西城区初三第一学期数学期末试卷
2020-2021学年北京市西城区初三数学第一学期期末试卷及解析

2020-2021学年北京市西城区初三数学第一学期期末试卷一、选择题(本题共24分,每小题3分)第1~8题均有四个选项,符合题意的选项只有一个. 1.(3分)在抛物线245y x x =--上的一个点的坐标为( ) A .(0,4)-B .(2,0)C .(1,0)D .(1,0)-2.(3分)在半径为6cm 的圆中,60︒的圆心角所对弧的弧长是( ) A .cm πB .2cm πC .3cm πD .6cm π3.(3分)将抛物线2y x =先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为( )A .2(3)5y x =++B .2(3)5y x =-+C .2(5)3y x =++D .2(5)3y x =-+4.(3分)2020年是紫禁城建成600年暨故宫博物院成立95周年,在此之前有多个国家曾发行过紫禁城元素的邮品.图1所示的摩纳哥发行的小型张中的图案,以敞开的紫禁城大门和大门内的石狮和太和殿作为邮票和小型张的边饰,如果标记出图1中大门的门框并画出相关的几何图形(图2),我们发现设计师巧妙地使用了数学元素(忽略误差),图2中的四边形ABCD 与四边形A B C D ''''是位似图形,点O 是位似中心,点A '是线段OA 的中点,那么以下结论正确的是( )A .四边形ABCD 与四边形ABCD ''''的相似比为1:1 B .四边形ABCD 与四边形A B C D ''''的相似比为1:2 C .四边形ABCD 与四边形A B C D ''''的周长比为3:1 D .四边形ABCD 与四边形A B C D ''''的面积比为4:15.(3分)如图,AB 是O 的直径,CD 是弦,若32CDB ∠=︒,则ABC ∠等于( )A .68︒B .64︒C .58︒D .32︒6.(3分)若抛物线2(0)y ax bx c a =++≠经过(1,0)A ,(3,0)B 两点,则抛物线的对称轴为( ) A .1x =B .2x =C .3x =D .4x =7.(3分)近年来我国无人机产业迅猛发展,无人机驾驶员已正式成为国家认可的新职业,中国民用航空局的现有统计数据显示,从2017年底至2019年底,全国拥有民航局颁发的民用无人机驾驶执照的人数已由约2.44万人增加到约6.72万人.若设2017年底至2019年底,全国拥有民用无人机驾驶执照人数的年平均增长率为x ,则可列出关于x 的方程为( ) A .2.44(1) 6.72x += B .2.44(12) 6.72x +=C .22.44(1) 6.72x +=D .22.44(1) 6.72x -=8.(3分)现有函数24()2()x x a y x x x a +<⎧=⎨-⎩如果对于任意的实数n ,都存在实数m ,使得当x m =时,y n =,那么实数a 的取值范围是( ) A .54a -B .14a -C .41a -D .45a -二、填空题(本题共24分,每小题3分)9.(3分)若正六边形的边长为2,则它的外接圆半径是 .10.(3分)若抛物线2(0)y ax a =≠经过(1,3)A ,则该抛物线的解析式为 . 11.(3分)如图,在Rt ABC ∆中,90C ∠=︒,6AC =,9AB =,则sin B = .12.(3分)若抛物线2(0)y ax bx c a =++≠的示意图如图所示,则a 0,b 0,c 0(填“>”,“ =”或“<” ).13.(3分)如图,AB 为O 的直径,10AB =,CD 是弦,AB CD ⊥于点E ,若6CD =,则EB = .14.(3分)如图,PA,PB是O的两条切线,A,B为切点,若2OA=,60APB∠=︒,则PB=.15.(3分)放缩尺是一种绘图工具,它能把图形放大或缩小.制作:把钻有若干等距小孔的四根直尺用螺栓分别在点A,B,C,D处连接起来,使得直尺可以绕着这些点转动,O为固定点,OD DA CB==,DC AB BE==,在点A,E处分别装上画笔.画图:现有一图形M,画图时固定点O,控制点A处的笔尖沿图形M的轮廓线移动,此时点E处的画笔便画出了将图形M放大后的图形N.原理:若连接OA,OE,可证得以下结论:①ODA∆和OCE∆为等腰三角形,则1(180)2DOA ODA∠=︒-∠,1(1802COE∠=︒-∠);②四边形ABCD为平行四边形(理由是);③DOA COE∠=∠,于是可得O,A,E三点在一条直线上;④当35DCCB=时,图形N是以点O为位似中心,把图形M放大为原来的倍得到的.16.(3分)如图,在平面直角坐标系xOy中,(4,3)P,O经过点P.点A,点B在y轴上,PA PB=,延长PA,PB分别交O于点C,点D,设直线CD与x轴正方向所夹的锐角为α.(1)O的半径为;(2)tan α= .三、解答题(本题共52分,第17、18、20~22题每小题5分,第19题6分,第23~25题每小题5分) 17.(5分)计算:22sin60tan 45cos 30︒-︒+︒. 18.(5分)已知关于x 的方程2240x x k ++-=. (1)如果方程有两个不相等的实数根,求k 的取值范围; (2)若1k =,求该方程的根. 19.(6分)借助网格画图并说理:如图所示的网格是正方形网格,ABC ∆的三个顶点是网格线的交点,点A 在BC 边的上方,AD BC ⊥于点D ,4BD =,2CD =,3AD =.以BC 为直径作O ,射线DA 交O 于点E ,连接BE ,CE . (1)补全图形;(2)填空:BEC ∠= ︒,理由是 ; (3)判断点A 与O 的位置关系并说明理由;(4)BAC ∠ BEC ∠(填“>”,“ =”或“<” ).20.(5分)二次函数2(0)y ax bx c a =++≠的图象经过(3,0)点,当1x =时,函数的最小值为4-. (1)求该二次函数的解析式并画出它的图象;(2)直线x m =与抛物线2(0)y ax bx c a =++≠和直线3y x =-的交点分别为点C ,点D ,点C 位于点D 的上方,结合函数的图象直接写出m 的取值范围.21.(5分)如图,AB 为O 的直径,AC 为弦,点D 在O 外,BCD A ∠=∠,OD 交O 于点E . (1)求证:CD 是O 的切线; (2)若4CD =, 2.7AC =,9cos 20BCD ∠=,求DE 的长.22.(5分)如图,正方形ABCD 的边长为4,点E 在AB 边上,1BE =,F 为BC 边的中点.将正方形截去一个角后得到一个五边形AEFCD ,点P 在线段EF 上运动(点P 可与点E ,点F 重合),作矩形PMDN ,其中M ,N 两点分别在CD ,AD 边上.设CM x =,矩形PMDN 的面积为S .(1)DM = (用含x 的式子表示),x 的取值范围是 ; (2)求S 与x 的函数关系式;(3)要使矩形PMDN 的面积最大,点P 应在何处?并求最大面积.23.(7分)已知抛物线212y x x =-+.(1)直接写出该抛物线的对称轴,以及抛物线与y 轴的交点坐标; (2)已知该抛物线经过1(34,)A n y +,2(21,)B n y -两点. ①若5n <-,判断1y 与2y 的大小关系并说明理由;②若A ,B 两点在抛物线的对称轴两侧,且12y y >,直接写出n 的取值范围.24.(7分)在Rt ABC ∆中,90ACB ∠=︒,30ABC ∠=︒,3BC =ABC ∆绕点B 顺时针旋转(0120)αα︒<︒得到△A BC '',点A ,点C 旋转后的对应点分别为点A ',点C '.(1)如图1,当点C '恰好为线段AA '的中点时,α= ︒,AA '= ; (2)当线段AA '与线段CC '有交点时,记交点为点D .①在图2中补全图形,猜想线段AD 与A D '的数量关系并加以证明; ②连接BD ,请直接写出BD 的长的取值范围.25.(7分)对于平面内的图形1G 和图形2G ,记平面内一点P 到图形1G 上各点的最短距离为1d ,点P 到图形2G 上各点的最短距离为2d ,若12d d =,就称点P 是图形1G 和图形2G 的一个“等距点”. 在平面直角坐标系xOy 中,已知点(6,0)A ,(0B ,23).(1)在(3,0)R ,(2,0)S ,3)T 三点中,点A 和点B 的等距点是 ; (2)已知直线2y =-.①若点A 和直线2y =-的等距点在x 轴上,则该等距点的坐标为 ; ②若直线y a =上存在点A 和直线2y =-的等距点,求实数a 的取值范围; (3)记直线AB 为直线1l ,直线23:l y =,以原点O 为圆心作半径为r 的O .若O 上有m 个直线1l 和直线2l 的等距点,以及n 个直线1l 和y 轴的等距点(0,0)m n ≠≠,当m n ≠时,求r 的取值范围.参考答案与试题解析一、选择题(本题共24分,每小题3分)第1~8题均有四个选项,符合题意的选项只有一个. 1.【解答】解:当0x =时,5y =-,因此(0,4)-不在抛物线245y x x =--, 当2x =时,4859y =--=-,因此(2,0)不在抛物线245y x x =--上, 当1x =时,1458y =--=-,因此(1,0)不在抛物线245y x x =--上, 当1x =-时,1450y =+-=,因此(1,0)-在抛物线245y x x =--上, 故选:D .2.【解答】解:弧长为:6062()180cm ππ⨯=. 故选:B .3.【解答】解:将抛物线2y x =先向右平移3个单位长度,得:2(3)y x =-; 再向上平移5个单位长度,得:2(3)5y x =-+, 故选:B .4.【解答】解:四边形ABCD 与四边形A B C D ''''是位似图形,点O 是位似中心,点A '是线段OA 的中点,:1:2OA OA ∴'=, :1:2A B AB ∴''=,∴四边形ABCD 与四边形A B C D ''''的相似比为2:1,周长的比为2:1,面积比为4:1.故选:D . 5.【解答】解:AB 是O 的直径,90ADB ∴∠=︒, 90ADC CDB ∴∠+∠=︒,90903258ADC CDB ∴∠=︒-∠=︒-︒=︒, ABC ADC ∠=∠, 58ABC ∴∠=︒,故选:C .6.【解答】解:抛物线2y x bx c =++经过(1,0)A 、(3,0)B 两点,∴抛物线对称轴为直线1322x +==, 故选:B .7.【解答】解:设2017年底至2019年底,全国拥有民用无人机驾驶执照人数的年平均增长率为x , 则可列出关于x 的方程为22.44(1) 6.72x +=, 故选:C . 8.【解答】解:222(1)1y x x x =-=--,∴函数22y x x =-的最小值为1-,把1y =-代入4y x =+得,14x -=+,解得5x =-,由图象可知,当54a -时,对于任意的实数n ,都存在实数m ,使得当x m =时,函数y n =, 故选:A .二、填空题(本题共24分,每小题3分) 9.【解答】解:如图所示,连接OB 、OC ; 此六边形是正六边形, 360606BOC ︒∴∠==︒, OB OC =,BOC ∴∆是等边三角形, 2OB OC BC ∴===.故答案为:2.10.【解答】解:把(1,3)A 代入2(0)y ax a =≠中, 得231a =⨯, 解得3a =,所以该抛物线的解析式为23y x =. 故答案为:23y x =.11.【解答】解:在Rt ABC ∆中,90C ∠=︒,6AC =,9AB =, 则62sin 93AC B AB ===, 故答案为:23. 12.【解答】解:抛物线开口方向向上, 0a ∴>,对称轴在y 轴的右侧, 0b ∴<,抛物线与y 轴交于负半轴, 0c ∴<.故答案为>,<,<.13.【解答】解:连接OC ,如图所示: 弦CD AB ⊥于点E ,6CD =, 132CE ED CD ∴===,在Rt OEC ∆中,90OEC ∠=︒,3CE =,152OC AB ==, 22534OE ∴=-=, 15412BE OB OE AB OE ∴=-=-=-=, 故答案为:1.14.【解答】解:PA 、PB 是O 的两条切线,60APB ∠=︒,2OA OB ==, 1302BPO APB ∴∠=∠=︒,BO PB ⊥.24PO AO ∴==,22224223PB PO OB ∴=-=-=. 故答案是:23.15.【解答】解:①ODA ∆和OCE ∆为等腰三角形, 1(180)2DOA ODA ∴∠=︒-∠,1(180)2COE OCE ∠=︒-∠;②AD BC =,DC AB =,∴四边形ABCD 为平行四边形(两组对边分别相等的四边形是平行四边形);③连接OA ,AE ,DOA COE ∠=∠,O ∴,A ,E 三点在一条直线上;④35DC BC =,∴设3CD AB BE x ===,5OD AD BC x ===,四边形ABCD 是平行四边形, //AD BC ∴, AOD EOC ∴∆∆∽,∴35855OC x x OD x +==, ∴图形N 是以点O 为位似中心,把图形M 放大为原来的85,故答案为:OCE ;两组对边分别相等的四边形是平行四边形;85.16.【解答】解:(1)连接OP . (4,3)P ,5OP ∴==, 故答案为:5.(2)设CD 交x 轴于J ,过点P 作PT AB ⊥交O 于T ,交AB 于E ,连接CT ,DT ,OT . (4,3)P ,4PE ∴=,3OE =,在Rt OPE ∆中,4tan 3PE POE OE ∠==, OE PT ⊥,OP OT =, POE TOE ∴∠=∠,12PDT POT POE ∴∠=∠=∠,PA PB =.PE AB ⊥, APT DPT ∴∠=∠,∴TC DT =,TDC TCD ∴∠=∠, //PT x 轴, CJO CKP ∴∠=∠,CKP TCK CTK ∠=∠+∠,CTP CDP ∠=∠,PDT TDC CDP ∠=∠+∠, TDP CJO ∴∠=∠, CJO POE ∴∠=∠,4tan tan 3CJO POE ∴∠=∠=. 补充方法:证明CJO EOP ∠=∠时,可以这样证明:90CJO TOJ ∠+∠=︒,90TOJ EOT ∠+∠=︒, CJO EOT ∴∠=∠, EOT EOB ∠=∠,CJO EOP ∴∠=∠,可得结论.故答案为:43.三、解答题(本题共52分,第17、18、20~22题每小题5分,第19题6分,第23~25题每小题5分) 17.【解答】解:原式23321(=-+ 3314+ 134=. 18.【解答】解:(1)△2241(4)204k k =-⨯⨯-=-. 方程有两个不相等的实数根,∴△0>.2040k ∴->,解得5k <;k ∴的取值范围为5k <.(2)当1k =时,原方程化为2230x x +-=, (1)(3)0x x -+=, 10x -=或30x +=,解得11x =,23x =-.19.【解答】解:(1)补全图形见图1.(2)BC 是直径,90BEC ∴∠=︒(直径所对的圆周角是直角). 故答案为:90,直径所对的圆周角是直角. (3)点A 在O 外. 理由如下:连接OA .4BD =,2CD =,6BC BD CD ∴=+=,32BCr ==. AD BC ⊥, 90ODA ∴∠=︒,在Rt AOD ∆中,3AD =,1OD BD OB =-=,∴22221310OA OD AD =++103>,OA r ∴>,∴点A 在O 外.(4)观察图象可知:BAC BEC ∠<∠. 故答案为:<.20.【解答】解:(1)当1x =时,二次函数2(0)y ax bx c a =++≠的最小值为4-,∴二次函数的图象的顶点为(1,4)-,∴二次函数的解析式可设为2(1)4(0)y a x a =--≠,二次函数的图象经过(3,0)点,2(31)40a ∴--=. 解得1a =.∴该二次函数的解析式为2(1)4y x =--;如图,(2)由图象可得0m <或3m >. 21.【解答】(1)证明:如图,连接OC .AB 为O 的直径,AC 为弦,90ACB ∴∠=︒,90OCB ACO ∠+∠=︒. OA OC =, ACO A ∴∠=∠. BCD A ∠=∠, ACO BCD ∴∠=∠. 90OCB BCD ∴∠+∠=︒. 90OCD ∴∠=︒. CD OC ∴⊥. OC 为O 的半径, CD ∴是O 的切线;(2)解:BCD A ∠=∠,9cos 20BCD ∠=, 9cos cos 20A BCD ∴=∠=.在Rt ABC ∆中,90ACB ∠=︒, 2.7AC =,9cos 20A =. 2.769cos 20AC AB A∴===. 32ABOC OE ∴===. 在Rt OCD ∆中,90OCD ∠=︒,3OC =,4CD =,∴5OD =.532DE OD OE ∴=-=-=.22.【解答】解:(1)正方形ABCD 的边长为4,CM x =,1BE =, 4DM DC CM x ∴=-=-,其中01x .故答案是:4x -,01x ; (2)如图,延长MP 交AB 于G ,正方形ABCD 的边长为4,F 为BC 边的中点,四边形PMDN 是矩形,CM x =,1BE =, //PM BC ∴,122BF FC BC ===,BG MC x ==,4GM BC ==, EGP EBF ∴∆∆∽,1EG x =-,∴EG PG EB BF =,即112x PG-=. 22PG x ∴=-,4(22)22DN PM GM PG x x ∴==-=--=+,2(4)(22)268S DM DN x x x x ∴=⋅=-+=-++,其中01x . (3)由(2)知,2268S x x =-++, 20a =-<,∴此抛物线开口向下,对称轴为322b x a =-=,即32x =,∴当32x <时,y 随x 的增大而增大. x 的取值范围为01x ,∴当1x =时,矩形PMDN 的面积最大,此时点P 与点E 重合,此时最大面积为12.23.【解答】解:(1)212y x x =-+,∴对称轴为直线1112()2x =-=⨯-,令0x =,则0y =,∴抛物线与y 轴的交点坐标为(0,0),(2)(34)(21)5A B x x n n n -=+--=+,1(34)1333(1)A x n n n -=+-=+=+,1(21)1222(1)B x n n n -=--=-=-.①当5n <-时,10A x -<,10B x -<,0A B x x -<.A ∴,B 两点都在抛物线的对称轴1x =的左侧,且A B x x <,抛物线212y x x =-+开口向下,∴在抛物线的对称轴1x =的左侧,y 随x 的增大而增大.12y y ∴<;②若点A 在对称轴直线1x =的左侧,点B 在对称轴直线1x =的右侧时, 由题意可得3412111(34)(21)1n n n n +<⎧⎪->⎨⎪-+<--⎩,∴不等式组无解,若点B 在对称轴直线1x =的左侧,点A 在对称轴直线1x =的右侧时, 由题意可得:3412111(21)341n n n n +>⎧⎪-<⎨⎪-->+-⎩,115n ∴-<<-,综上所述:115n -<<-.24.【解答】解:(1)90C ∠=︒,3BC =,30ABC ∠=︒, tan301AC BC ∴=⋅︒=, 22AB AC ∴==, BA BA =',AC AC '='', 30ABC A BC ∴∠'=∠''=︒,ABA ∴∆'是等边三角形,60α∴=︒,2AA AB '==.故答案为:60,2.(2)①补全图形如图所示:结论:AD A D '=.理由:如图2,过点A 作A C ''的平行线,交CC '于点E ,记1β∠=. 将Rt ABC ∆绕点B 顺时针旋转α得到Rt △A BC '', 90A C B ACB ''∴∠=∠=︒,A C AC ''=,BC BC '=.21β∴∠=∠=.3190ACB β∴∠=∠-∠=︒-,290A C D A C B β''''∠=∠+∠=︒+. //AE A C ''90AED A C D β''∴∠=∠=︒+.4180180(90)90AED ββ∴∠=︒-∠=︒-︒+=︒-. 34∴∠=∠. AE AC ∴=. AE A C ''∴=.在ADE ∆和△A DC ''中, ADE A DC AED A C D AE A C ∠=∠''⎧⎪∠=∠''⎨⎪=''⎩, ADE ∴∆≅△()A DC AAS '',AD A D '∴=.②如图1中,当60α=︒时,BD 的值最大,最大值为3. 当120α=︒时,BD 的值最小,最小值1sin30212BD AB =⋅︒=⨯=, 13BD ∴.25.【解答】解:(1)点(6,0)A ,(0B ,23),(3,0)R ,(2,0)S ,(1,3)T , 3AR ∴=,21BR =,4AS =,4BS =,27AT =,2BT =, AS BS ∴=,∴点A 和点B 的等距点是(2,0)S ,故答案为:(2,0)S ;(2)①设等距点的坐标为(,0)x , 2|6|x ∴=-, 4x ∴=或8,∴等距点的坐标为(4,0)或(8,0),故答案为:(4,0)或(8,0);②如图1,设直线y a =上的点Q 为点A 相直线2y =-的等距点,连接QA ,过点Q 作直线2y =-的垂线,垂足为点C ,点Q 为点A 和直线2y =-的等距点, QA QC ∴=,22QA QC ∴=点Q 在直线y a =上,∴可设点Q 的坐标为(,)Q x a222(6)[(2)]x a a ∴-+=--. 整理得2123240x x a -+-=,由题意得关于x 的方程2123240x x a -+-=有实数根.∴△2(12)41(324)16(1)0a a =--⨯⨯-=+.解得1a -; (3)如图2,直线1l 和直线2l 的等距点在直线33:3l y = 直线1l 和y 轴的等距点在直线4:323l y x =-+或53:23l y =+ 由题意得3r 或3r .。
