+DE2>BE2,
∴∠BDE为锐角,
当点P在第三象限时,
∠PBC为钝角,不符合;
当点P在x轴上方时,
∵∠PBC=∠BDE,设点P坐标为(c,﹣c2+c+2),过点P作x轴的垂线,垂足为G,
则BG=c+1,PG=﹣c2+c+2,
∴tan∠PBC==,
解得:c=,
∴﹣c2+c+2=,
∴点P的坐标为(,);
当点P在第四象限时,
同理可得:PG=c2﹣c﹣2,BG=c+1,
tan∠PBC=,
解得:c=,
∴,
∴点P的坐标为(,),
综上:点P的坐标为(,)或(,);
(3)设EF与AD交于点N,
∵A(﹣2,﹣4),D(0,2),设直线AD表达式为y=mx+n,则,解得:,
∴直线AD表达式为y=3x+2,
设点M的坐标为(s,3s+2),
∵A(﹣2,﹣4),C(2,0),设直线AC表达式为y=m1x+n1,则,解得:,
∴直线AC表达式为y=x﹣2,
令x=0,则y=﹣2,
∴点E坐标为(0,﹣2),
可得:点E是线段AC中点,
∴△AME和△CME的面积相等,
由于折叠,
∴△CME≌△FME,即S△CME=S△FME,
由题意可得:
当点F在直线AC上方时,
∴S△MNE=S△AMC=S△AME=S△FME,
即S△MNE=S△ANE=S△MNF,
∴MN=AN,FN=NE,
∴四边形FMEA为平行四边形,
∴CM=FM=AE=AC=,∵M(s,3s+2),
∴,
解得:s=或0(舍),
∴M(,),
∴AM=,
当点F在直线AC下方时,如图,
同理可得:四边形AFEM为平行四边形,
∴AM=EF,
由于折叠可得:CE=EF,
∴AM=EF=CE=,
综上:AM的长度为或.
20.解:(1)∵a=1>0,
故该抛物线开口向上,顶点A的坐标为(1,﹣1),
当x>1,y随x的增大而增大,当x<1,y随x增大而减小;
(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,
解得:t=0或3,
故“不动点”坐标为(0,0)或(3,3);
②当OC∥AB时,
∵新抛物线顶点B为“不动点”,则设点B(m,m),
∴新抛物线的对称轴为:x=m,与x轴的交点C(m,0),
∵四边形OABC是梯形,
∴直线x=m在y轴左侧,
∵BC与OA不平行,
∴OC∥AB,
又∵点A(1,﹣1),点B(m,m),
∴m=﹣1,
故新抛物线是由抛物线y=x2﹣2x向左平移2个单位得到的;
当OB∥AC时,
同理可得:抛物线的表达式为:y=(x﹣2)2+2=x2﹣4x+6,
当四边形OABC是梯形,字母顺序不对,故舍去,
综上,新抛物线的表达式为:y=(x+1)2﹣1.
21.解:(1)将点A、D的坐标代入直线表达式得:,解得:,
故直线l的表达式为:y=﹣x﹣1,
将点A、D的坐标代入抛物线表达式,
同理可得抛物线的表达式为:y=﹣x2+3x+4;
(2)直线l的表达式为:y=﹣x﹣1,则直线l与x轴的夹角为45°,
即:则PE=PF,
设点P坐标为(x,﹣x2+3x+4)、则点F(x,﹣x﹣1),
PE+PF=2PF=2(﹣x2+3x+4+x+1)=﹣2(x﹣2)2+18,
∵﹣2<0,故PE+PF有最大值,
当x=2时,其最大值为18;
(3)NC=5,
①当NC是平行四边形的一条边时,
设点P坐标为(x,﹣x2+3x+4)、则点M(x,﹣x﹣1),
由题意得:|y M﹣y P|=5,即:|﹣x2+3x+4+x+1|=5,
解得:x=2或0或4(舍去0),
则点M坐标为(2+,﹣3﹣)或(2﹣,﹣3+)或(4,﹣5);
②当NC是平行四边形的对角线时,
则NC的中点坐标为(0,),
设点P坐标为(m,﹣m2+3m+4)、则点M(n,﹣n﹣1),
N、C,M、P为顶点的四边形为平行四边形,则NC的中点即为PM中点,
即:,解得:,
故点M(﹣4,3);
故点M的坐标为:(2+,﹣3﹣)或(2﹣,﹣3+)或(4,﹣5)或(﹣4,3).