北京西城初三上期末数学试卷

年北京西城初三上期末数学试卷一、选择题(本题共分,每小题分).二次函数2(1)2y x =-+-的最大值是( )..2- .1- .1 .2.如图,四边形ABCD 内接于⊙O ,E 为CD 延长线上一点,如果120ADE ∠=︒,那么B ∠等于( ). .130︒ .120︒ .80︒ .60︒.下列手机软件图标中,既是轴对称图形又是中心对称图形的是( ).. . . ..把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线( ). .2(3)1y x =+-.2(3)3y x =++.2(3)1y x =--.2(3)3y x =-+.ABC △与A B C '''△是位似图形,且ABC △与A B C '''△的位似比是1:2,如果ABC △的面积是3,那么A B C '''△的面积等于( ). .3.6.9.12.如果关于x 的一元二次方程21104x x m -+-=有实数根,那么m 的取值范围是( ). .2m >.3m ≥.5m <.5m ≤.如图,在Rt ABC △中,sin 90ACB ∠=︒,12AC =,5BC =,CD AB ⊥于点D ,那么sin BCD ∠的值是( ). .512 .513 .1213 .125.如图,在1010⨯的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果ABC △是该抛物线的内接格点三角形,32AB =,且点A ,B ,C 的横坐标A x ,B x ,C x 满足A C B x x x <<,那么符合上述条件的抛物线条数是( ). .7.8.14.16二、填空题(本题共分,每小题分).在平面直角坐标系xOy 中,点(2,)A n -在反比例函数6y x=-的图象上,AB x ⊥轴于点B ,那么AOB △的面积等于..如图,将ABC △绕点A 按顺时针方向旋转某个角度得到AB C ''△,使AB CB '∥,CB ,AC '的延长线相交于点D ,如果28D ∠=︒,那么BAC ∠=︒..如图,点D 为ABC △外一点,AD 与BC 边的交点为E ,3AE =,5DE =,4BE =,要使BDE ACE ∽△△,且点B ,D 的对应点为A ,C ,那么线段CE 的长应等于..在平面直角坐标系xOy 中,(,0)A m -,(,0)B m (其中0m >),点P 在以点(3,4)C 为圆心,半径等于2的圆上,如果动点P 满足90APB ∠=︒,(1)线段OP 的长等于(用含m 的代数式表示);(2)m 的最小值为.三、解答题(本题共分,每小题分) .计算:23tan30cos 452sin60︒+︒-︒..解方程:2410x x -+=..如图,在⊙O 中,点P 在直径AB 的延长线上,PC ,PD 与⊙O 相切,切点分别为点C ,点D ,连接CD交AB 于点E .如果⊙O 的半径等于35,1tan 2CPO ∠=,求弦CD 的长..如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.ABC △的三个顶点A ,B ,C 都在格点上,将ABC △绕点A 顺时针方向旋转90︒得到AB C ''△.()在正方形网格中,画出AB C ''△.()计算线段AB 在旋转到AB '的过程中所扫过区域的面积.(结果保留π).某商店以每件20元的价格购进一批商品,若每件商品售价a 元,则每天可卖出(80010)a -件.如果商店计划要每天恰好盈利8000元,并且要使每天的销售量尽量大,求每件商品的售价是多少元..如果关于x 的函数2(2)1y ax a x a =++++的图象与x 轴只有一个公共点,求实数a 的值.四、解答题(本题共分,每小题分).如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在它的北偏东60︒方向上,在A 的正东400米的B 处,测得海中灯塔P 在它的北偏东30︒方向上.问:灯塔P 到环海路的距离PC 约等于多少米?(3取1.732,结果精确到1米).如图,在正方形ABCD 中,有一个小正方形EFGH ,其中顶点E ,F ,G 分别在AB ,BC ,FD 上.()求证:EBF FCD ∽△△. ()连接DH ,如果12BC =,3BF =,求tan HDG ∠的值..如图,在⊙O 中,弦BC ,BD 关于直径AB 所在直线对称.E 为半径OC 上一点,3OC OE =,连接AE并延长交⊙O 于点F ,连接DF 交BC 于点M . ()请依题意补全图形. ()求证:AOC DBC ∠=∠. ()求BMBC的值..已知抛物线C :2=23y x x +-.抛物线顶点坐标 与轴交点坐标 与轴交点坐标抛物线:2=23y x x +-( )A ( )B (1,0)(0,3)-变换后的抛物线1C()补全表中A ,B 两点的坐标,并在所给的平面直角坐标系中画出抛物线C .()将抛物线C 上每一点的横坐标变为原来的2倍,纵坐标变为原来的12,可证明得到的曲线仍是抛物线,(记为1C ),且抛物线1C 的顶点是抛物线C 的顶点的对应点,求抛物线1C 对应的函数表达式.五、解答题(本题共分,第题分,第题分,第题分).如图,在平面直角坐标系xOy 中,点1(,2)2A ,(3,)B n 在反比例函数m y x=(m 为常数)的图象G 上,连接AO 并延长与图象G 的另一个交点为点C ,过点A 的直线l 与x 轴的交点为点(1,0)D ,过点C 作CE x ∥轴交直线l 于点E .()求m 的值及直线l 对应的函数表达式. ()求点E 的坐标. ()求证:BAE ACB ∠=∠..如图,等边三角形ABC 的边长为4,直线l 经过点A 并与AC 垂直.当点P 在直线l 上运动到某一位置(点P 不与点A 重合)时,连接PC ,并将ACP △绕点C 按逆时针方向旋转60︒得到BCQ △,记点P 的对应点为Q ,线段PA 的长为m (0m >). ()①QBC ∠=︒.②如图1,当点P 与点B 在直线AC 的同侧,且3m =时,点Q 到直线l 的距离等于.()当旋转后的点Q 恰好落在直线l 上时,点P ,Q 的位置分别记为0P ,0Q .在图2中画出此时的线段0P C 及0BCQ △,并直接写出相应m 的值.()当点P 与点B 在直线AC 的异侧,且PAQ △的面积等于34时,求m 的值..如图1,对于平面上不大于90︒的MON ∠,我们给出如下定义:若点P 在MON ∠的内部或边界上,作PE OM ⊥于点E ,PF ON ⊥于点F ,则称PE PF +为点P 相对于MON ∠的“点角距离”,记为(,)d P MON ∠.如图2,在平面直角坐标系xOy 中,对于xOy ∠,点P 为第一象限内或两条坐标轴正半轴上的动点,且满足(,)5d P xOy ∠=,点P 运动形成的图形记为图形G .()满足条件的其中一个点P 的坐标是,图形G 与坐标轴围成图形的面积等于.()设图形G 与x 轴的公共点为点A ,已知(3,4)B ,(4,1)M ,求(,)d M AOB ∠的值.()如果抛物线212y x bx c =-++经过(2)中的A ,B 两点,点Q 在A ,B 两点之间的抛物线上(点Q 可与A ,B 两点重合),求当(,)d Q AOB ∠取最大值时,点Q 的坐标.年北京西城初三上期末数学试卷一、选择题(本题共分,每小题分)题号 答案二、填空题(本题共分,每小题分).3.28.415. .(1)m ;(2)3三、解答题(本题共分,每小题分).解:23tan30cos 452sin60︒+︒-︒23233()2322=⨯+-⨯1332=+-12=..解:2410x x -+=. ∵1a =,4b =-,1c =,∴224(4)41112b ac -=--⨯⨯=. ∴2441222b b ac x a -±-±==423232±==±. ∴原方程的解是123x =+,223x =-..解:连接OC .∵PC ,PD 与⊙O 相切,切点分别为点C ,点D , ∴OC PC ⊥,PC PD =,OPC OPD ∠=∠. ∴CD OP ⊥,2CD CE =.∵1tan 2CPO ∠=,∴1tan tan 2OCE CPO ∠=∠=.设OE k =,则2CE k =,5OC k =.(0k >) ∵⊙O 的半径等于35, ∴535k =,解得3k =. ∴6CE =. ∴212CD CE ==..(1)画图如图所示.(2)由图可知ABC △是直角三角形,4AC =,3BC =, 所以5AB =.线段AB 在旋转到AB '的过程中所扫过区域 是一个扇形,且它的圆心角为90︒,半径为5. ∴ 221125ππ5π444AB BSAB '=⨯=⨯=扇形. 所以线段AB 在旋转到AB '的过程中所扫过区域的面积为25π4..解:根据题意,得(20)(80010)8000a a --=.(2080a ≤≤) 整理,得210024000a a -+=. 可得(40)(60)0a a --=. 解方程,得140a =,260a =.当140a =时,800108001040400a -=-⨯=(件). 当260a =时,800108001060200a -=-⨯=(件). 因为要使每天的销售量尽量大,所以40a =.答:商店计划要每天恰好盈利8000元,并且要使每天的销售量尽量大,每件商品的售价应是元..解:(1)当0a =时,函数21y x =+的图象与x 轴只有一个公共点成立.(2)当0a ≠时,函数2(2)1y ax a x a =++++是关于x 的二次函数.∵它的图象与x 轴只有一个公共点,∴关于x 的方程2(2)10ax a x a ++++=有两个相等的实数根.∴2(2)4(1)0a a a ∆=+-+=.整理,得2340a -=. 解得233a =±. 综上,0a =或233a =±.四、解答题(本题共分,每小题分).解:如图,由题意,可得30PAC ∠=︒,60PBC ∠=︒. ∴30APB PBC PAC ∠=∠-∠=︒. ∴PAC APB ∠=∠. ∴ 400PB AB ==.在Rt PBC △中,90PCB ∠=︒,60PBC ∠=︒,400PB =,∴3sin 4002003346.43462PC PB PBC =⋅∠=⨯==≈(米). 答:灯塔P 到环海路的距离PC 约等于346米..()证明:如图.∵正方形ABCD ,正方形EFGH ,∴90B C ∠=∠=︒,90EFG ∠=︒, BC CD =,GH EF FG ==.又∵点F 在BC 上,点G 在FD 上,∴90DFC EFB ∠+∠=︒,90DFC FDC ∠+∠=︒, ∴EFB FDC ∠=∠.(2)解:∵3BF =,12BC CD ==, ∴9CF =,2215DF CF CD =+=.由(1)得BE CFBF CD=. ∴399124BF CF BE CD ⨯⨯===. ∴22154GH FG EF BE BF ===+=. 454DG DF FG =-=. ∴1tan 3GH HDG DG ∠==..(1)补全图形见图.(2)证明:∵弦BC ,BD 关于直径AB 所在直线对称, ∴2DBC ABC ∠=∠. 又∵2AOC ABC ∠=∠, ∴AOC DBC ∠=∠.(3)解:∵»»BF BF =, ∴A D ∠=∠. 又∵AOC DBC ∠=∠, ∴AOE DBM ∽△△. ∴OE BM OA BD=. ∵3OC OE =,OA OC =,∴13BM OE OE BD OA OC ===. ∵弦BC ,BD 关于直径AB 所在直线对称,∴BC BD =. ∴13BM BM BC BD ==..解:(1)(1,4)A --,(3,0)B -.画图象见图.(2)由题意得变换后的抛物线1C 的相关点的坐标如下表所示:抛物线 顶点坐标与轴交点坐标与轴交点坐标变换后的抛物线1C(2,2)A '--(6,0)B '- (2,0)(0, 1.5)-设抛物线1C 对应的函数表达式为 2(2)2y a x =+-.(0a ≠)∵抛物线1C 与y 轴交点的坐标为(0, 1.5)-,∴3422a -=-. 解得18a =.∴221113(2)28822y x x x =+-=+-.∴抛物线1C 对应的函数表达式为2113822y x x =+-.五、解答题(本题共分,第题分,第题分,第题分) .解:(1)∵点1(,2)2A 在反比例函数m y x=(m为常数)的图象G 上, ∴1212m =⨯=. ∴反比例函数m y x =(m 为常数)对应的函数表达式是1y x=.设直线l 对应的函数表达式为y kx b =+(k ,b 为常数,0k ≠).∵直线l 经过点1(,2)2A ,(1,0)D ,∴1220k b k b ⎧+=⎪⎨⎪+=⎩, 解得44k b =-⎧⎨=⎩.∴直线l 对应的函数表达式为44y x =-+.(2)由反比例函数图象的中心对称性可知点C 的坐标为1(,2)2C --. ∵CE x ∥轴交直线l 于点E , ∴E C y y =.∴点E 的坐标为3(,2)2E -.(3)如图,作AF CE ⊥于点F ,与过点B 的y 轴的垂线交于点G ,BG 交AE 于点M , 作CH BG ⊥于点H ,则BH CE ∥,BCE CBH ∠=∠. ∵1(,2)2A ,1(,2)2C --,3(,2)2E-,∴点F 的坐标为1(,2)2F -. ∴CF EF =. ∴AC AE =.∴ACE AEC ∠=∠.∵点(3,)B n 在图象G 上,∴13n =, ∴1(3,)3B ,11(,)23G ,11(,)23H -.在Rt ABG △中,1223tan 1332AG ABH BG -∠===-, 在Rt BCH △中,1223tan 1332CH CBH BH +∠===+, ∴ABH CBH ∠=∠. ∴BCE ABH ∠=∠.∵BAE AMH ABH AEC ABH ∠=∠-∠=∠-∠,ACB ACE BCE ∠=∠-∠, ∴BAE ACB ∠=∠..解:(1)①90QBC ∠=︒;②3m =时,点Q 到直线l 的距离等于32+32. (2)画图如图所示. 433m =. (3)作BG AC ⊥于点G ,过点Q 作直线l 的垂线交l 于点D ,交BG 于点F . ∵CA ⊥直线l , ∴90CAP ∠=︒.易证四边形ADFG 为矩形. ∵等边三角形ABC 的边长为4,∴60ACB ∠=︒,122DF AG CG AC ====,1302CBG CBA ∠=∠=︒. ∵将ACP △绕点C 按逆时针方向旋转60︒得到BCQ △,∴ACP △≌BCQ △.∴AP BQ m ==,90PAC QBC ∠=∠=︒ ︒. ∴60QBF ∠=︒.在Rt QBF △中,90QFB ∠=︒,60QBF ∠=︒,BQ m =, ∴32QF m =.要使PAQ △存在,则点P 不能与点A ,0P 重合,所以点P 的位置分为以下两种情况: 如图,当点P 在(2)中的线段0P A 上(点P 不与点A ,0P 重合)时,可得4303m <<, 此时点Q 在直线l 的下方.∴322DQ DF QF m =-=-. ∵1324APQ S AP DQ =⋅=△, ∴133(2)224m m -=. 整理,得23430m m -+=. 解得133m =或23m =. 经检验,33m =或3在4303m <<的范围内,均符合题意. 如图,当点P 在(2)中的线段0AP 的延长线上(点P 不与点A ,0P 重合)时,可得433m >, 此时点Q 在直线l 的上方.∴322DQ QF DF m =-=-. ∵1324APQ S AP DQ =⋅=△, ∴133(2)224m m -=. 整理,得 234330m m --=. 解得23213m ±=(舍负). 经检验,23213m +=在433m >的范围内,符合题意. 综上所述,33m =或3或23213+时,PAQ △的面积等于34..解:(1)满足条件的其中一个点P 的坐标是(5,0);(说明:点(,)P x y 的坐标满足5x y +=,05x ≤≤,05y ≤≤均可) 图形与坐标轴围成图形的面积等于252. (2)如图,作ME OB ⊥于点E ,MF x ⊥轴于点F ,则1MF =,作MD x ∥轴,交OB 于点D ,作BK x⊥轴于点K .由点B 的坐标为(3,4)B ,可求得直线OB 对应的函数关系式为43y x =. ∴点D 的坐标为3(,1)4D ,313444DM =-=.∴,4sin 5BK AOB OB ∠==, 4sin sin 5MDE AOB ∠=∠=.∴13413sin 455ME DM MDE =⋅∠=⨯=.∴1318(,)155d M AOB ME MF ∠=+=+=.(3)∵抛物线212y x bx c =-++经过(5,0)A ,(3,4)B 两点,∴221055214332b c b c ⎧=-⨯++⎪⎪⎨⎪=-⨯++⎪⎩,解得252b c =⎧⎪⎨=⎪⎩.∴抛物线对应的函数关系式为215222y x x =-++.如图,作QG OB ⊥于点G ,QH x ⊥轴于点H .作QN x ∥轴,交OB 于点N .设点Q 的坐标为(,)Q m n ,其中35m ≤≤, 则215222QH n m m ==-++. 同(2)得4sin sin 5QNG AOB ∠=∠=. ∴点N 的坐标为3(,)4N n n ,34NQ m n =-.∴43sin ()54QG NQ QNG m n =⋅∠=-4355m n =-. ∴4342(,)5555d Q AOB QG QH m n n m n ∠=+=-+=+24215(2)5522m m m =+-++ 218155m m =-++2121(4)55m =--+.∴当4m =(在35m ≤≤范围内)时,(),d Q AOB ∠取得最大值215. 此时点Q 的坐标为5(4,)2.年北京西城初三期末上数学试卷部分解析一、选择题 .【答案】【解析】二次函数2(1)2y x =-+-的最大值是2-.故选. .【答案】【解析】四边形ABCD 内接于⊙O ,120B ADE ∠=∠=︒. 故选. .【答案】【解析】既是轴对称图形又是中心对称图形的是只有B ,选项A 、C 是轴对称图形,选项D 是中心对称图形. 故选. .【答案】【解析】把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线为2(3)1y x =--.故选. .【答案】【解析】ABC △与A B C '''△是位似图形,且ABC △与A B C '''△的位似比是1:2,面积比等于相似比的平方,即ABC △的面积是3,则A B C '''△的面积等于12. 故选. .【答案】【解析】关于x 的一元二次方程21104x x m -+-=有实数根,114(1)1404m m ∆=--=-+≥,解得5m ≤.故选..【答案】【解析】∵90ACB ∠=︒,CD AB ⊥, ∴BCD A ∠=∠.在在Rt ABC △中,90ACB ∠=︒,12AC =,5BC =,13AB =. 5sin sin 13BC BCD A AB ∠=∠==. 故选. .【答案】【解析】当(1,1)A ,(4,4)B ,(2,0)C 时,过A 、B 、C 三点的抛物线为2(2)y x =-,符合题意. 将此抛物线依次向右平移,再向上平移1个单位,都符合题意,当(4,4)B 依次平移到(5,5)B 、(6,6)B 、(7,7)B 、(8,8)B 、(9,9)B 、(10,10)B ,一共有7个;同理,当(0,0)A ,(2,4)B ,(3,3)C 时,过A 、B 、C 三点的抛物线为2(2)4y x =--+,符合题意. 将此抛物线依次向右平移,再向上平移1个单位,都符合题意,当(3,3)B 依次平移到(4,4)B 、(5,5)B 、(6,6)B 、(7,7)B 、(8,8)B 、(9,9)B ,一共有7个.故符合上述条件的抛物线一共有7714+=条. 故选.二、填空题 .【答案】3【解析】点(2,)A n -在反比例函数6y x=-的图象上,32AOB k S ==△.答案为3. .【答案】28【解析】依题可知,AB CB '∥,28D B AC ''∠=∠=︒.有旋转的性质可知28BAC B AC ''∠=∠=︒. 故答案为28..【答案】415【解析】∵BDE ACE ∽△△,∴43DE BE CE AE ==,∵3AE =,5DE =,4BE =,∴31544CE DE ==. 故答案为415. .【答案】(1)m ;(2)3【解析】∵90APB ∠=︒,AO BO =,∴12PO AB OA OB m ====. OC CP PO OC CP -+≤≤,(3,4)C ,5OC =,2CP r ==, ∴OP 最小值为3.故答案为(1)m ;(2)3.。