22.解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,
解得:b=﹣4,c=3,
∴二次函数的表达式为:y=x2﹣4x+3;
(2)令y=0,则x2﹣4x+3=0,
解得:x=1或x=3,
∴B(3,0),
∴BC=3,
点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,
①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3
∴P1(0,3+3),P2(0,3﹣3);
②当BP=BC时,OP=OC=3,
∴P3(0,﹣3);
③当PB=PC时,
∵OC=OB=3
∴此时P与O重合,
∴P4(0,0);
综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);
(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,
∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,
即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.
23.解:(1)OA=OC=4OB=4,
故点A、C的坐标分别为(4,0)、(0,﹣4);
(2)抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),
即﹣4a=﹣4,解得:a=1,
故抛物线的表达式为:y=x2﹣3x﹣4;
(3)直线CA过点C,设其函数表达式为:y=kx﹣4,
将点A坐标代入上式并解得:k=1,
故直线CA的表达式为:y=x﹣4,
过点P作y轴的平行线交AC于点H,
∵OA=OC=4,∴∠OAC=∠OCA=45°,
∵PH∥y轴,∴∠PHD=∠OCA=45°,
设点P(x,x2﹣3x﹣4),则点H(x,x﹣4),
PD=HP sin∠PHD=(x﹣4﹣x2+3x+4)=﹣x2+2x,
∵<0,∴PD有最大值,当x=2时,其最大值为2,
此时点P(2,﹣6).
24.解:(1)在y=﹣x+3中,令x=0,得y=3,令y=0,得x=4,
∴A(4,0),B(0,3),
将A(4,0),B(0,3)分别代入抛物线y=﹣x2+bx+c中,得:,解得:,
∴抛物线的函数表达式为:y=﹣x2+x+3.
(2)存在.如图1,过点B作BH⊥CD于H,设C(t,0),则D(t,),
E(t,),H(t,3);
∴EC=,AC=4﹣t,BH=t,DH=﹣t2+t,DE=﹣t2+4t
∵△BDE和△ACE相似,∠BED=∠AEC
∴△BDE∽△ACE或△DBE∽△ACE
①当△BDE∽△ACE时,∠BDE=∠ACE=90°,
此时BD∥AC,可得D(,3).
②当△DBE∽△ACE时,∠BDE=∠CAE
∵BH⊥CD
∴∠BHD=90°,
∴=tan∠BDE=tan∠CAE=,即:BH•AC=CE•DH
∴t(4﹣t)=()(﹣t2+t),解得:t1=0(舍),t2=4(舍),t3=,
∴D(,);
综上所述,点D的坐标为(,3)或(,);
(3)如图2,∵四边形DEGF是平行四边形
∴DE∥FG,DE=FG
设D(m,),E(m,),F(n,),G(n,),则:DE=﹣m2+4m,FG=﹣n2+4n,
∴﹣m2+4m=﹣n2+4n,即:(m﹣n)(m+n﹣4)=0,∵m﹣n≠0
∴m+n﹣4=0,即:m+n=4
过点G作GK⊥CD于K,则GK∥AC
∴∠EGK=∠BAO
∴=cos∠EGK=cos∠BAO=,即:GK•AB=AO•EG
∴5(n﹣m)=4EG,即:EG=(n﹣m)
∴DEGF周长=2(DE+EG)=2[(﹣m2+4m)+(n﹣m)]=﹣2+
∵﹣2<0,
∴当m=时,∴▱DEGF周长最大值=,
此时n=4﹣=,则G(,),
当E,G互换时,结论也成立,此时G(,),
综上所述.G(,)或(,).
25.解:(1)在中,令y=0,得x=4,令x=0,得y=2
∴A(4,0),B(0,2)
把A(4,0),B(0,2),代入,得
,解得
∴抛物线得解析式为
(2)如图,过点B作x轴得平行线交抛物线于点E,过点D作BE的垂线,垂足为F
∵BE∥x轴,∴∠BAC=∠ABE
∵∠ABD=2∠BAC,∴∠ABD=2∠ABE
即∠DBE+∠ABE=2∠ABE
∴∠DBE=∠ABE
∴∠DBE=∠BAC
设D点的坐标为(x,),则BF=x,DF=∵tan∠DBE=,tan∠BAC=
∴=,即
解得x1=0(舍去),x2=2
当x=2时,=3
∴点D的坐标为(2,3)
(3)
当BO为边时,OB∥EF,OB=EF
设E(m,),F(m,)
EF=|()﹣()|=2
解得m 1=2,,
当BO为对角线时,OB与EF互相平分
过点O作OF∥AB,直线OF交抛物线于点F()和()
求得直线EF解析式为或
直线EF与AB的交点为E,点E的横坐标为或
∴E点的坐标为(2,1)或(,)或()或()或()。