西城区2023-2024学年第一学期期末九年级数学试题

西城区2023-2024学年度第一学期期末试卷 九年级数学 2024.1第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 若抛物线23y x x c =++经过点()0,2,则c 的值为( ) A. 2 B. 1 C. 0D. 2-2. 北京城区的胡同中很多精美的砖雕美化了生活环境,砖雕形状的设计采用了丰富多彩的图案.下列砖雕图形中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.3. 不透明的袋子中装有2个白球和3个黑球,除颜色外,这5个小球无其他差别.随机从袋子中摸出3个球,下列事件中是必然事件的是( ) A. 3个球都是白球 B. 至少有1个黑球 C. 3个球都是黑球D. 有1个白球2个黑球4. 下列关于函数21y x =-的结论中,正确的是( ) A. y 随x 的增大而减小B. 当0x >时,y 随x 的增大而增大C. 当0x <时,y 随x 的增大而增大D. 当0x >时,y 随x 的增大而减小5. 小云从正面观察三星堆青铜太阳轮(如图所示),发现它的正面图形可近似地看作是将圆五等分得到的图中角α的度数为( )A. 60°B. 70°C. 72°D. 75°6. 某城区采取多项综合措施降低降尘量提升空气质量,降尘量由2020年的5.2吨/平方公里下降至2022年的3.6吨/平方公里月,若设降尘量的年平均下降率为x ,则可列出关于x 的方程为( ) A. ()3.612 5.2x += B. ()5.212 3.6x -= C. ()23.61 5.2x +=D. ()25.21 3.6x -=7. 如图,AB 为O 的直径,弦CD 交AB 于点E ,BE BC =.若40CAB ∠=︒,则BAD ∠的大小为( )A. 45︒B. 50︒C. 55︒D. 65︒8. 如图,抛物线2y ax bx c =++()0a ≠经过点()1,0-.下面有四个结论:①0a >;②20a b +<;③420a b c ++>;④关于x 的不等式()20ax b c x +->的解集为10x -<<.其中所有正确结论的序号是( )A. ①②B. ②③C. ③④D. ②③④第二部分 非选择题二、填空题(共16分,每题2分)9. 在平面直角坐标系中,点()3-2,关于原点的对称点坐标为 ___________. 10. 一元二次方程2250x -=的解为__________. 11. 已知O 的半径为6cm ,点P 在O 外,则OP ___6cm (填“>”、“ <”或“=” )12. 若关于x 的一元二次方程260x x k -+=有两个相等的实数根,则k 的值为______. 13. 写出一个开口向上,并且经过原点的抛物线的解析式,y =________.14. 如图,四边形ABCD 内接于O ,110A ∠=︒,则C ∠=________°,依据是________.15. 中国邮政集团公司曾发行《二十四节气》特殊版式小全张(图1),其中的24枚邮票大小相同,上面绘制了代表二十四节气风貌的图案,这24枚邮票组成了一个圆环,传达了四季周而复始、气韵流动的理念和中国传统文化中圆满、圆融的概念,以“大雪”节气单枚邮票为例(图2),该邮票的“上圆弧”的长为l ,“直边长”为d ,“下圆弧”的长为x ,则x =________(用含l ,d 的式子表示).16. 如图,在三角尺ABC 中,90ACB ∠=︒,30ABC ∠=︒,1AC =.把CB 边放在直尺l 上,让三角尺在桌面上沿直尺l 按顺时针方向无滑动地滚动,直到CB 边再一次落到直尺l 上时停止滚动.三角尺的第一次滚动可看成将三角尺绕点B 顺时针旋转了150︒ ,记为(),150B ︒.有以下三个结论:①第一次滚动的过程中,点C 运动的路径长为2π; ②第二次滚动可记为(),120A ︒;③点A ,点B ,点C 在滚动全程中,运动路径最长的是点B . 上述结论中,所有正确结论的序号是________.三、解答题(共68分,第17-18题,每题5分,第19题6分,第20-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)17. 解方程:2630x x -+=. 18. 已知二次函数2245y x x =-+.(1)将2245y x x =-+化成()2y a x h k =-+的形式;(2)抛物线2245y x x =-+可以由抛物线22y x =经过平移得到,请写出一种平移方式.19. 两个质地均匀的正方体M 和N ,正方体M 的六个面分别标有数字“0”,“1”,“2”,“3”,“4”,“5;正方体N 的六个面分别标有数字“0”,“1”,“2”,“6”,“7”,“8”.掷小正方体后,观察朝上一面的数字.(1)掷一次正方体M 时,出现奇数的概率是多少;(2)如果先掷一次正方体M ,再掷一次正方体N 得到两个数字,如先后挪到“0”和“1”记为01,可表示某月的01日;先后掷到“5”和“8”记为58,不能表示某月的日期.求先后各掷一次正方体M 和正方体N ,得到的两个数字能组成一月的一个日期的概率.20. 在平面直角坐标系xOy 中,抛物线22y x x c =-+与x 轴的一个交点为()1,0A -.(1)c =________;(2)画出函数22y x x c =-+的图像;(3)当22x -<≤时,结合函数图像直接写出y 的取值范围. 21. 已知关于x 的一元二次方程2(2)10x m x m -+++=. (1)求证:无论m 取何值,方程总有两个实数根;(2)若方程的一个实数根是另一个实数根的两倍,求m 的值.22. 如图,AB 是O 的弦,半径OC AB ⊥,垂足为D .120ACB ∠=︒,6AB =,求O 的半径.23. 在平面直角坐标系xOy 中,ABC 的三个顶点的坐标分别为()2,5A -,()3,0B -,()1,2C .将ABC 绕原点O 顺时针旋转90°得到A B C ''',点A ,B ,C 的对应点分别为A ',B ',C '.(1)画出旋转后的A B C '''; (2)直接写出点C '的坐标;(3)记线段B C ''与线段BC 的交点为G ,直接写出BGC '∠的大小.24. 如图,AB 是O 的直径,AB BC =,AC 交O 于点D ,点F 在OD 的延长线上且12FAD ABC ∠=∠.(1)求证:AF 是O 的切线;(2)若8AF =,4DF =,求AC 的长.25. 如图,小云在生活中观察到一个拱门,拱门的上方拱线M 和下方拱线N 的最高点均为点C ,拱门的跨径间对称分布有8根立柱.他搜集到两条拱线的相关数据,拱线N 的跨径AB 长为14m ,高HC 为6.125m .HC 右侧的四根立柱在拱线N 上的端点D ,E ,F ,B 的相关数据如下表所示.根据以上信息,解答下列问题:(1)选取拱线M 上的任意三点,通过尺规作图作出拱线M 所在的圆;(2)建立适当的平面直角坐标系,选取拱线N 上的点,求出拱线N 所在的抛物线对应的函数解析式,并验证拱线N 上的其他已知点都在抛物线上,写出验证过程(不添加新的字母).26. 在平面直角坐标系xOy 中,()1,A t y ,()21,B t y +,()33,C t y +三点都在抛物线224y ax ax =-+(0a >)上.(1)这个抛物线的对称轴为直线________. (2)若132y y y >≥,求t 的取值范围;(3)若无论t 取任何实数,点A ,B ,C 中都至少有两个点在x 轴的上方,直接写出a 的取值范围. 27. 在ABC 中,90ACB ∠=︒,AC BC =,CM AB ⊥于点M .点P 在射线CM 上,连接AP ,作CD AP ⊥于点D .连接MD ,作CE MD ⊥于点E ,作DFAB 交直线CE 于点F ,连接MF .(1)当点P 在线段CM 上时,在图1中补全图形,并直接写出ADM ∠的度数;(2)当点P 在线段CM 的延长线上时,利用图2探究线段DF 与AM 之间的数量关系,并证明; (3)取线段MF 的中点K ,连接BK ,若8AC =,直接写出线段BK 的长的最小值.28. 如图,在平面直角坐标系xOy 中,点()1,0S -,()1,0T .对于一个角α(0180α︒<≤︒),将一个图形先绕点S 顺时针旋转α,再绕点T 逆时针旋转α,称为一次“α对称旋转”.(1)点R 在线段ST 上,则在点()1,1A -,()3,2B -,()2,2C -,()0,2D -中,有可能是由点R 经过一次“90︒对称旋转”后得到的点是________;(2)x 轴上的一点P 经过一次“α对称旋转”得到点Q . ①当60α=︒时,PQ =________; ①当30α=︒时,若QT x ⊥轴,求点P 的坐标;(3)以点O 为圆心作半径为1的圆.若在O 上存在点M ,使得点M 经过一次“α对称旋转”后得到的点在x 轴上,直接写出α的取值范围.。
2023北京西城区初三(上)期末数学试题及参考答案

2023北京西城初三(上)期末数 学满分100分,考试时间120分钟.第一部分选择题一、选择题(共16分,每题2分)1.二次函数y =(x -2)2+3的最小值是() A.3 B.2 C.-2 D.-32.中国传统扇文化有着深厚的文化底蕴,是中华民族文化的一个组成部分,在中国传统社会中,扇面形状的设计与日常生活中的图案息息相关,下列扇面图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3.下列事件中是随机事件的是( )A.明天太阳从东方升起B.经过有交通信号灯的路口时遇到红灯C.平面内不共线的三点确定一个圆D.任意画一个三角形,其内角和是540︒4.如图,在O 中,弦AB ,CD 相交于点P ,45A ∠=︒,80APD ∠=︒,则B ∠的大小是( )A.35°B.45°C.60°D.70°5.抛物线221y x =−+通过变换可以得到抛物线()2213y x =−++,以下变换过程正确的是( )A.先向右平移1个单位,再向上平移2个单位B.先向左平移1个单位,再向下平移2个单位C.先向右平移1个单位,再向下平移2个单位D.先向左平移1个单位,再向上平移2个单位6.要组织一次篮球联赛,赛制为单循环形式(每两队之间都只赛一场),计划安排15场比赛,如果设邀请x 个球队参加比赛,那么根据题意可以列方程为( )A.215x =B.()115x x +=C.()115x x −=D. ()1152x x −=7. 如图,在等腰ABC 中,120A ∠=︒,将ABC 绕点C 逆时针旋转()090αα︒<<︒得到CDE ,当点A 的对应点D 落在BC 上时,连接BE ,则BED ∠的度数是( )A.30°B.45°C.55°D.75°8.下表记录了二次函数()220y ax bx a =++≠中两个变量x 与y 的5组对应值,其中121x x <<.根据表中信息,当02x −<<时,直线y k =与该二次函数图象有两个公共点,则k 的取值范围是( ). A. 726k << B. 726k <≤ C. 823k << D. 823k <≤第二部分非选择题二、填空题(共16分,每题2分)9.一元二次方程x 2﹣16=0的解是_____.10.已知O 的半径为5,点P 到圆心O 的距离为8,则点P 在O ______(填“内”“上”或“外”).11.若关于x一元二次方程230x x c ++=有两个相等的实数根,则c 的值为__________.12.圆心角是60°的扇形的半径为6,则这个扇形的面积是_____.13.点()3,M m 是抛物线2yx x 上一点,则m 的值是______,点M 关于原点对称的点的坐标是______.14.已知二次函数满足条件:①图像象过原点;②当1x >时,y 随x 的增大而增大,请你写出一个满足上述条件的二次函数的解析式:______.15.如图,在平面直角坐标系xOy 中,以点)A 为圆心,1为半径画圆,将A 绕点O 逆时针旋转的()0180αα︒<<︒得到A ',使得A '与y 轴相切,则α的度数是____.16.如图,AB 是O 的直径,C 为O 上一点,且AB OC ⊥,P 为圆上一动点,M 为AP 的中点,连接CM ,若O 的半径为2,则CM 长的最大值是_____.三、解答题(共68分,第17-18题,每题5分,第19题6分,第20-23题5分,第24-26题,每题6分,第27-28题,每题7分)17. 解方程:2420x x −+=18. 已知:点A ,B ,C 在O 上,且45BAC ∠=︒.求作:直线l ,使其过点C ,并与O 相切.作法:①连接OC ;②分别以点B ,点C 为圆心,OC 长为半径作弧,两弧交于O 外一点D ;③作直线CD .直线CD 就是所求作直线l .(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面证明.证明:连接OB ,BD ,∵OB OC BD CD ===,∴四边形OBDC 菱形,∵点A ,B ,C 在O 上,且45BAC ∠=︒, ∴BOC ∠=______°(_________________)(填推理的依据).∴四边形OBDC 是正方形,∴90OCD ∠=︒,即OC CD ⊥,∵OC 为O 半径,∴直线CD 为O 的切线(_________________)(填推理的依据).19.已知二次函数2=23y x x −−.(1)将2=23y x x −−化成()2y a x h k =−+的形式,并写出它的顶点坐标; (2)在所给的平面直角坐标系中画出此函数的图象;(3)当12x −<<时,结合图象,直接写出函数值y 的取值范围.20.如图,AB 是O 的一条弦,点C 是AB 的中点,连接OC 并延长交劣弧AB 于点D ,连接OB ,DB ,若4AB =,1CD =,求BOD 的面积.21.在学习《用频率估计概率》时,小明和他的伙伴们设计了一个摸球试验:在一个不透明帆布袋中装有白球和红球共4个,这4个球除颜色外无其他差别,每次摸球前先将袋中的球搅匀,然后从袋中随机摸出1个球,观察该球的颜色并记录,再把它放回,在老师的帮助下,小明和他的伙伴们用计算机模拟这个摸球试验,下图显示的是这个试验中摸出一个球是红球的结果.(1)根据所学的频率与概率关系的知识,估计从这个不透明的帆布袋中随机摸出一个球是红球的概率是的是______,其中红球的个数是______;(2)如果从这个不透明的帆布袋中同时摸出两个球,用列举法求摸出的两个球刚好一个是红球和一个是白球的概率.22.如图,在四边形ABCD 中,AC ,BD 是对角线,将点B 绕点C 逆时针旋转60°得到点E ,连接AE ,BE ,CE .(1)求CBE ∠的度数;(2)若ACD 是等边三角形,且30ABC ∠=︒,3AB =,5BD =,求BE 的长.23. 已知关于x 的方程22x 2mx m 90−+−=.(1)求证:方程有两个不相等的实数根;(2)设此方程的两个根分别为1x ,2x ,且12x x >,若1225x x =+,求m 的值.24. 如图,在ABC 中,AB AC =,90BAC ∠=︒,点O 是AC 上一点,以O 为圆心,OA 长为半径作圆,使O 与BC 相切于点D ,与AC 相交于点E .过点B 作BF AC ∥,交ED 的延长线于点F .(1)若4AB =,求O 的半径;(2)连接BO ,求证:四边形BFEO 是平行四边形.25.跳台滑雪是冬季奥运会的比赛项目之一,如图,运动员通过助滑道后在点A 处起跳经空中飞行后落在着陆坡BC 上的点P 处,他在空中飞行的路线可以看作抛物线的一部分,这里OA 表示起跳点A 到地面OB 的距离,OC 表示着陆坡BC 的高度,OB 表示着陆坡底端B 到点O 的水平距离,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系:2116y x bx c =−++,已知70m OA =,60m OC =,落点P 的水平距离是40m ,竖直高度是30m .(1)点A 的坐标是_____,点P 的坐标是_______;(2)求满足的函数关系2116y x bx c =−++; (3)运动员在空中飞行过程中,当他与着陆坡BC 竖直方向上的距离达到最大时,直接写出此时的水平距离.26.在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++≠的对称轴为直线x t =,且320a b c ++=.(1)当0c 时,求t 的值;(2)点()12,y −,()21,y ,()33,y 在抛物线上,若0a c ,判断1y ,2y 与3y 的大小关系,并说明理由.27.如图,在ABC 中,AC BC =,90ACB ∠=︒,45APB ∠=︒,连接CP ,将线段CP 绕点C 顺时针旋转90°得到线段CQ ,连接AQ .(1)依题意,补全图形,并证明:AQ BP =;(2)求QAP ∠度数;(3)若N 为线段AB 的中点,连接NP ,请用等式表示线段NP 与CP 之间的数量关系,并证明. 28.给定图形W 和点P ,Q ,若图形W 上存在两个不重合的点M ,N ,使得点P 关于点M 的对称点与点Q 关于点N 的对称点重合,则称点P 与点Q 关于图形W 双对合.在平面直角坐标系xOy 中,已知点()1,2−−A ,()5,2B −,()1,4C −.(1)在点()4,0D −,()2,2E ,()6,0F 中,与点O 关于线段AB 双对合的点是______;(2)点K 是x 轴上一动点,K 的直径为1. ①若点A 与点()0,T t 关于K 双对合,求t 的取值范围;②当点K 运动时,若ABC 上存在一点与K 上任意一点关于K 双对合,直接写出点K 横坐标k 的取值范围.的参考答案第一部分选择题一、选择题(共16分,每题2分)1.【答案】A【解析】【分析】根据二次函数的性质解答即可.【详解】二次函数y=(x-2)2+3,当x=2时,最小值是3,故选A.【点睛】本题考查的是二次函数的最值,掌握二次函数的性质是解题的关键.2.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A.是轴对称图形,不是中心对称图形,故A选项不合题意;B.是轴对称图形,不是中心对称图形,故B选项不符合题意;C.既是轴对称图形,又是中心对称图形,故C选项合题意;D.是轴对称图形,不是中心对称图形,故D选项不合题意.故选:C.【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.3.【答案】B【解析】【分析】根据随机事件的定义,逐项判断即可求解.【详解】解:A.明天太阳从东方升起,是必然事件,故本选项不符合题意;B.经过有交通信号灯的路口时遇到红灯,是随机事件,故本选项符合题意;C.平面内不共线的三点确定一个圆,是必然事件,故本选项不符合题意;D.任意画一个三角形,其内角和是540︒,是不可能事件,故本选项不符合题意;故选:B.【点睛】本题主要考查的是必然事件、不可能事件、随机事件的概念,熟练掌握必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.4.【答案】A【解析】【分析】根据三角形的外角的性质可得C A APD ∠+∠=∠,求得C ∠,再根据同弧所对的圆周角相等,即可得到答案.【详解】解:C A APD ∠+∠=∠,45A ∠=︒,80APD ∠=︒,804535C APD A ∴∠=∠−∠=︒−︒=︒,35B C ∴∠=∠=︒,故选:A .【点睛】本题考查了圆周角定理及三角形的外角的性质,熟练掌握知识点是解题的关键.5.【答案】D【解析】【分析】由平移前后的解析式,结合平移法则即可得解;【详解】解:抛物线221y x =−+通过先向左平移1个单位,再向上平移2个单位可以得到抛物线()2213y x =−++,故选择:D【点睛】本题考查抛物线的平移.熟练掌握二次函数平移规律是解题的关键.6.【答案】D【解析】【分析】赛制为单循环形式(每两队之间都赛一场),x 个球队比赛总场数()112x x =−,由此可得出方程.【详解】解:设邀请x 个队,每个队都要赛()1x −场,但两队之间只有一场比赛, 由题意得(1)152x x −=. 故选:D .【点睛】本题考查了由实际问题抽象一元二次方程的知识,解决本题的关键是读懂题意,得到总场数与球队之间的关系.7.【答案】B【解析】【分析】由等腰三角形的性质和三角形内角和定理,得30ABC ACB ∠=∠=︒,根据旋转的性质,得BC CE =,30DCE DEC ABC ACB ∠=∠=∠=∠=︒,再由等腰三角形和三角形内角和定理得()118030752CBE CEB ∠=∠=︒−︒=︒,即可求得BED BEC CED ∠=∠−∠. 【详解】解:AB AC =,120A ∠=︒,30ABC ACB ∴∠=∠=︒,由旋转得,BC CE =,30DCE DEC ABC ACB ∠=∠=∠=∠=︒,()118030752CBE CEB ∴∠=∠=︒−︒=︒, 753045BED BEC CED ∴∠=∠−∠=︒−︒=︒,故选:B .【点睛】本题考查了旋转的性质,等腰三角形的性质和三角形内角和定理,熟练掌握知识点是解题的关键.8.【答案】C【解析】【分析】根据表中数据得出对称轴=1x −,进而得到抛物线与x 轴的交点,利用交点式得到()()31y a x x =+−,从而得到二次函数表达式为224233y x x =−−+,根据当502x −<<时,直线y k =与该二次函数图像有两个公共点,可得823k <<. 【详解】解:由()()53m m −,、,可得抛物线对称轴5312x −+==−, 又由()()1,01,0x 、以及对称轴=1x −可得13x =−,()()3,01,0∴−、,则设抛物线交点式为()()31y a x x =+−,()()()22312323y a x x a x x ax ax a =+−=+−=+−与()220y ax bx a =++≠对比可得32a −=,解得23a =−, ∴二次函数表达式为224233y x x =−−+, ∴当52x =−时,2557313226y ⎛⎫⎛⎫=−−+−−= ⎪⎪⎝⎭⎝⎭; 当0x =时,2y =; 当=1x −时,()()28131133y =−−+−−=, 78263<<,当502x −<<时,直线y k =与该二次函数图像有两个公共点, ∴823k <<, 故选:C【点睛】本题考查二次函数图像与性质,掌握二次函数表达式的求法是解决问题的关键. 第二部分非选择题二、填空题(共16分,每题2分)9.【答案】x 1=﹣4,x 2=4【解析】【分析】直接运用直接开平方法进行求解即可.【详解】解:方程变形得:x 2=16,开方得:x =±4,解得:x 1=﹣4,x 2=4.故答案为:x 1=﹣4,x 2=4【点睛】本题考查了一元二次方程的解法,掌握直接开平方法是解答本题的关键. 10.【答案】外【解析】【分析】点与圆的位置关系有3种.设O 的半径为r ,点P 到圆心的距离OP d =,则有:①点P 在圆外⇔d r ;②点P 在圆上⇔d r =;③点P 在圆内⇔d r <,由此即可判断; 【详解】解:=5r ,8d =, d r ∴>,∴点P 在O 外,故答案为:外.【点睛】本题考查点与圆的位置关系,记住:①点P 在圆外⇔d r ;②点P 在圆上⇔d r =;③点P 在圆内⇔d r <是解题的关键.11.【答案】94【解析】【分析】根据判别式0∆=求解即可.【详解】解:∵一元二次方程230x x c ++=有两个相等的实数根,∴2340c ∆=−=,解得94c =. 故答案为:94. 【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 12.【答案】6π【解析】【分析】根据扇形的面积公式S =2π360n r 计算,即可得出结果.【详解】解:该扇形的面积S =2606360π⨯=6π. 故答案为6π.【点睛】本题考查了扇形面积的计算,熟记扇形的面积公式是解题的关键.13.【答案】①.6②.(3,6)−−【解析】 【分析】将()3,M m 代入二次函数解析式,得出()36M ,,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:∵点()3,M m 是抛物线2yx x 上一点,∴2336m =−=, ∴()36M ,,∴点M 关于原点对称的点的坐标是(3,6)−−,故答案为:6,(3,6)−−.【点睛】本题考查了二次函数的性质,关于原点对称的点的坐标特征,求得点()36M ,是解题的关键.14. 【答案】22y x x =−(答案不唯一)【解析】【分析】根据二次函数的图像与性质可以得出各系数的取值范围,举一例即可.【详解】解:图像过原点,∴可以设解析式为:()1y ax x x =−,当1x >时,y 随x 的增大而增大,∴0a >,开口向上,且对称轴112x x =≤, 即12x ≤, ∴可以设二次函数为()1y ax x x =−,满足102a x >≤,均可.故答案不唯一,如:22y x x =−.【点睛】本题考查二次函数的图像与性质,掌握二次函数的图像与各系数间的关系是解题的关键. 15.【答案】45︒或135︒【解析】【分析】分析可知:A 在以O 为半径的圆上运动,分情况讨论,当A 转到A '时,OA '=,作A B y '⊥轴与点B ,利用勾股定理可知1OB =,进一步可求出旋转角度为45︒;当A 转到A ''时,OA ''=A C x '⊥轴与点C ,利用勾股定理可知1OC =,进一步可求出旋转角度为135︒.【详解】解:∵)A ,将A 绕点O 逆时针旋转()0180αα︒<<︒得到A '∴A 在以O 为半径的圆上运动,当A 转到A '时,OA '=,作A B y '⊥轴于点B ,∵A '半径为1,A '与y 轴相切,∴1BA '=,由勾股定理可得:1OB ===, ∴OBA '为等腰直角三角形,∴45BOA '∠=︒,45AOA '∠=︒,即旋转角度为45︒;当A 转到A ''时,OA ''=A C x '⊥轴于点C ,∵A ''半径为1,A ''与y 轴相切,∴1CA ''=,由勾股定理可得:1OC ===, ∴OCA ''△为等腰直角三角形,∴45COA ''∠=︒,18045135AOA ''∠=︒−︒=︒,即旋转角度为135︒;故答案为:45︒,135︒【点睛】本题考查圆与切线,旋转,等腰直角三角形,勾股定理,解题的关键是掌握切线的性质,旋转,理解A 在以O16.1##1+【解析】【分析】连接OM ,PB ,取AO 中点D ,连接CD DM 、、PB ,AB 是⊙O 的直径,可推出90APB ∠=︒和AMO APB ~,由此可知90APB AMO ∠=∠=︒,则M 在以AO 为直径的圆上,当CM 与D 点重合时,CM 最大,根据AB OC ⊥求出CD 长代入即可.【详解】解:连接OM ,PB ,∵AB 是⊙O 的直径,∴90APB ∠=︒,∵M 为AP 的中点,O 为AB 的中点,∴AMO APB ~,∴90APB AMO ∠=∠=︒,取AO 中点D ,连接CD DM 、,∴M 在以AO 为直径的圆上,∵三角形两边之和大于第三边,且O 的半径为2,∴1DM =,∴当CM 与D 点重合时,CM 最大,∴CM CD DM =+,∵AB OC ⊥,∴CD ==,∴1CM =,1+.【点睛】本题考查了直径所对的圆周角是90︒及三角形的中位线的性质,熟练掌握数形结合思想是解题关键. 三、解答题(共68分,第17-18题,每题5分,第19题6分,第20-23题5分,第24-26题,每题6分,第27-28题,每题7分)17.【答案】12x =+22x =;【解析】【分析】选用配方法可解此方程.【详解】解:x 2-4x+2=0x 2-4x+4-2=0(x-2)2=2∴x-2=解得:12x =+22x =故答案为12x =,22x =【点睛】本题考查了选用适当的方法解一元二次方程.18.【答案】(1)见解析;(2)90°;一条弧所对的圆周角等于它所对的圆心角的一半;经过半径的外端并且垂直于这条半径的直线是圆的切线【解析】【分析】(1)按照题中作法步骤作图即可;(2)根据圆周角定理和切线的判定定理填空.【小问1详解】解:补全图形,如图所示;【小问2详解】90°;一条弧所对的圆周角等于它所对的圆心角的一半;经过半径的外端并且垂直于这条半径的直线是圆的切线.【点睛】本题考查作图-复杂作图,圆周角定理,切线的判断和性质,熟练掌握知识点是解题的关键.19.【答案】(1)2(1)4y x =−−,()1,4−(2)见解析(3)40y −≤<【解析】 【分析】(1)运用配方法将原解析式化为顶点式即可;(2)根据(1)所得的顶点式解析式,利用五点作图法直接画出图像即可;(3)根据函数图像确定当12x −<<时对应的y 的取值范围即可.【小问1详解】2=23y x x −−22113x x =−+−−2(1)4x =−−.【小问2详解】列表如下:【小问3详解】由图象可得,当12x −<<时,4<0y −≤.【点睛】本题主要考查了二次函数的顶点式、二次函数的图象、二次函数的性质等知识点,准确画出二次函数的图象成为解答本题的关键.20.【答案】52【解析】【分析】设O 的半径为x ,由垂径定理得出BC ,用含x 的式子表示OC ,再根据勾股定理列方程解得半径的长,即可求解.【详解】解:设OD x =,则OB x =.点C 是AB 的中点,OC 过圆心O ,OC AB ∴⊥.4AB =,1CD =,122BC AB ∴==,1OC OD CD x =−=−. 在Rt BCO △中,222OB OC BC =+,222(1)2x x ∴=−+.解得,52x =.52OD ∴=. 1522BOD S OD BC =⋅⋅=∴. 【点睛】本题考查了垂径定理,勾股定理,根据垂径定理判断出OC 是AB 的垂直平分线是解题的关键. 21.【答案】(1)0.75,3(2)12【解析】【分析】(1)根据图表中的频率分布可估计概率,再利用总数乘以概率可得红球个数;(2)列出表格,利用概率公式计算.【小问1详解】解:由图表可知:摸出红球的频率分布在0.75上下,则可估计随机摸出一个球是红球的概率是0.75,红球的个数是:40.753⨯=,故答案为:0.75,3;小问2详解】 由(1)可知帆布袋中有3个红球和1个白球. 列表如下:(白,红1),(白,红2),(白,红3),(红1,红2),(红1,红3),(红2,红3),且这些结果出现的可能性相等,其中摸出的两个球刚好一个是红球和一个是白球(记为事件A )共有3种结果,即(白,红1),(白,红2),(白,红3), 所以31()62P A ==. 【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了利用频率估计概率.22.【答案】(1)60︒(2)4【解析】【分析】(1)根据旋转的性质得到CB CE =,60BCE ∠=︒,进而证明BCE 为等边三角形,即可得到答案;(2)首先证明ACE DCB ≅,之后在Rt ABE 中根据勾股定理得到BE 的长.【小问1详解】 解:将点B 绕点C 逆时针旋转60︒得到点E ,CB CE ∴=,60BCE ∠=︒,BCE ∴△是等边三角形,60CBE ∴∠=︒.【小问2详解】解:ACD 是等边三角形,AC DC ∴=,60ACD ∠=︒ ,ACE DCB ∴∠=∠,又CB CE =,ACE DCB ∴≅ ,AE BD ∴=,5BD =,5AE ∴=.60CBE ∠=︒,30ABC ∠=︒,90ABE ∴∠=︒,∴在Rt ABE 中,B E3AB =,4BE ∴=.【点睛】本题主要考查旋转的性质,等边三角形的判定性质,全等三角形的判定与性质,勾股定理,掌握相关定理是解题的关键.23.【答案】(1)见解析;(2)4−.【解析】【分析】(1)根据方程的系数结合根的判别式,即可得出0∆>,由此可证出此方程有两个不相等的实数根; (2)解方程,再由12x x >,1225x x =+,即可得到关于m 的一元一次方程,解之即可得出结论.【小问1详解】证明:()()222419m m ∆=−−⨯⨯−224436m m =−+360=>.∴方程有两个不相等的实数根.【小问2详解】解:解方程,得22622m m x ±±==,12x x >,13x m ∴=+,23x m =−.1225x x =+,()2335m m ∴+=−+.4m ∴=−.【点睛】本题考查了根的判别式、根与系数的关系,解题的关键是掌握根的判别式、根与系数的关系的表达式,并会熟练计算.24.【答案】(1)4;(2)见解析.【解析】【分析】(1)连接OD ,由⊙O 与AB 相切于点A ,与BC 相切于点D ,得到90ODC OD DC ∠=︒=,,由切线长定理得:4BD AB ==,由勾股定理求出BC =O 的半径.(2)连接AD ,交OB 于点H ,由AE 是⊙O 的直径,得到90ADE ∠=︒.根据AB BC ,与⊙O 分别相切于点A ,D ,证得90AHO ∠=︒.得到OB EF ∥.即可证得四边形BFEO 是平行四边形.【小问1详解】解:连接OD ,如图.∵在ABC 中,90AB AC BAC =∠=︒,,∴⊙O 与AB 相切于点A ,45ACB ∠=︒.∵OD 是⊙O 的半径,⊙O 与BC 相切于点D ,∴OD BC ⊥.∴90ODC OD DC ∠=︒=,.∵4AB =,∴由切线长定理得:4BD AB ==,由勾股定理得:BC =.∴ 4OD DC ==−.∴⊙O的半径是4.【小问2详解】证明:连接AD ,交OB 于点H ,如图.∵AE 是⊙O 的直径,∴90ADE ∠=︒.∵AB BC ,与⊙O 分别相切于点A ,D ,∴BD AB ABO DBO =∠=∠,.∴OB AD ⊥.∴90AHO ∠=︒.∴AHO ADE ∠=∠.∴OB EF ∥.∵BF AC ∥,∴ 四边形BFEO 是平行四边形.【点睛】此题考查了圆的切线的性质定理,切线长定理,直径所对的圆周角是直角,平行四边形的判定定理,熟记各定理是解题的关键.25.【答案】(1)()0,70A ,()40,30P ;(2)21370162y x x =−++; (3)18m【解析】【分析】(1)70m OA =,落点P 的水平距离是40m ,竖直高度是30m ,即可得到点A 、P 的坐标; (2)用待定系数法求解即可;(3)由60m OC =,先求出直线BC 的表达式,作MN y ∥轴交抛物线和直线BC 于点M 、N ,用含未知数m 的式子表示MN ,再根据二次函数的性质进行判断即可.小问1详解】 解:70m OA =,落点P 的水平距离是40m ,竖直高度是30m , ()0,70A ∴,()40,30P ;【小问2详解】 解:把()0,70A ,()40,30P 代入2116y x bx c =−++【得,270130404016c b c =⎧⎪⎨=−⨯++⎪⎩, 解得,3270b c ⎧=⎪⎨⎪=⎩,21370162y x x ∴=−++; 【小问3详解】解:60m OC =,∴设直线BC 的表达式为()600y kx k =+≠, 把()40,30P 代入,得304060k =+, 解得,34k =−, 3604y x ∴=−+,设213,70162M m m m ⎛⎫−++ ⎪⎝⎭到BC 竖直方向上的距离最大,作MN y ∥轴交抛物线和直线BC 于点M 、N , ∴3,604N m m ⎛⎫−+ ⎪⎝⎭, 213370601624MN m m m ⎛⎫∴=−++−−+ ⎪⎝⎭21910164m m =−++()22213618181016m m =−−+−+()21811810164m =−−++()2112118164m =−−+()2118016m −−≤, ∴当18m =时,MN 最大,即水平距离为18m 时,运动员与着陆坡BC 竖直方向上的距离达到最大.【点睛】本题考查了二次函数的实际应用,待定系数法求解析式,二次函数图象的性质,熟练掌握知识点是解题的关键.26.【答案】(1)34(2)231y y y <<【解析】【分析】(1)由320a b c ++=,0c ,可得320a b +=,根据对称轴为直线2b x a=−即可求解; (2)根据320a b c ++=,求得对称轴2b x t a ==−的范围,再将点()12,y −根据对称性转化到对称轴右侧,再根据0a c 得抛物线开口向上,y 随x 的增大而增大,即可得出答案.【小问1详解】当0c 时,得320a b +=, 32b a ∴=−, 332224a b t a a −∴=−==; 【小问2详解】320a b c ++=, 32a c b +∴=−, 333222444a cb ac c t a a a a +−+∴=−=−==+, 0a c >>, 1044c a ∴<<, 314t ∴<<, 点()12,y −关于直线x t =的对称点的坐标是()122,t y +,72242t ∴<+<. 1322t ∴<<+.0a >,∴当x t >时,y 随x 的增大而增大.231y y y ∴<<.【点睛】本题考查了二次函数的性质,主要涉及到二次函数的开口方向、对称性以及增减性,熟知二次函数的基本性质是解决函数问题的关键.27.【答案】(1)画图和证明见解析;(2)135°(3)CP =,证明见解析.【解析】【分析】(1)先根据题意画出对应的图形,只需要利用SAS 证明BCP ACQ ≌即可证明AQ BP =; (2)连接QP ,如图所示.先由等腰直角三角形的性质得到45CQP CPQ ∠=∠=︒.再证明APQ CPB ∠=∠.由全等三角形的性质得到CQA CPB ∠=∠.则可以推出45APQ PQA ∠+∠=︒,利用三角形内角和定理即可得到180135QAP APQ PQA ∠=︒−−=︒∠∠;(3)如图所示,延长PN 至K ,使得NK PN =,连接AK .证明ANK BNP ≌.得到KAN PBN ∠=∠,AK BP =,则AK BP ∥.进一步证明135KAP ∠=︒.得到KAP QAP ∠=∠.由此证明KAP QAP ≌,得到KP QP =.在等腰直角PCQ △中,CP CQ =,则KP QP ==,即可证明CP =.【小问1详解】补全图形,如图所示.证明:∵ 线段CP 绕点C 顺时针旋转90°得到线段CQ ,∴90CP CQ PCQ =∠=︒,∵90ACB ∠=︒,∴BCP ACQ ∠=∠,∵AC BC =,∴()SAS BCP ACQ ≌∴AQ BP =;【小问2详解】解:连接QP ,如图所示.由(1)可得PCQ △是等腰直角三角形,∴45CQP CPQ ∠=∠=︒.∴45CQA PQA ∠∠=︒+.∵45APB ∠=︒,∴APQ CPB ∠=∠.由BCP ACQ ≌可得CQA CPB ∠=∠.∴45APQ PQA ∠+∠=︒.∴180135QAP APQ PQA ∠=︒−−=︒∠∠;【小问3详解】解;CP =,理由如下:如图所示,延长PN 至K ,使得NK PN =,连接AK .∵N 为线段AB 的中点,∴AN BN =.∵ANK BNP ∠=∠,∴()SAS ANK BNP ≌.∴KAN PBN ∠=∠,AK BP =.∴AK BP ∥,AK AQ =.∴180KAP APB ∠+∠=︒.∵45APB ∠=︒,∴135KAP ∠=︒.∵135QAP ∠=︒,∴KAP QAP ∠=∠.由BCP ACQ ≌可得AQ BP =,∴AK AQ =,∵AP AP =,∴()SAS KAP QAP ≌.∴KP QP =.∵在等腰直角PCQ △中,CP CQ =,∴KP QP ==.∵2KP NP =,∴CP =.【点睛】本题主要考查了旋转的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定,三角形内角和定理,勾股定理等,正确作出辅助线构造全等三角形是解题的关键.28.【答案】(1)D ,F ;(2)①2−−t ≤≤2−+52−k ≤≤12或3k ≤≤3+ 【解析】【分析】(1)根据双对合的定义逐一判断即可得到答案;(2)①由双对合定义可知随着直径GH 的端点G ,H 在K 上运动,点1A 在以点A 为圆心,2为半径的圆上及其内部(不含点A ),由此求出取值范围;②找出临界图形,计算可以求出取值范围.【小问1详解】 由双对合定义可知:12MN PQ MN PQ =,, ()1,2−−A ,()5,2B −,6AB AB x ∴=,轴,()4,0D −,()6,0F ,46OD OF OD AB OF AB ∴==,,,,∴O 关于线段AB 的双对合点是D ,F ;故答案为D ,F ;【小问2详解】①设GH 是K 上任意一条直径,则1GH =.设点1A 是与点A 关于K 双对合的点,将点A 和点1A 分别关于点G ,H 对称后重合的点记为2A ,所以点G ,H 分别是2AA 和12A A 的中点.由三角形中位线的知识,可知1AA 22GH ==.随着点G ,H 在K 上运动,点1A 在以点A 为圆心,2为半径的圆上及其内部(不含点A ),将它记为S .因为点A 与点()0T t ,关于K 双对合,所以当S 与y 轴相交时,可求得t 的值为2−−2−+所以t 的取值范围是2−t ≤≤2−②当ABC 上的一点在AC 上时,如图,则K 上离AC 最近的点到AC 的距离为:1112k ⎛⎫−−+≤ ⎪⎝⎭时存在,解得5122k −≤≤;当ABC 上的一点在BC 上时,则K 上的点离BC 最近的点到BC 的距离不大于1, 即K 到BC 的距离不大于32, AC AB 6==,B C 45∠∠∴==︒,即BC 与x 轴的的夹角为45°,∴交点()30M ,,这时MK ≤,即33k ≤≤;当ABC 上的一点在BC 上时,则K 上的点离AB 最近的点到AB 的距离大于1,不存在;综上所述:52−k ≤≤12或3k ≤≤3+【点睛】本题考查新定义,能正确理解新定义并转化为所学知识解决问题是解题的关键.。
2021-2022学年北京市西城区九年级(上)期末数学试卷(解析版)

2021-2022学年北京市西城区九年级第一学期期末数学试卷一、选择题(共16分,每题2分).1.古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致.下列窗户图案中,是中心对称图形的是()A.B.C.D.2.二次函数y=2(x﹣3)2+1的图象的顶点坐标是()A.(﹣2,1)B.(2,1)C.(﹣3,1)D.(3,1)3.如图,点A、B、C在⊙O上,△OAB为等边三角形,则∠ACB的度数是()A.60°B.50°C.40°D.30°4.将一元二次方程x2﹣8x+10=0通过配方转化为(x+a)2=b的形式,下列结果中正确的是()A.(x﹣4)2=6B.(x﹣8)2=6C.(x﹣4)2=﹣6D.(x﹣8)2=54 5.如图,⊙O是正方形ABCD的外接圆,若⊙O的半径为4,则正方形ABCD的边长为()A.4B.8C.D.6.生活垃圾无害化处理可以降低垃圾及其衍生物对环境的影响.据统计,2017年全国生活垃圾无害化处理能力约为2.5亿吨,随着设施的增加和技术的发展,2019年提升到约3.2亿吨.如果设这两年全国生活垃圾无害化处理能力的年平均增长率为x,那么根据题意可以列方程为()A.2.5(1+x)=3.2B.2.5(1+2x)=3.2C.2.5(1+x)2=3.2D.2.5(1﹣x)2=3.27.下列说法中,正确的是()A.“射击运动员射击一次,命中靶心”是必然事件B.事件发生的可能性越大,它的概率越接近1C.某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖D.抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得8.抛物线y=ax2+bx+c的顶点为A(2,m),且经过点B(5,0),其部分图象如图所示.对于此抛物线有如下四个结论:①ac<0;②a﹣b+c>0;③m+9a=0;④若此抛物线经过点C(t,n),则t+4一定是方程ax2+bx+c=n的一个根.其中所有正确结论的序号是()A.①②B.①③C.③④D.①④二、填空题(共16分,每题2分)9.在平面直角坐标系xOy中,点(4,﹣7)关于原点的对称点坐标为.10.关于x的一元二次方程x2+mx+4=0有一个根为1,则m的值为.11.如图1所示的铝合金窗帘轨道可以直接弯曲制作成弧形.若制作一个圆心角为160°的圆弧形窗帘轨道(如图2)需用此材料800πmm,则此圆弧所在圆的半径为mm.12.写出一个开口向下,且对称轴在y轴左侧的抛物线的表达式:.13.如图,在平面直角坐标系xOy中,点A,B,C的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为.14.如图,在平面直角坐标系xOy中,抛物线y=﹣(x﹣4)2+2可以看作是抛物线y=x2+2经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由抛物线y=x2+2得到抛物线y=﹣(x﹣4)2+2的过程:.15.如图,将△ABC绕点A顺时针旋转α(0°<α<90°)得到△ADE,点B的对应点D 恰好落在边BC上,则∠ADE=.(用含α的式子表示)16.如图,在Rt△ABC中,∠ACB=90°,D是△ABC内的一个动点,满足AC2﹣AD2=CD2.若AB=2,BC=4,则BD长的最小值为.三、解答题(共68分,第17-18题,每题5分,第19题6分,第20题5分,第21题6分,第22-24题,每题5分,第25-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程:x2﹣2x﹣2=0.18.问题:如图,AB是⊙O的直径,点C在⊙O内,请仅用无刻度的直尺,作出△ABC中AB边上的高.小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程.作法:如图,①延长AC交⊙O于点D,延长BC交⊙O于点E;②分别连接AE,BD并延长相交于点F;③连接FC并延长交AB于点H.所以线段CH即为△ABC中AB边上的高.(1)根据小芸的作法,补全图形;(2)完成下面的证明.证明:∵AB是⊙O的直径,点D,E在⊙O上,∴∠ADB=∠AEB=°.()(填推理的依据)∴AE⊥BE,BD⊥AD.∴AE,是△ABC的两条高线.∵AE,BD所在直线交于点F,∴直线FC也是△ABC的高所在直线.∴CH是△ABC中AB边上的高.19.已知二次函数y=x2+4x+3.(1)求此函数图象的对称轴和顶点坐标;(2)画出此函数的图象;(3)若点A(0,y1)和B(m,y2)都在此函数的图象上,且y1<y2,结合函数图象,直接写出m的取值范围.20.如图,在正方形ABCD中,射线AE与边CD交于点E,将射线AE绕点A顺时针旋转,与CB的延长线交于点F,BF=DE,连接FE.(1)求证:AF=AE;(2)若∠DAE=30°,DE=2,直接写出△AEF的面积.21.已知关于x的一元二次方程x2﹣(k+5)x+6+2k=0.(1)求证:此方程总有两个实数根;(2)若此方程恰有一个根小于﹣1,求k的取值范围.22.有甲、乙两个不透明的口袋,甲口袋中装有两个相同的球,它们分别写有数﹣2,2;乙口袋中装有三个相同的球,它们分别写有数﹣5,m,5.小明和小刚进行摸球游戏,规则如下:先从甲口袋中随机取出一个球,其上的数记为a;再从乙口袋中随机取出一个球,其上的数记为b.若a<b,小明胜;若a=b,为平局;若a>b,小刚胜.(1)若m=﹣2,用树状图或列表法分别求出小明、小刚获胜的概率;(2)当m为何值时,小明和小刚获胜的概率相同?直接写出一个符合条件的整数m的值.23.如图,AB,AC是⊙O的两条切线,切点分别为B,C,连接CO并延长交⊙O于点D,过点D作⊙O的切线交AB的延长线于点E,EF⊥AC于点F.(1)求证:四边形CDEF是矩形;(2)若CD=2,DE=2,求AC的长.24.某篮球队员的一次投篮命中,篮球从出手到命中行进的轨迹可以近似看作抛物线的一部分,表示篮球距地面的高度y(单位:m)与行进的水平距离x(单位:m)之间关系的图象如图所示.已知篮球出手位置A与篮筐的水平距离为 4.5m,篮筐距地面的高度为3.05m;当篮球行进的水平距离为3m时,篮球距地面的高度达到最大为3.3m.(1)图中点B表示篮筐,其坐标为,篮球行进的最高点C的坐标为;(2)求篮球出手时距地面的高度.25.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,D是的中点,DE⊥BC交BC 的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=10,BC=8,求BD的长.26.在平面直角坐标系xOy中,抛物线y=a(x﹣h)2﹣8a的顶点为A,0<h<.(1)若a=1,①点A到x轴的距离为;②求此抛物线与x轴的两个交点之间的距离;(2)已知点A到x轴的距离为4,此抛物线与直线y=﹣2x+1的两个交点分别为B(x1,y1),C(x2,y2),其中x1<x2,若点D(x D,y D)在此抛物线上,当x1<x D<x2时,y D 总满足y2<y D<y1,求a的值和h的取值范围.27.如图1,在△ABC中,∠ACB=90°,CA=CB,点D,E分别在边CA,CB上,CD=CE,连接DE,AE,BD.点F在线段BD上,连接CF交AE于点H.(1)①比较∠CAE与∠CBD的大小,并证明;②若CF⊥AE,求证:AE=2CF;(2)将图1中的△CDE绕点C逆时针旋转α(0°<α<90°),如图2.若F是BD的中点,判断AE=2CF是否仍然成立.如果成立,请证明;如果不成立,请说明理由.28.在平面直角坐标系xOy中,⊙O的半径为1,点A在⊙O上,点P在⊙O内,给出如下定义:连接AP并延长交⊙O于点B,若AP=kAB,则称点P是点A关于⊙O的k倍特征点.(1)如图,点A的坐标为(1,0).①若点P的坐标为(﹣,0),则点P是点A关于⊙O的倍特征点;②在C1(0,),C2(,0),C3(,﹣)这三个点中,点是点A关于⊙O的倍特征点;③直线l经过点A,与y轴交于点D,∠DAO=60°.点E在直线l上,且点E是点A 关于⊙O的倍特征点,求点E的坐标;(2)若当k取某个值时,对于函数y=﹣x+1(0<x<1)的图象上任意一点M,在⊙O 上都存在点N,使得点M是点N关于⊙O的k倍特征点,直接写出k的最大值和最小值.参考答案一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致.下列窗户图案中,是中心对称图形的是()A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.解:选项C能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,选项A、B、D均不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,故选:C.2.二次函数y=2(x﹣3)2+1的图象的顶点坐标是()A.(﹣2,1)B.(2,1)C.(﹣3,1)D.(3,1)【分析】二次函数y=a(x﹣h)2+k(a≠0)的顶点坐标是(h,k).解:根据二次函数的顶点式方程y=2(x﹣3)2+1知,该函数的顶点坐标是:(3,1).故选:D.3.如图,点A、B、C在⊙O上,△OAB为等边三角形,则∠ACB的度数是()A.60°B.50°C.40°D.30°【分析】先根据等边三角形的性质得到∠AOB=60°,然后根据圆周角定理求∠ACB的度数.解:∵△OAB为等边三角形,∴∠AOB=60°,∴∠ACB=∠AOB=30°.故选:D.4.将一元二次方程x2﹣8x+10=0通过配方转化为(x+a)2=b的形式,下列结果中正确的是()A.(x﹣4)2=6B.(x﹣8)2=6C.(x﹣4)2=﹣6D.(x﹣8)2=54【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程作边写成完全平方形式即可.解:x2﹣8x=﹣10,x2﹣8x+16=6,(x﹣4)2=6.故选:A.5.如图,⊙O是正方形ABCD的外接圆,若⊙O的半径为4,则正方形ABCD的边长为()A.4B.8C.D.【分析】连接BD.由题意,△BCD是等腰直角三角形,故可得出结论.解:如图,连接BD.由题意,△BCD是等腰直角三角形,∵BD=8,∠CBD=45°,∠BCD=90°,∴BC=BD=4.故选:D.6.生活垃圾无害化处理可以降低垃圾及其衍生物对环境的影响.据统计,2017年全国生活垃圾无害化处理能力约为2.5亿吨,随着设施的增加和技术的发展,2019年提升到约3.2亿吨.如果设这两年全国生活垃圾无害化处理能力的年平均增长率为x,那么根据题意可以列方程为()A.2.5(1+x)=3.2B.2.5(1+2x)=3.2C.2.5(1+x)2=3.2D.2.5(1﹣x)2=3.2【分析】利用2019年全国生活垃圾无害化处理能力=2017年全国生活垃圾无害化处理能力×(1+年平均增长率)2,即可得出关于x的一元二次方程,此题得解.解:依题意得:2.5(1+x)2=3.2.故选:C.7.下列说法中,正确的是()A.“射击运动员射击一次,命中靶心”是必然事件B.事件发生的可能性越大,它的概率越接近1C.某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖D.抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得【分析】根据必然事件,随机事件,不可能事件的特点,以及列表法与树状图法逐一判断即可.解:A.“射击运动员射击一次,命中靶心”是随机事件,故A不符合题意;B.事件发生的可能性越大,它的概率越接近1,故B符合题意;C.某种彩票中奖的概率是1%,因此买100张该种彩票就可能会中奖,故C不符合题意;D.抛掷一枚图钉,“针尖朝上”的概率不可以用列举法求得,故D不符合题意;故选:B.8.抛物线y=ax2+bx+c的顶点为A(2,m),且经过点B(5,0),其部分图象如图所示.对于此抛物线有如下四个结论:①ac<0;②a﹣b+c>0;③m+9a=0;④若此抛物线经过点C(t,n),则t+4一定是方程ax2+bx+c=n的一个根.其中所有正确结论的序号是()A.①②B.①③C.③④D.①④【分析】由抛物线开口和抛物线与y轴交点判断①,由抛物线的对称性及经过点(5,0)可判断②,由抛物线对称轴为直线x=2可得b=﹣4a,由a﹣b+c=0可得c=﹣5a,从而判断③,点C对称点横坐标为4﹣t可判断④.解:∵抛物线开口向下,∴a<0,∵抛物线与y轴交点在x轴上方,∴c>0,∴ac<0,①正确.∵抛物线顶点为A(2,m),∴抛物线对称轴为直线x=2,∵抛物线过点(5,0),∴由对称性可得抛物线经过点(﹣1,0),∴a﹣b+c=0,②错误,∵﹣=2,∴b=﹣4a,∴5a+c=0,∴c=﹣5a∵(2,m)为抛物线顶点,∴4a+2b+c=m,∴4a﹣8a﹣5a=m,即9a+m=0,③正确,∵点C(t,n)在抛物线上,∴点C关于对称轴对称点(4﹣t,n)在抛物线上,∴4﹣t为ax2+bx+c=n的一个根,④错误.故选:B.二、填空题(共16分,每题2分)9.在平面直角坐标系xOy中,点(4,﹣7)关于原点的对称点坐标为(﹣4,7).【分析】利用关于原点对称点的坐标特点可得答案.解:在平面直角坐标系xOy中,点(4,﹣7)关于原点的对称点坐标为(﹣4,7),故答案为:(﹣4,7).10.关于x的一元二次方程x2+mx+4=0有一个根为1,则m的值为﹣5.【分析】把x=1代入方程x2+mx+4=0得1+m+4=0,然后解关于m的方程.解:把x=1代入方程x2+mx+4=0得1+m+4=0,解得m=﹣5.故答案为:﹣5.11.如图1所示的铝合金窗帘轨道可以直接弯曲制作成弧形.若制作一个圆心角为160°的圆弧形窗帘轨道(如图2)需用此材料800πmm,则此圆弧所在圆的半径为900mm.【分析】利用弧长的计算公式即可求解.解:设此圆弧所在圆的半径为Rmm,由弧长公式得:=800π,解得:R=900,即此圆弧所在圆的半径为900mm,故答案为:900.12.写出一个开口向下,且对称轴在y轴左侧的抛物线的表达式:y=﹣x2﹣x,(答案不唯一).【分析】满足开口向下且对称轴在y轴左侧可以判断a、b的正负,从而可以得到所求得抛物线的表达式.解:∵开口向下,∴a<0,∵对称轴在y轴左侧,∴﹣<0,∴b<0,故抛物线的解析式可以为y=﹣x2﹣x,(答案不唯一),故答案为:y=﹣x2﹣x,(答案不唯一).13.如图,在平面直角坐标系xOy中,点A,B,C的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为(2,1).【分析】根据图形得出A、B、C的坐标,再连接AB,作线段AB和线段BC的垂直平分线MN、EF,两线交于Q,则Q是圆弧的圆心,最后求出点Q的坐标即可.解:从图形可知:A点的坐标是(0,2),B点的坐标是(1,3),C点的坐标是(3,3),连接AB,作线段AB和线段BC的垂直平分线MN、EF,两线交于Q,则Q是圆弧的圆心,如图,∴Q点的坐标是(2,1),故答案为:(2,1).14.如图,在平面直角坐标系xOy中,抛物线y=﹣(x﹣4)2+2可以看作是抛物线y=x2+2经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由抛物线y=x2+2得到抛物线y=﹣(x﹣4)2+2的过程:将抛物线y=x2+2绕顶点(0,2)顺时针方向旋转180度,再向右平移4个单位长度得到抛物线y=﹣(x﹣4)2+2.(答案不唯一).【分析】根据抛物线的顶点坐标和开口方向的变化进行解答.解:抛物线y=x2+2的顶点为(0,2),抛物线y=﹣(x﹣4)2+2的顶点为(4,2),∴将抛物线y=x2+2绕顶点(0,2)顺时针方向旋转180度,再向右平移4个单位长度得到抛物线y=﹣(x﹣4)2+2.故答案为:将抛物线y=x2+2绕顶点(0,2)顺时针方向旋转180度,再向右平移4个单位长度得到抛物线y=﹣(x﹣4)2+2.(答案不唯一).15.如图,将△ABC绕点A顺时针旋转α(0°<α<90°)得到△ADE,点B的对应点D 恰好落在边BC上,则∠ADE=90°﹣.(用含α的式子表示)【分析】根据旋转的性质得到AD=AB,∠ADE=∠B,根据等腰三角形的性质得到∠ADB =∠B,求得∠ADE=∠ADB=90°﹣.解:由旋转的性质可知,AD=AB,∠ADE=∠B,∴∠ADB=∠B,∵∠BAD=α,∴∠ADE=∠ADB==90°﹣,故答案为:90°﹣.16.如图,在Rt△ABC中,∠ACB=90°,D是△ABC内的一个动点,满足AC2﹣AD2=CD2.若AB=2,BC=4,则BD长的最小值为2.【分析】由AC2﹣AD2=CD2.得∠ADC=90°,取点H为AC的中点,可知DH和BH都是定值,从而解决问题.解:取AC的中点H,连接HD,HB,在Rt△ABC中,由勾股定理得AC=,∵AC2﹣AD2=CD2.∴∠ADC=90°,∵点H为AC的中点,∴DH=CH=3,∴BH=,∵BD≥BH﹣DH,∴BD的最小值为5﹣3=2,故答案为:2.三、解答题(共68分,第17-18题,每题5分,第19题6分,第20题5分,第21题6分,第22-24题,每题5分,第25-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程:x2﹣2x﹣2=0.【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.解:移项,得x2﹣2x=2,配方,得x2﹣2x+1=2+1,即(x﹣1)2=3,开方,得x﹣1=±.解得x1=1+,x2=1﹣.18.问题:如图,AB是⊙O的直径,点C在⊙O内,请仅用无刻度的直尺,作出△ABC中AB边上的高.小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程.作法:如图,①延长AC交⊙O于点D,延长BC交⊙O于点E;②分别连接AE,BD并延长相交于点F;③连接FC并延长交AB于点H.所以线段CH即为△ABC中AB边上的高.(1)根据小芸的作法,补全图形;(2)完成下面的证明.证明:∵AB是⊙O的直径,点D,E在⊙O上,∴∠ADB=∠AEB=90°.(直径所对的圆周角是直角)(填推理的依据)∴AE⊥BE,BD⊥AD.∴AE,BD是△ABC的两条高线.∵AE,BD所在直线交于点F,∴直线FC也是△ABC的高所在直线.∴CH是△ABC中AB边上的高.【分析】(1)根据要求作出图形即可.(2)利用三角形的三条高交于一点解决问题即可.解:(1)如图,线段CH即为所求.(2)∵AB是⊙O的直径,点D,E在⊙O上,∴∠ADB=∠AEB=90°.(直径所对的圆周角是直角),∴AE⊥BE,BD⊥AD.∴AE,BD是△ABC的两条高线.∵AE,BD所在直线交于点F,∴直线FC也是△ABC的高所在直线.∴CH是△ABC中AB边上的高.故答案为:90,直径所对的圆周角是直角,BD.19.已知二次函数y=x2+4x+3.(1)求此函数图象的对称轴和顶点坐标;(2)画出此函数的图象;(3)若点A(0,y1)和B(m,y2)都在此函数的图象上,且y1<y2,结合函数图象,直接写出m的取值范围.【分析】(1)将解析式化为顶点式即可;(2)画出函数图象;(3)由题意可得2<|m+2|,求出m的取值范围即可.解:(1)y=x2+4x+3=(x+2)2﹣1,∴对称轴为直线x=﹣2,顶点(﹣2,﹣1);(2)如图:(3)∵点A(0,y1)和B(m,y2)都在此函数的图象上,且y1<y2,∴2<|m+2|,∴m>0或m<﹣4.20.如图,在正方形ABCD中,射线AE与边CD交于点E,将射线AE绕点A顺时针旋转,与CB的延长线交于点F,BF=DE,连接FE.(1)求证:AF=AE;(2)若∠DAE=30°,DE=2,直接写出△AEF的面积.【分析】(1)根据正方形的性质得到AB=AD,∠ABC=∠D=∠BAD=90°,求得∠ABF=90°,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到∠BAF=∠DAE,得到△AEF是等腰直角三角形,根据直角三角形的性质得到AE=2DE=4,于是得到结论.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠D=∠BAD=90°,∴∠ABF=90°,在△ABF与△ADE中,,∴△ABF≌△ADE(SAS),∴AF=AE;(2)解:由(1)知,△ABF≌△ADE,∴∠BAF=∠DAE,∴∠BAF+∠BAE=∠DAE=∠BAE=90°,∴∠FAE=90°,∴△AEF是等腰直角三角形,在Rt△ADE中,∠D=90°,∠DAE=30°,DE=2,∴AE=2DE=4,∴△AEF的面积=×4×4=8.21.已知关于x的一元二次方程x2﹣(k+5)x+6+2k=0.(1)求证:此方程总有两个实数根;(2)若此方程恰有一个根小于﹣1,求k的取值范围.【分析】(1)计算根的判别式得到Δ=(k+1)2≥0,然后根据根的判别式的意义得到结论;(2)解方程得到x1=2,x2=k+3,则k+3<﹣1,然后解不等式即可.【解答】(1)证明:∵Δ=(k+5)2﹣4(6+2k)=k2+2k+1=(k+1)2≥0,∴此方程总有两个实数根;(2)∵x=,∴x1=2,x2=k+3,∵此方程恰有一个根小于﹣1,∴k+3<﹣1,解得k<﹣4,即k的取值范围为k<﹣4.22.有甲、乙两个不透明的口袋,甲口袋中装有两个相同的球,它们分别写有数﹣2,2;乙口袋中装有三个相同的球,它们分别写有数﹣5,m,5.小明和小刚进行摸球游戏,规则如下:先从甲口袋中随机取出一个球,其上的数记为a;再从乙口袋中随机取出一个球,其上的数记为b.若a<b,小明胜;若a=b,为平局;若a>b,小刚胜.(1)若m=﹣2,用树状图或列表法分别求出小明、小刚获胜的概率;(2)当m为何值时,小明和小刚获胜的概率相同?直接写出一个符合条件的整数m的值.【分析】(1)画树状图,共有6种等可能的结果,其中a<b的结果有2种,a>b的结果有3种,再由概率公式分别求解即可;(2)画树状图,共有6种等可能的结果,其中a<b的结果有3种,a>b的结果有3种,再由概率公式得小明获胜的概率=小刚获胜的概率即可.解:(1)画树状图如下:共有6种等可能的结果,其中a<b的结果有2种,a>b的结果有3种,∴小明获胜的概率为=,小刚获胜的概率为=;(2)m为0时,小明和小刚获胜的概率相同,理由如下:画树状图如下:共有6种等可能的结果,其中a<b的结果有3种,a>b的结果有3种,∴小明获胜的概率=小刚获胜的概率==.23.如图,AB,AC是⊙O的两条切线,切点分别为B,C,连接CO并延长交⊙O于点D,过点D作⊙O的切线交AB的延长线于点E,EF⊥AC于点F.(1)求证:四边形CDEF是矩形;(2)若CD=2,DE=2,求AC的长.【分析】(1)根据切线的性质得到AC⊥CD,DE⊥CD,得到AC∥DE,∠ACD=90°,根据平行线的判定定理得到EF∥CD,根据矩形的判定定理即可得到结论;(2)根据切线的性质得到AB=AC,BE=DE=2,根据矩形的性质得到CF=DE=2,EF=CD=2,根据勾股定理即可得到结论.【解答】(1)证明:∵AC、DE是⊙O的切线,CD是⊙的直径,∴AC⊥CD,DE⊥CD,∴AC∥DE,∠ACD=90°,∵EF⊥AC,∴EF∥CD,∴四边形CDEF是矩形;(2)解:∵AB,AC,DE是⊙O的切线,∴AB=AC,BE=DE=2,由(1)知,四边形CDEF是矩形,∴CF=DE=2,EF=CD=2,∵EF⊥AC,∴∠AFE=90°,∴AE2=AF2+EF2,∴(AC+2)2=(AC﹣2)2+(2)2,解得AC=5,故AC的长为5.24.某篮球队员的一次投篮命中,篮球从出手到命中行进的轨迹可以近似看作抛物线的一部分,表示篮球距地面的高度y(单位:m)与行进的水平距离x(单位:m)之间关系的图象如图所示.已知篮球出手位置A与篮筐的水平距离为 4.5m,篮筐距地面的高度为3.05m;当篮球行进的水平距离为3m时,篮球距地面的高度达到最大为3.3m.(1)图中点B表示篮筐,其坐标为(4.5,3.05),篮球行进的最高点C的坐标为(3,3.3);(2)求篮球出手时距地面的高度.【分析】(1)根据已知篮球出手位置A与篮筐的水平距离为4.5m,篮筐距地面的高度为3.05m;当篮球行进的水平距离为3m时,篮球距地面的高度达到最大为3.3m.即可得到答案;(2)设抛物线的解析式为y=a(x﹣3)2+3.3,把B(4.5,3.05)代入求得抛物线的解析式为y=﹣(x﹣3)2+3.3,当x=0时,解方程即可得到结论.解:(1)∵篮球出手位置A与篮筐的水平距离为4.5m,篮筐距地面的高度为3.05m;当篮球行进的水平距离为3m时,篮球距地面的高度达到最大为3.3m,∴点B表示篮筐,其坐标为(4.5,3.05),篮球行进的最高点C的坐标为(3,3.3);故答案为:(4.5,3.05),(3,3.3);(2)设抛物线的解析式为y=a(x﹣3)2+3.3,把B(4.5,3.05)代入得,3.05=a(4.5﹣3)2+3.3,解得a=﹣,∴抛物线的解析式为y=﹣(x﹣3)2+3.3,当x=0时,y=2.3,答:篮球出手时距地面的高度为2.3米.25.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,D是的中点,DE⊥BC交BC 的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=10,BC=8,求BD的长.【分析】(1)要证明DE是⊙O的切线,所以连接OD,求出∠ODE=90°即可,根据已知DE⊥BC,可得∠DEC=90°,所以只要证明OD∥BE即可解答;(2)由(1)可得BD平分∠ABC,所以想到过点D作DF⊥AB,垂足为F,进而证明△ADF≌△CDE,可得AF=CE,易证△BDF≌△BDE,可得BF=BE,然后进行计算即可解答.【解答】(1)证明:连接OD,∵DE⊥BC,∴∠DEC=90°,∵D是的中点,∴=,∴∠ABD=∠CBD,∵OD=OB,∴∠ODB=∠OBD,∴∠ODB=∠CBD,∴OD∥BC,∴∠ODE=180°﹣∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:过点D作DF⊥AB,垂足为F,由(1)得:∠ABD=∠CBD,∴BD平分∠ABC,∵DF⊥AB,DE⊥BC,∴DF=DE,∵四边形ABCD内接于⊙O,∴∠A+∠DCB=180°,∵∠DCB+∠DCE=180°,∴∠A=∠DCE,∵∠DFA=∠DEC=90°,∴△ADF≌△CDE(AAS),∴AF=EC,∵∠DFB=∠DEC=90°,BD=BD,∴△BDF≌△BDE(AAS),∴BF=BE,设AF=EC=x,则BE=BF=8+x,∵AB=10,∴AF+BF=10,∴x+8+x=10,∴x=1,∴BF=9,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=∠DBF,∴△BFD∽△BDA,∴BD2=BF•BA,∴BD2=90,∴BD=3.26.在平面直角坐标系xOy中,抛物线y=a(x﹣h)2﹣8a的顶点为A,0<h<.(1)若a=1,①点A到x轴的距离为8;②求此抛物线与x轴的两个交点之间的距离;(2)已知点A到x轴的距离为4,此抛物线与直线y=﹣2x+1的两个交点分别为B(x1,y1),C(x2,y2),其中x1<x2,若点D(x D,y D)在此抛物线上,当x1<x D<x2时,y D 总满足y2<y D<y1,求a的值和h的取值范围.【分析】(1)①把a=1代入函数解析式求出顶点坐标,进而求解.②令y=0,求出x1与x2,进而求解.(2)由当x1<x D<x2时,y D总满足y2<y D<y1可得当x1<x<x2时,y随x增大而减小,从而可得点A与点C重合或点A在点C右侧,进而求解.解:(1)①把a=1代入y=a(x﹣h)2﹣8a得y=(x﹣h)2﹣8,∴抛物线顶点坐标为(h,﹣8),∴点A到x轴的距离为|﹣8|=8,故答案为:8.②把y=0代入y=(x﹣h)2﹣8得0=(x﹣h)2﹣8,解得x1=h+2,x2=h﹣2,∵x1﹣x2=h+2﹣(h﹣2)=4,∴抛物线与x轴的两个交点之间的距离为4.(2)∵y=a(x﹣h)2﹣8a,∴点A坐标为(h,﹣8a),∴|﹣8a|=4,解得a=或a=﹣,∵当x1<x D<x2时,y D总满足y2<y D<y1,∴当x1<x<x2时,y随x增大而减小,如图,当抛物线开口向上,点A与点C重合或点A在点C右侧时满足题意,∴a=,y=(x﹣h)2﹣4,∴点A坐标为(h,﹣4),把x=h代入y=﹣2x+1得y=﹣2h+1,当﹣2h+1≤﹣4时,记得h≥,∵0<h<,∴≤h<.27.如图1,在△ABC中,∠ACB=90°,CA=CB,点D,E分别在边CA,CB上,CD=CE,连接DE,AE,BD.点F在线段BD上,连接CF交AE于点H.(1)①比较∠CAE与∠CBD的大小,并证明;②若CF⊥AE,求证:AE=2CF;(2)将图1中的△CDE绕点C逆时针旋转α(0°<α<90°),如图2.若F是BD的中点,判断AE=2CF是否仍然成立.如果成立,请证明;如果不成立,请说明理由.【分析】(1)①通过证明△ACE≌△BCD,利用全等三角形对应角相等解答即可;②利用同角或等角的余角相等判定△FCB和△FCD是等腰三角形即可得出结论;(2)延长CF至点G,使FG=FC,连接BG,则得:△DCF≌△BGF,再利用题意证明△ACE≌△CBG,结论可得.解:(1)①∠CAE=∠CBD.理由:在△ACE和△BCD中,,∴△ACE≌△BCD(SAS).∴∠CAE=∠CBD.②证明:∵∠ACB=90°,∴∠ACH+∠ECH=90°.∵CF⊥AE,∴∠ACH+∠CAH=90°.∴∠CAH=∠ECH.由①知:∠CAE=∠CBD,∴∠ECH=∠CBD.∴CF=BF.∵∠DCB=90°,∴∠DCF+∠ECF=90°,∠CDF+∠CBD=90°.∴∠CDF=∠DCF,∴CF=DF.∴BD=2CF.由①知:△ACE≌△BCD,∴AE=BD.∴AE=2CF.解:(2)若F是BD的中点,AE=2CF仍然成立.理由:延长CF至点G,使FG=FC,连接BG,如图,∴F是BD的中点,∴FD=FB.在△DCF和△BGF中,,∴△DCF≌△BGF(SAS).∴CD=BG,∠DCF=∠G.∴CD∥BG.∴∠DCB+∠GBC=180°.∵将图1中的△CDE绕点C逆时针旋转α,∴∠ACD=∠BCE=α.∴∠DCB=90°﹣∠ACD=90°﹣α,∠ACE=∠ACB+∠BCE=90°+α.∴∠CBG=180°﹣∠BCD=180°﹣(90°﹣α)=90°+α.∴∠ACE=∠CBG.∵CD=CE,∴CE=BG.在△ACE和△CBG中,,∴△ACE≌△CBG(SAS).∴AE=CG.∵FG=FC,∴CG=2CF.∴AE=2CF.∴若F是BD的中点,AE=2CF仍然成立.28.在平面直角坐标系xOy中,⊙O的半径为1,点A在⊙O上,点P在⊙O内,给出如下定义:连接AP并延长交⊙O于点B,若AP=kAB,则称点P是点A关于⊙O的k倍特征点.(1)如图,点A的坐标为(1,0).①若点P的坐标为(﹣,0),则点P是点A关于⊙O的倍特征点;②在C1(0,),C2(,0),C3(,﹣)这三个点中,点C3是点A关于⊙O的倍特征点;③直线l经过点A,与y轴交于点D,∠DAO=60°.点E在直线l上,且点E是点A关于⊙O的倍特征点,求点E的坐标;(2)若当k取某个值时,对于函数y=﹣x+1(0<x<1)的图象上任意一点M,在⊙O 上都存在点N,使得点M是点N关于⊙O的k倍特征点,直接写出k的最大值和最小值.【分析】(1)①由题意知AP=OA+OP=1+=,AB=2,则k=;②由勾股定理得AC1==,假设点C1是点A关于⊙O的倍特征点,则AE=>2OA=2,不符合题意,同理判断C2、C3即可;③设直线AD交⊙O于B,连接OE,过点E作EF⊥x轴于点F,根据点E点A关于⊙O的倍特征点,得,由含30°的直角三角形的性质可得OE,AE的长;(2)设直线y=﹣x+1与x轴,y轴的交点分别为C,D,过点N作NP⊥CD交CD于P,交⊙O于B,过点O作直线EF⊥CD交⊙O于E,F,由,可知k越大,1﹣k的值越小,则﹣1+的值越小,得AM=BP,MN=NP时,k的值最小,即A 与E重合,N与F重合时,k的值最小,从而解决问题.解:(1)①∵A(1,0),P(﹣),∴AP=OA+OP=1+=,∵B(﹣1,0),∴AB=2,∵AP=kAB,∴k=,故答案为:;②∵C1(0,),A(1,0),∴OC1=,∴AC1==,假设点C1是点A关于⊙O的倍特征点,∴,∴AE=>2OA=2,不符合题意,∴点C1不是点A关于⊙O的倍特征点,同理可求出AC3===,假设点C3是点A关于⊙O的倍特征点,∴,∴C3为AF的中点,∴F(0,﹣1),∵F在圆上,∴点C3是点A关于⊙O的倍特征点,∵C2(),∴AC2=,∴,∴点C2不是点A关于⊙O的倍特征点,故答案为:C3;③如图,设直线AD交⊙O于B,连接OE,过点E作EF⊥x轴于点F,∵点E点A关于⊙O的倍特征点,∴,∴E是AB的中点,∴OE⊥AB,∵∠EAO=60°,∴∠EOA=30°,∴AE=,EF=,OE==,∴EF=,∴E();(2)设直线y=﹣x+1与x轴,y轴的交点分别为C,D,过点N作NP⊥CD交CD于P,交⊙O于B,过点O作直线EF⊥CD交⊙O于E,F,∴MN≥NP,AM≤BP,∵AM=AN﹣MN=(1﹣k)AN,∴,∵k越大,1﹣k的值越小,∴﹣1+的值越小,∴当的值越大,k的值越小,∴AM=BP,MN=NP时,k的值最小,∴A与E重合,N与F重合时,k的值最小,∵C,D是直线y=﹣x+1与x轴,y轴的交点,∴C(1,0),D(0,1),∵O到C和D的距离都是1,∴OC=OD=1,∴CD==,∵OG⊥CD,∴CG=DG=,∴OG==,∴FG=OF﹣OG=1﹣,∴k=,∴k的最小值为,当点N在E点,A在F点时,k有最大值为.。
2019-2020学年北京市西城区初三期末数学试卷(含答案)

北京市西城区2019—2020学年度第一学期期末试卷九年级数学第1页(共8页)北京市西城区2019—2020学年度第一学期期末试卷九年级数学2020.1考生须知1.本试卷共8页,共三道大题,28道小题。
满分100分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校、班级、姓名和学号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束时,将本试卷、答题卡一并交回。
一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如图,四边形ABCD 内接于⊙O ,若∠ADC =80°,则∠ABC 的度数是(A )40°(B )80°(C )100°(D )120°2.在平面直角坐标系中,将抛物线2=y x 向右平移2个单位长度,向上平移1个单位长度,得到抛物线(A )2=(2)1y x -+(B )2=(2)1y x --(C )2=(2)1y x ++(D )2=(2)1y x +-3.圆心角是90°,半径为20的扇形的弧长为(A )5π(B )10π(C )20π(D )25π4.如图,在△ABC 中,以C 为中心,将△ABC 顺时针旋转35°得到△DEC ,边ED ,AC 相交于点F ,若∠A =30°,则∠EFC 的度数为(A )60°(B )65°(C )72.5°(D )115°5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于E ,若∠ABC =30°,OE =3,则OD 长为(A )3(B )6(C )23(D )2北京市西城区2019—2020学年度第一学期期末试卷九年级数学第2页(共8页)6.下列关于抛物线y =x 2+bx -2的说法正确的是(A )抛物线的开口方向向下(B )抛物线与y 轴交点的坐标为(0,2)(C )当b >0时,抛物线的对称轴在y 轴右侧(D )对于任意的实数b ,抛物线与x 轴总有两个公共点7.A (12-,y 1),B (1,y 2),C (4,y 3)三点都在二次函数2=(2)y x k --+的图象上,则y 1,y 2,y 3的大小关系为(A )y 1<y 2<y 3(B )y 1<y 3<y 2(C )y 3<y 1<y 2(D )y 3<y 2<y 18.如图,AB =5,O 是AB 的中点,P 是以点O 为圆心,AB 为直径的半圆上的一个动点(点P 与点A ,B 可以重合),连接PA ,过P 作PM ⊥AB 于点M .设AP =x ,AP AM y -=,则下列图象中,能表示y 与x 的函数关系的图象大致是(A )(B )(C )(D )二、填空题(本题共16分,每小题2分)9.函数y =ax 2+bx +c (0≤x ≤3)的图象如图所示,则该函数的最小值是.第9题图第10题图第11题图10.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,添加一个条件使得△ADE ∽△ACB ,添加的一个条件是.11.如图,△ABO 三个顶点的坐标分别为A (-2,4),B (-4,0),O (0,0),以原点O 为位似中心,画出一个三角形,使它与△ABO 的相似比为12.北京市西城区2019—2020学年度第一学期期末试卷九年级数学第3页(共8页)12.如图,A ,B 两点的坐标分别为A (3,0),B (0,将线段BA 绕点B 顺时针旋转得到线段BC .若点C 恰好落在x 轴的负半轴上,则旋转角为°.第12题图第13题图13.在“测量学校教学楼的高度”的数学活动中,小刚同学使用镜面反射法进行测量,如图所示.若11a =米,210a =米,h=1.5米,则这个学校教学楼的高度为米.14.我国魏晋时期的数学家刘徽(263年左右)首创“割圆术”,所谓“割圆术”就是利用圆内接正多边形无限逼近圆来确定圆周率,刘徽计算出圆周率π 3.14≈.刘徽从正六边形开始分割圆,每次边数成倍增加,依次可得圆内接正十二边形,圆内接正二十四边形,…,割的越细,圆的内接正多边形就越接近圆.设圆的半径为R ,圆内接正六边形的周长66p R =,计算π632p R≈=;圆内接正十二边形的周长1224sin15p R =︒,计算π123.102p R≈=;请写出圆内接正二十四边形的周长24p =,计算π≈.(参考数据:sin150.258︒≈,sin7.50.130︒≈)北京市西城区2019—2020学年度第一学期期末试卷九年级数学第4页(共8页)15.在关于x 的二次函数2y ax bx c =++中,自变量x 可以取任意实数,下表是自变量x 与函数y 的几组对应值:x…12345678…2y ax bx c=++…-3.19-3.10-2.71-2.05-1.100.141.473.48…根据以上信息,关于x 的一元二次方程20ax bx c ++=的两个实数根中,其中的一个实数根约等于(结果保留小数点后一位小数).16.如图,矩形ABCD 中,AB =4,BC =6,E 是边BC 的中点,点P 在边AD 上,设DP =x ,若以点D 为圆心,DP 为半径的⊙D 与线段AE 只有一个公共点,则所有满足条件的x 的取值范围是.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.计算3tan 304cos 452sin 60︒+︒-︒.18.已知二次函数2=43y x x -+.(1)写出该二次函数图象的对称轴及顶点坐标,再描点画图;(2)利用图象回答:当x 取什么值时,y <0.19.如图,在△ABC 中,AD 平分∠BAC ,E 是AD 上一点,且BE =BD .(1)求证:△ABE ∽△ACD ;(2)若BD =1,CD =2,求AE AD的值.20.如图,在正方形ABCD 中,点E 在边AB 上,将点E 绕点D 逆时针旋转得到点F ,若点F 恰好落在边BC 的延长线上,连接DE ,DF ,EF .(1)判断△DEF 的形状,并说明理由;(2)若EF =,则△DEF 的面积为.21.某校要组织“风华杯”篮球赛,赛制为单循环形式(每两队之间都赛一场).(1)如果有4支球队参加比赛,那么共进行场比赛;北京市西城区2019—2020学年度第一学期期末试卷九年级数学第5页(共8页)(2)如果全校一共进行36场比赛,那么有多少支球队参加比赛?22.如图,AB 是⊙O 的直径,PB ,PC 是⊙O 的两条切线,切点分别为B ,C .连接PO 交⊙O 于点D ,交BC 于点E ,连接AC .(1)求证:OE =12AC ;(2)若⊙O 的半径为5,AC =6,求PB 的长.23.图1是一个倾斜角为α的斜坡的横截面,tan α=12.斜坡顶端B 与地面的距离BC 为3米.为了对这个斜坡上的绿地进行喷灌,在斜坡底端安装了一个喷头A ,喷头A 喷出的水珠在空中走过的曲线可以看作抛物线的一部分.设喷出水珠的竖直高度为y (单位:米)(水珠的竖直高度是指水珠与地面的距离),水珠与喷头A 的水平距离为x (单位:米),y 与x 之间近似满足函数关系2y ax bx =+(a ,b 是常数,0a ≠),图2记录了x 与y 的相关数据.图1图2(1)求y 关于x 的函数关系式;(2)斜坡上有一棵高1.8米的树,它与喷头A 的水平距离为2米,通过计算判断从A 喷出的水珠能否越过这棵树.24.如图,四边形ABCD 内接于⊙O ,∠BAD =90°,AC 是对角线.点E 在BC 的延长线上,且∠CED =∠BAC .(1)判断DE 与⊙O 的位置关系,并说明理由;(2)BA 与CD 的延长线交于点F ,若DE ∥AC ,AB =4,AD =2,求AF 的长.北京市西城区2019—2020学年度第一学期期末试卷九年级数学第6页(共8页)25.下面给出六个函数解析式:21=2y x,21y +,212y x x =--,2=231y x x --,2=21y x x -++,234y x x =---.小明根据学习二次函数的经验,分析了上面这些函数解析式的特点,研究了它们的图象和性质.下面是小明的分析和研究过程,请补充完整:(1)观察上面这些函数解析式,它们都具有共同的特点,可以表示为形如y =,其中x 为自变量;(2)如图,在平面直角坐标系xOy 中,画出了函数2=21y x x -++的部分图象,用描点法将这个函数的图象补充完整;(3)对于上面这些函数,下列四个结论:①函数图象关于y 轴对称②有些函数既有最大值,同时也有最小值③存在某个函数,当x >m (m 为正数)时,y 随x 的增大而增大,当x <-m 时,y 随x 的增大而减小④函数图象与 轴公共点的个数只可能是0个或2个或4个所有正确结论的序号是;(4)结合函数图象,解决问题:若关于x 的方程221x x x k -++=-+有一个实数根为3,则该方程其它的实数根为.北京市西城区2019—2020学年度第一学期期末试卷九年级数学第7页(共8页)26.在平面直角坐标系xOy 中,抛物线y =x 2–2m x –2m –2.(1)若该抛物线与直线y =2交于A ,B 两点,点B 在y 轴上.求该抛物线的表达式及点A 的坐标;(2)横坐标为整数的点称为横整点.①将(1)中的抛物线在A ,B 两点之间的部分记作G 1(不含A ,B 两点),直接写出G 1上的横整点的坐标;②抛物线y =x 2–2m x –2m –2与直线y =–x –2交于C ,D 两点,将抛物线在C ,D两点之间的部分记作G 2(不含C ,D 两点),若G 2上恰有两个横整点,结合函数的图象,求m 的取值范围.27.△ABC 是等边三角形,点P 在BC 的延长线上,以P 为中心,将线段PC 逆时针旋转n °(0<n <180)得线段PQ ,连接AP ,BQ .(1)如图1,若PC =AC ,画出当BQ ∥AP 时的图形,并写出此时n 的值;(2)M 为线段BQ 的中点,连接PM .写出一个n 的值,使得对于BC 延长线上任意一点P ,总有1=2MP AP ,并说明理由.图1备用图北京市西城区2019—2020学年度第一学期期末试卷九年级数学第8页(共8页)28.对于给定的△ABC ,我们给出如下定义:若点M 是边BC 上的一个定点,且以M 为圆心的半圆上的所有点都在△ABC 的内部或边上,则称这样的半圆为BC 边上的点M 关于△ABC 的内半圆,并将半径最大的内半圆称为点M 关于△ABC 的最大内半圆.若点M 是边BC 上的一个动点(M 不与B ,C 重合),则在所有的点M 关于△ABC 的最大内半圆中,将半径最大的内半圆称为BC 关于△ABC 的内半圆.(1)在Rt △ABC 中,∠BAC =90°,AB =AC =2,①如图1,点D 在边BC 上,且CD =1,直接写出点D 关于△ABC 的最大内半圆的半径长;②如图2,画出BC 关于△ABC 的内半圆,并直接写出它的半径长;图1图2(2)在平面直角坐标系xOy 中,点E 的坐标为(3,0),点P 在直线3=3y x 上运动(P 不与O 重合),将OE 关于△OEP 的内半圆半径记为R ,当34≤R ≤1时,求点P 的横坐标t 的取值范围.北京市西城区2019—2020学年度第一学期期末试卷九年级数学答案及评分参考2020.1一、选择题(本题共16分,每小题2分)15答案不唯一,如:5.9三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.解:3tan30°+4cos45°-2sin60°=342322⨯+-⨯=.····················································································5分18.解:(1)对称轴是直线x=2,顶点是(2,-1).2=43y x x-+的图象,如图.(2)当1<x<3时,y<0.·································································································5分19.(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠CAD .∵BE =BD ,∴∠BED =∠BDE .∴∠AEB =∠ADC .∴△ABE ∽△ACD .(2)解:∵△ABE ∽△ACD ,∴AE BEAD CD =.∵BE =BD =1,CD =2,∴12AE AD =.···························································································5分20.(1)△DEF 是等腰直角三角形.证明:在正方形ABCD 中,DA =DC ,∠ADC =∠DAB =∠DCB =90°.∵F 落在边BC 的延长线上,∴∠DCF =∠DAB =90°.∵将点E 绕点D 逆时针旋转得到点F ,∴DE =DF .∴Rt △ADE ≌Rt △CDF .∴∠ADE =∠CDF .∵∠ADC =∠ADE +∠EDC =90°,∴∠CDF +∠EDC =90°,即∠EDF =90°.∴△DEF 是等腰直角三角形.(2)△DEF 的面积为8.···························································································5分21.解:(1)6;(2)设如果全校一共进行36场比赛,那么有x 支球队参加比赛.依题意,得(1)362x x -=.解得x 1=9,x 2=-8(不合题意,舍去).所以x =9.答:如果全校一共进行36场比赛,那么有9支球队参加比赛.···················5分22.证明:(1)∵PB ,PC 是⊙O 的两条切线,切点分别为B ,C .∴PB =PC ,∠BPO =∠CPO .∴PO ⊥BC ,BE =CE .∵OB =OA ,∴OE =12AC .(2)∵PB 是⊙O 的切线,∴∠OBP =90°.由(1)可得∠BEO =90°,OE =12AC =3.∴∠OBP =∠BEO =90°.∴tan BE PB BOE OE OB∠==在Rt △BEO 中,OE =3,OB =5,∴BE =4.∴PB=203.···················································································5分23.(1)解:在Rt △ABC 中,1tan 2α=,BC =3,∴AC =6.∴点B 的坐标为(6,3).∵B (6,3),E (4,4)在抛物线2y ax bx =+上,∴22663,44 4.a b a b ⎧+=⎪⎨+=⎪⎩解得1,42.a b ⎧=-⎪⎨⎪=⎩∴y 关于x 的函数关系式为2124y x x =-+.(2)当x =2时,212224y =-⨯+⨯=3>1+1.8,所以水珠能越过这棵树. (6)分24.解:(1)相切.证明:连接BD ,如图.∵四边形ABCD 内接于⊙O ,∠BAD =90°,∴BD 是⊙O 的直径,即点O 在BD 上.∴∠BCD =90°.∴∠CED +∠CDE =90°.∵∠CED =∠BAC .又∵∠BAC =∠BDC ,∴∠BDC +∠CDE =90°,即∠BDE =90°.∴DE ⊥OD 于点D .∴DE 是⊙O 的切线.(2)如图,BD 与AC 交于点H .∵DE ∥AC ,∴∠BHC =∠BDE =90°.∴BD ⊥AC .∴AH =CH .∴BC =AB =4,CD =AD =2.∵∠FAD =∠FCB =90°,∠F =∠F ,∴△FAD ∽△FCB .∴AD AF CB CF =.∴CF =2AF .设AF =x ,则DF =CF -CD=2x -2.在Rt △ADF 中,222DF AD AF =+,∴222(22)2x x -=+.解得183x =,20x =(舍去).∴83AF =.······································································6分25.解:(1)①2y axb x c=++,(a ,b ,c 是常数,0a ≠).(2)图象如图1所示.图1图2(3)①③.(4)如图2,-1,0.·····························································································6分26.解:(1)∵抛物线y =x 2-2m x -2m -2与直线y =2交于A ,B 两点,点B 在y 轴上,∴点B 的坐标为(0,2).∴-2m -2=2.∴m =-2.∴抛物线的表达式为y =x 2+4x +2.∵A ,B 两点关于直线x =-2对称,∴点A 的坐标为(-4,2).(2)①y =x 2+4x +2的图象,如图1所示.G 1上的横整点分别是(-3,-1),(-2,-2),(-1,-1).②对于任意的实数m ,抛物线y =x 2-2m x -2m –2与直线y =-x -2总有一个公共点(-1,-1),不妨记为点C .当m ≤-1时,若G 2上恰有两个横整点,则横整点的横坐标为-3,-2,如图2.图1∴-2≤32m <-.当m >-1时,若G 2上恰有两个横整点,则横整点的横坐标为0,1,如图3.∴12m <≤1.图2图3综上,G 2恰有两个横整点,m 的取值范围是-2≤32m <-或12m <≤1.···························································································6分27.解:(1)如图.当BQ ∥AP 时,n =60.(2)n =120.证明:延长PM 至N ,使得MN =PM ,连接BN ,AN ,QN ,如图.∵M 为线段BQ 的中点,∴四边形BNQP 是平行四边形.∴BN ∥PQ ,BN=PQ .∴∠NBP =60°.∵△ABC 是等边三角形,∴AB=AC ,∠ABC =∠ACB =60°.∴∠ABN =∠ACP =120°.∵以P 为中心,将线段PC 逆时针旋转120°得到线段PQ ,∴PQ =PC .∴BN =PC .∴△ABN ≌△ACP .∴∠BAN =∠CAP ,AN=AP .∴∠NAP =∠BAC =60°.∴△ANP 是等边三角形.∴PN =AP .又MP=12PN ,∴MP =12AP .································································7分28.解:(1)①22.②BC 关于△ABC 的内半圆,如图1,BC 关于△ABC 的内半圆半径为1.(2)过点E 作EF ⊥OE ,与直线3=3y x 交于点F ,设点M 是OE 上的动点,i)当点P 在线段OF 上运动时(P 不与O 重合),OE 关于△OEP 的内半圆是以M 为圆心,分别与OP ,PE 相切的半圆,如图2.∴当34≤R ≤1时,t 的取值范围是32≤t ≤3.图1图2图3ii)当点P 在OF 的延长线上运动时,OE 关于△OEP 的内半圆是以M 为圆心,经过点E 且与OP 相切的半圆,如图3.∴当R =1时,t 的取值范围是t ≥3.iii)当点P 在OF 的反向延长上运动时(P 不与O 重合),OE 关于△OEP 的内半圆是以M 为圆心,经过点O 且与EP 相切的半圆,如图4.∴当34≤R <1时,t 的取值范围是t ≤95+-.图4综上,点P 在直线=3y x 上运动时(P 不与O 重合),当34≤R ≤1时,t 的取值范围是t ≤95+-或t ≥32.·································································································7分。
2020-2021学年北京市西城区九年级(上)期末数学试卷(含答案解析)

2020-2021学年北京市西城区九年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1.关于函数y=x2,下列说法不正确的是()A. 当x<0时,y随x增大而减小B. 当x≠0时,函数值总是正的C. 当x>0时,y随x增大而增大D. 函数图象有最高点2.120°的圆心角对的弧长是6π,则此弧所在圆的半径是()A. 3B. 4C. 9D. 183.已知:二次函数y=x2−4x−a,下列说法中错误的个数是()①若图象与x轴有交点,则a≤4②若该抛物线的顶点在直线y=2x上,则a的值为−8③当a=3时,不等式x2−4x+a>0的解集是1<x<3④若将图象向上平移1个单位,再向左平移3个单位后过点(1,−2),则a=−1⑤若抛物线与x轴有两个交点,横坐标分别为x1、x2,则当x取x1+x2时的函数值与x取0时的函数值相等.A. 1B. 2C. 3D. 44.在平面直角坐标系中,点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为()A. (2m,2n)B. (2m,2n)或(−2m,−2n)C. (12m,12n) D. (12m,12n)或(−12m,−12n)5.如图,正方形ABCD内接于⊙O,点E在劣弧AD上,则∠BEC等于()A. 45°B. 60°C. 30°D. 55°6.下列函数中,y随x的增大而减小的是()A. y=x+1B. y=2x2(x>0)C. y=−x2(x<0)D. y=−x2(x>0)7.某型号的手机连续两次降阶,每台手机售价由原来的1185元降到580元,设平均每次降价的百分率为x,则列出方程正确的是()A. 580(1+x)2=1185B. 1185(1−x)2=580C. 580(1−x)2=1185D. 1185(1+x)2=5808.抛物线y=x2−2x−8的最小值为()A. −8B. 7C. −7D. −9二、填空题(本大题共8小题,共24.0分)9.如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积是______.10.如图,在平面直角坐标系中,⊙M经过坐标原点,且与x轴、y轴分别相交于点A(−8,0),B(0,−6)两点.若抛物线对称轴过点M,顶点C在圆上,开口向下,且经过点B,交x轴于点D、E两点,P在抛物线上,S△ABC,则满足条件的P点有______ 个.若S△PDE=1511.如图,线段AB=BC=CD=DE=1厘米,那么图中所有线段的长度之和等于____________厘米.12.已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象如图所示,下面四个结论,①abc<0;②a+c<b;③2a+b=1;④a+b≥m(am+b),其中全部正确的是()13.如图,小正方形边长为2,连接小正方形的三个顶点可得△ABC,则AC边上的高为______ .14.如图,⊙O与平行四边形的两边CD、BC分别相切于点E、F,与∠ADC的角平分线DG相切于点H,若DH=3,∠A=60°,则阴影部分面积是______.15.已知一个三角形的周长和面积分别是84、210,一个单位圆在它的内部沿着三边匀速无摩擦地滚动一周后回到原来的位置(如图),则这个三角形的内部以及边界没有被单位圆滚过的部分的面积是______ (结果保留准确值).16.如图,AB为⊙O的直径,AD//OC,∠AOD=84°,则∠BOC=______ .三、解答题(本大题共9小题,共52.0分)17.计算:(π−2019)0−|−22|+tan45°18.解方程:3x(x+1)=2x+2.19.如图,△ABC内接于⊙O,且AB为⊙O的直径,过点C作⊙O的切线CD交AB的延长线于点D,点E在直径AB上,且DE=DC,连接CE并延长交⊙O于点F,连接AF,BF,试判断AF与BF的数量关系,并说明理由.20.抛物线y=ax2+bx经过点A(4,0),B(2,2),连结OB,AB.(1)求a、b的值;(2)求证:△OAB是等腰直角三角形;(3)将△OAB绕点O按顺时针方向旋转l35°得到△OA′B′,写出A′B′的中点P的出标.试判断点P是否在此抛物线上,并说明理由.21.如图,在菱形ABCD中,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.(1)求证:BC是⊙D的切线;(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF,若AB=2√3,求图中阴影部分的面积;(3)假设圆的半径为r,⊙D上一动点M从点F出发,按逆时针方向运动,且∠FDM<90°,连接DM,MF,当S四边形DFHM:S四边形ABCD=3:4时,求动点M经过的弧长.22.如图,已知矩形ABCD的边AB=4,BC=3,在直线BC上取点E(在点B左侧),使得BE=AB,点P是边AB上的一点,点Q是直线BC上位于点E右侧的一点,且有EQ=2AP,连接PQ,以Q为中心将PQ顺时针旋转90°得到QF,连接PF,设AP=m.(1)当m=1时,求点F到直线BC的距离;(2)当点Q在线段BE上,且线段PF被直线BC分成1:2的两部分时,求m的值;(3)如图2,连接BD,在点P的移动过程中.①当点F恰好落在△BCD的角平分线所在的直线上时,求所有满足要求的m值;②当△PQF与△ABD的重叠部分的图形为锐角三角形时,则m的取值范围为______.(直接写出答案)23.若点P(x,y)的坐标满足方程组(1)求点P的坐标(用含m,n的式子表示);(2)若点P在第四象限,且符合要求的整数m只有两个,求n的取值范围;(3)若点P到x轴的距离为5,到y轴的距离为4,求m,n的值(直接写出结果即可).24.如图在等边△ABC中,点D为△ABC内的一点,∠ADB=120°,∠ADC=90°,将△ABD绕点A逆时针旋转60°得△ACE,连接DE.(1)求证:AD=DE;(2)求∠DCE的度数.25.如图,△ABC是⊙O的内接三角形,AB=AC,点D是BC⏜上任一点,连接BD,CD.(1)设∠BAC=α,用含α的式子表示∠ADB;(2)若∠BAC=60°,求证:AD=BD+CD;(3)当BC经过圆心O时,BC=10,BD=6,求AD的长.参考答案及解析1.答案:D解析:解:由题意得,图象开口向上,对称轴为y轴,∴当x<0时,y随x增大而减小,A选项说法正确,当x>0时,y随x增大而增大,C选项说法正确,当x=0时,函数取最小值为0,∴B选项正确,∵二次项的系数大于0,∴函数图象有最低点,∴D选项错误,故选:D.根据二次项的系数确定开口方向,再根据对称轴确定增减性.本题主要考查二次函数的图象的性质,要牢记解析式中的系数和图象性质的关系.2.答案:C解析:,将n及l的值代入即可得出半径r的值.根据弧长的计算公式l=nπr180此题考查了弧长的计算,解答本题的关键是熟练记忆弧长的计算公式,属于基础题,难度一般.解:根据弧长的公式l=nπr180得到:6π=120πr180解得r=9.故选C.3.答案:B解析:①和x轴有交点,就说明△≥0,易求a的取值;②求出二次函数定点的表达式,代入直线解析式即可求出a的值;③将a=3代入不等式,即可求其解集;④将解析式化为顶点式,利用解析式平移的规律解答;⑤利用根与系数的关系将x1+x2的值代入解析式进行计算即可.解:①当△=b2−4ac=16+4a≥0,即a≥−4时,二次函数和x轴有交点,故①错误;②∵二次函数y=x2−4x−a的顶点坐标为(2,−a−4),代入y=2x得,−a−4=2×2,a=−8,故②正确;③当a=3时,y=x2−4x+3,图象与x轴交点坐标为:(1,0),(3,0),故不等式x2−4x+a>0的解集是:x<1或x>3,故③错误;④将图象向上平移1个单位,再向左平移3个单位后解析式为:y=(x+1)2+a−3,∵图象过点(1,−2),∴将此点代入得:−2=(1+1)2+a−3,解得:a=−3.故④正确;⑤由根与系数的关系,x1+x2=4,当x=4时,y=16−16+a=a,当x=0时,y=a,故⑤正确.故选B.4.答案:B解析:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.根据位似变换的性质计算即可.解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(−2),n×(−2)),即(2m,2n)或(−2m,−2n).故选B.5.答案:A解析:解:∵正方形ABCD内接于⊙O,∴∠BEC等于90°÷2=45°.故选A.由此图可知,正方形正好把圆周长平分为四等分,即把圆心角平分为四等份,所以∠BEC等于90°÷2=45°.此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.答案:D解析:解:A.在y=x+1中,y随x的增大而增大,故选项A不符合题意;B.在y=2x2,x>0时,y随x的增大而增大,故选项B不符合题意;C.在y=−x2,x<0时,y随x的增大而增大,故选项C不符合题意;D.在y=−x2,x>0时,y随x的增大而减小,故选项D符合题意;故选:D.根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.本题考查一次函数的性质、二次函数的性质,解答本题的关键是明确题意,利用一次例函数和二次函数的性质解答.7.答案:B解析:解:设平均每次降价的百分率是x,根据题意列方程得,1185(1−x)2=580.故选:B.设出平均每次下调的百分率为x,利用原价×(1−每次下调的百分率)2=实际售价列方程解答即可.此题考查了由实际问题抽象出一元二次方程,基本数量关系:原价×(1−每次下调的百分率)2=实际售价.8.答案:D解析:把二次函数配方,把一般形式的二次函数转化成顶点式,考查学生的运算能力,二次方程中的配方。
北京市西城区2020-2021学年九年级上学期期末数学试题

北京市西城区2020—2021学年度第一学期期末试卷九年级数学 2021.1一、选择题(本题共24分,每小题3分)第1~8题均有四个选项,符合题意的选项只有..一个. 1.在抛物线245=--y x x 上的一个点的坐标为( ) A .()0,4-B .()2,0C .()1,0D .()1,0-2.在半径为6cm 的圆中,60°的圆心角所对弧的弧长是( ) A .πcmB .2πcmC .3πcmD .6πcm3.将抛物线2=y x 向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为( ) A .()235=++y xB .()235=-+y x C .()253=++y xD .()253=-+y x4.2020年是紫禁城建成600年暨故宫博物院成立95周年,在此之前有多个国家曾发行过紫禁城元素的邮品。
图1所示的摩纳哥发行的小型张中的图案,以敞开的紫禁城大门和大门内的石狮和太和殿作为邮票和小型张的边饰。
如果标记出图1中大门的门框并画出相关的几何图形(图2),我们发现设计师巧妙地使用了数学元素(忽略误差),图2中的四边形ABCD 与四边形''''A B C D 是位似图形,点O 是位似中心,点'A 是线段OA 的中点,那么以下结论正确的是( )图1图2A .四边形ABCD 与四边形''''ABCD 的相似比为1:1 B .四边形ABCD 与四边形''''A B C D 的相似比为1:2C .四边形ABCD 与四边形''''A B C D 的相似比为3:1 D .四边形ABCD 与四边形''''A B C D 的相似比为4:15.如图,AB 是O 的直径,CD 是弦,若32∠=︒CDB ,则∠ABC 等于( )A .68°B .64°C .58°D .32°6.若抛物线2=++ax y bx c (0≠a )经过()1,0A ,()3,0B 两点,则抛物线的对称轴为( ) A .1=xB .2=xC .3=xD .4=x7.近年来我国无人机产业迅猛发展,无人机驾驶员已正式成为国家认可的新职业。
初三上西城数学期末试卷

一、选择题(每题4分,共40分)1. 下列各数中,不是有理数的是()A. √4B. 0.25C. -1/2D. π2. 若a、b是方程x² - 2ax + 1 = 0的两个实数根,则a+b的值为()A. 2B. -2C. 1D. -13. 下列函数中,是反比例函数的是()A. y = x² - 3x + 2B. y = 2x + 3C. y = k/x (k≠0)D. y = √x4. 若等腰三角形底边长为8cm,腰长为10cm,则其面积为()A. 40cm²B. 32cm²C. 48cm²D. 36cm²5. 下列各数中,能被3整除的是()A. 123B. 124C. 125D. 1266. 已知二次函数y = ax² + bx + c (a≠0)的图像与x轴交于点A(-1,0)和B(3,0),则该函数的对称轴方程为()A. x = 1B. x = 2C. x = 3D. x = 47. 在直角坐标系中,点P(2,3)关于原点对称的点的坐标为()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)8. 若sinα = 1/2,且α为锐角,则cosα的值为()A. √3/2B. 1/2C. √3/4D. 1/49. 下列各式中,正确的是()A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C. (a+b)² = a² - 2ab + b²D. (a-b)² = a² + 2ab - b²10. 下列各数中,是质数的是()A. 25B. 29C. 49D. 81二、填空题(每题5分,共50分)11. 若x² - 5x + 6 = 0,则x的值为______。
初中数学 北京市西城区九年级第一学期期末考试卷

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx 题(每空xx 分,共xx分)试题1:抛物线的对称轴为().A.直线 B.直线C.直线D.直线试题2:如图,AB为⊙O的直径,点C在⊙O上,若∠C=15°,则∠BOC =().A.60°B.45°C.30°D.15°试题3:如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为().A.1 B.C. D.评卷人得分试题4:用配方法将化成的形式为().A.B.C.D.试题5:如图,将△ABC的三边分别扩大一倍得到△(顶点均在格点上),若它们是以P点为位似中心的位似图形,则P点的坐标是().A.B. C.D.试题6:某商店购进一种商品,单价为30元.试销中发现这种商品每天的销售量P(件)与每件的销售价(元)满足关系:.若商店在试销期间每天销售这种商品获得200元的利润,根据题意,下面所列方程正确的是().A.B.C.D.试题7:如图,△OAB中,OA=OB,∠A=30°,⊙O与AB相切,切点为E,并分别交OA,OB于C,D两点,连接CD.若CD等于,则扇形OCED的面积等于().A.πB.πC.πD.π试题8:如图,OA=4,线段OA的中点为B,点P在以O为圆心,OB为半径的圆上运动,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于().A. B.C.D.试题9:如图,在△ABC中,DE∥AB分别交AC,BC于点D,E,若AD=2,CD=3,则△CDE与△CAB的周长比为.试题10:两圆的半径分别为3cm和4cm,若圆心距为5cm,则这两圆的位置关系为.试题11:如图,平面直角坐标系xOy中,点A,以OA为半径作⊙O,若点P,B都在⊙O上,且四边形AOPB为菱形,则点P 的坐标为.试题12:抛物线(a ≠ 0)满足条件:(1);(2);(3)与x轴有两个交点,且两交点间的距离小于2.以下有四个结论:①;②;③;④,其中所有正确结论的序号是.试题13:计算:.试题14:若关于x的方程有实数根.(1)求a的取值范围;(2)若a为符合条件的最小整数,求此时方程的根.试题15:已知:如图,在Rt△ABC中,∠C=90°,∠ABC=60°,AC=,D为CB延长线上一点,且BD=2AB.求AD的长.试题16:右图为抛物线的一部分,它经过A,B两点.(1)求抛物线的解析式;(2)将此抛物线向左平移3个单位,再向下平移1个单位,求平移后的抛物线的解析式.试题17:如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为50m,求这栋楼的高度.(取1.414,取1.732)试题18:对于抛物线.(1)它与x轴交点的坐标为,与y轴交点的坐标为,顶点坐标为;(2)在坐标系中利用描点法画出此抛物线;x……y……(3)利用以上信息解答下列问题:若关于x的一元二次方程(t为实数)在<x<的范围内有解,则t的取值范围是.试题19:已知:如图,在△ABC中,AB=AC= 5,BC= 8,D,E分别为BC,AB边上一点,∠ADE=∠C.(1)求证:△BDE∽△CAD;(2)若CD=2,求BE的长.试题20:两个长为2,宽为1的矩形ABCD和矩形EFGH如图1所示摆放在直线l上,DE=2,将矩形ABCD绕点D顺时针旋转角(),将矩形EFGH绕点E逆时针旋转相同的角度.(1)当两个矩形旋转到顶点C,F重合时(如图2),∠DCE= °,点C到直线l的距离等于,= °;(2)利用图3思考:在旋转的过程中,矩形ABCD和矩形EFGH重合部分为正方形时,= °.试题21:已知:如图,AB是⊙O的直径,AC是弦,OD⊥AC于点E,交⊙O于点F,连接BF,CF,∠D=∠BFC.(1)求证:AD是⊙O的切线;(2)若AC=8,tan B =,求AD的长.试题22:请阅读下面材料:若,是抛物线(a ≠ 0)上不同的两点,证明直线为此抛物线的对称轴.有一种方法证明如下:①②证明:∵,是抛物线(a ≠ 0)上不同的两点,∴且≠.①-②得.∴.∴.又∵抛物线(a ≠ 0)的对称轴为,∴直线为此抛物线的对称轴.(1)反之,如果,是抛物线(a ≠ 0)上不同的两点,直线为该抛物线的对称轴,那么自变量取,时函数值相等吗?写出你的猜想,并参考上述方法写出证明过程;(2)利用以上结论解答下面问题:已知二次函数当x = 4 时的函数值与x = 2007 时的函数值相等,求x = 2012时的函数值.试题23:已知关于x的一元二次方程.(其中m为实数)(1)若此方程的一个非零实数根为k,①当k = m时,求m的值;②若记为y,求y与m的关系式;(2)当<m<2时,判断此方程的实数根的个数并说明理由.试题24:已知抛物线(其中a ≠c且a ≠0).(1)求此抛物线与x轴的交点坐标;(用a,c的代数式表示)(2)若经过此抛物线顶点A的直线与此抛物线的另一个交点为,求此抛物线的解析式;(3)点P在(2)中x轴上方的抛物线上,直线与y轴的交点为C,若,求点P的坐标;(4)若(2)中的二次函数的自变量x在n≤x<(n为正整数)的范围内取值时,记它的整数函数值的个数为N,则N关于n的函数关系式为 .试题25:含30°角的直角三角板ABC中,∠A=30°.将其绕直角顶点C顺时针旋转角(且≠ 90°),得到Rt△,边与AB所在直线交于点D,过点D作DE∥交边于点E,连接BE.(1)如图1,当边经过点B时,= °;(2)在三角板旋转的过程中,若∠CBD的度数是∠CBE度数的m倍,猜想m的值并证明你的结论;(3)设 BC=1,AD=x,△BDE的面积为S,以点E为圆心,EB为半径作⊙E,当S=时,求AD的长,并判断此时直线与⊙E的位置关系.试题1答案:A试题2答案:C试题3答案:B试题4答案:D试题5答案:A试题6答案:A试题7答案:B试题8答案:C试题9答案:.试题10答案:相交.试题11答案:,. 试题12答案:②,④.试题13答案:解:.试题14答案:解:(1)∵该方程有实数根,∴≥0.解得a ≥.(2)当a为符合条件的最小整数时,a = .此时方程化为,方程的根为.试题15答案:解:在Rt△ABC中,∠C=90°,∠ABC=60°,AC=,∴,BC=1.∵D为CB延长线上一点,BD=2AB ,∴BD=4,CD=5.∴.试题16答案:解:(1)∵抛物线经过A,B两点,∴解得∴抛物线的解析式为.(2)∵抛物线的顶点坐标为,∴平移后的抛物线的顶点坐标为.∴平移后的抛物线的解析式为.试题17答案:解:在Rt△ABD中,∠BDA=90°,∠BAD=45°,∴BD=AD=50(m).在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴(m) .∴BC= BD+CD=(m).答:这栋楼约高136.6 m.试题18答案:解:(1)它与x 轴交点的坐标为,与y 轴交点的坐标为,顶点坐标为;x…0 1 2 3 4 …y… 3 0 -1 0 3 …(2)列表:图象如图3所示.(3)t的取值范围是.试题19答案:(1)证明:∵AB=AC,∴∠B=∠C.∵∠ADE+∠BDE=∠ADB =∠C+∠CAD,∠ADE=∠C,∴∠BDE =∠CAD.∴△BDE∽△CAD.(2)解:由(1)得.∵AB=AC= 5,BC= 8,CD=2,∴.∴.试题20答案:解:(1)∠DCE= 60 °,点C到直线l的距离等于,= 30 °;(2)= 45 °.试题21答案:(1)证明:∵OD⊥AC于点E,∴∠OEA=90°,∠1+∠2=90°.∵∠D=∠BFC,∠BFC=∠1,∴∠D +∠2=90°,∠OAD =90°.∴OA⊥AD于点A.∵OA是⊙O的半径,∴AD是⊙O的切线.(2)解:∵OD⊥AC于点E,AC是⊙O的弦,AC=8,∴.∵∠B=∠C,tan B =,∴在Rt△CEF中,∠CEF=90°,tan C =.∴.设⊙O的半径为r,则.在Rt△OAE中,由勾股定理得,即.解得r =5.∴在Rt△OAE中,.∴在Rt△OAD中,.试题22答案:解:(1)结论:自变量取,时函数值相等.证明:∵,为抛物线上不同的两点,①②由题意得且≠.①-②,得.∵直线是抛物线(a ≠ 0)的对称轴,∴.∴.∴,即(阅卷说明:其他代数证明方法相应给分;直接利用抛物线的对称性而没有用代数方法进行证明的不给分)(2)∵二次函数当x = 4 时的函数值与x = 2007 时的函数值相等,∴由阅读材料可知二次函数的对称轴为直线.∴,.∴二次函数的解析式为.∵,由(1)知,当x = 2012的函数值与时的函数值相等.∵当x =时的函数值为,∴当x = 2012 时的函数值为2011.试题23答案:解:(1)∵k为的实数根,∴.※①当k = m时,∵k为非零实数根,∴m ≠ 0,方程※两边都除以m,得.整理,得.解得,.∵是关于x的一元二次方程,∴m ≠ 2.∴m= 1.(阅卷说明:写对m= 1,但多出其他错误答案扣1分)②∵k为原方程的非零实数根,∴将方程※两边都除以k,得.整理,得.∴.(2)解法一: . 当<m<2时,m>0,<0.∴>0,>1>0,Δ>0.∴当<m<2时,此方程有两个不相等的实数根.解法二:直接分析<m<2时,函数的图象,∵该函数的图象为抛物线,开口向下,与y轴正半轴相交,∴该抛物线必与x轴有两个不同交点.∴当<m<2时,此方程有两个不相等的实数根.解法三:.结合关于m的图象可知,(如图6)当<m≤1时,<≤4;当1<m<2时,1<<4.∴当<m<2时,>0.∴当<m<2时,此方程有两个不相等的实数根.试题24答案:解:(1)抛物线与x轴交点的横坐标是关于x的方程(其中a ≠ 0,a ≠c)的解.解得,.∴抛物线与x轴交点的坐标为,.(2)抛物线的顶点A的坐标为.①②③∵经过此抛物线顶点A的直线与此抛物线的另一个交点为,由③得c =0.将其代入①、②得解得.∴所求抛物线的解析式为. (3)作PE⊥x轴于点E, PF⊥y轴于点F.(如图7)抛物线的顶点A的坐标,点B的坐标为,点C的坐标为.设点P的坐标为.∵点P在x轴上方的抛物线上,∴,且0<m<1,.∴,.∵,∴.解得m=2n,或(舍去).将m=2n代入,得.解得,(舍去).∴.∴点P的坐标为.(4)N关于n的函数关系式为N=4n .说明:二次函数的自变量x在n≤x<(n为正整数)的范围内取值,此时y随x的增大而减小,∴<y≤,其中的整数有,,…..试题25答案:(1)当边经过点B时,= 60 °;(2)猜想:①如图8,点D在AB边上时,m=2;②如图9,点D在AB的延长线上时,m=4.(阅卷说明:为与后边证明不重复给分,猜想结论不设给分点)证明:①当时,点D在AB边上(如图8).(阅卷说明:①、②两种情况没写的取值范围不扣分)∵DE∥,∴.由旋转性质可知,CA =,CB=,∠ACD=∠BCE.∴.∴△CAD∽△CBE.∴∠A =∠CBE=30°.∵点D在AB边上,∠CBD=60°,∴,即 m=2.②当时,点D在AB的延长线上(如图9).与①同理可得∠A =∠CBE=30°.∵点D在AB的延长线上,,∴,即 m=4.(阅卷说明:第(2)问用四点共圆方法证明的扣1分.)(3)解:在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,∴AB = 2 ,,.由△CAD∽△CBE 得.∵AD=x,∴,.①当点D在AB边上时,AD=x,,∠DBE=90°.此时,.当S =时,.整理,得.解得,即AD=1.此时D为AB中点,∠DCB=60°,∠BCE=30°=∠CBE.(如图10)∴EC = EB.∵,点E在边上,∴圆心E到的距离EC等于⊙E的半径EB.∴直线与⊙E相切.②当点D在AB的延长线上时,AD=x,,∠DBE=90°.(如图9)..当S =时,.整理,得.解得,(负值,舍去).即.此时∠BCE=,而,∠CBE=30°,∴∠CBE<∠BCE .∴EC<EB,即圆心E到的距离EC小于⊙E的半径EB. ∴直线与⊙E相交.。
西城区九年级第一学期数学期末试卷有答案

2013-2014学年度北京市西城区第一学期期末试卷九年级数学2014.1一、选择题(本题共32分,每小题4分)1.抛物线的顶点坐标是A .B .C .D .2.如图,⊙O是△ABC 的外接圆,若,则∠ACB的度数是A.40°B.50° C.60°D.80°3.若两个圆的半径分别为2和1,圆心距为3,则这两个圆的位置关系是A.内含B.内切C.相交D.外切4.下列图形中,既是轴对称图形又是中心对称图形的是A B C D5.在Rt△ABC中,∠C=90°,若BC=1,AC=2,则sin A的值为A.B.C.D.26.如图,抛物线的对称轴为直线.下列结论中,正确的是A.a<0 B.当时,y随x的增大而增大C. D.当时,y的最小值是-17.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是A.B. C.D.8.若抛物线(m是常数)与直线有两个交点,且这两个交点分别在抛物线对称轴的两侧,则的取值范围是A.B.C.D.二、填空题(本题共16分,每小题4分)9.如图,△ABC中,点D,E分别在AB,AC边上,DE∥BC,若,,,则BC的长是.10.把抛物线向右平移1个单位,再向下平移3个单位,得到抛物线.11.如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C逆时针旋转角后得到△A′B′C,当点A的对应点A' 落在AB边上时,旋转角的度数是度,阴影部分的面积为.12.在平面直角坐标系xOy中,过点作AB⊥x轴于点B.半径为的⊙A与AB交于点C,过B点作⊙A的切线BD,切点为D,连接DC并延长交x轴于点E.(1)当时,EB的长等于;(2)点E的坐标为(用含r的代数式表示).三、解答题(本题共30分,每小题5分)13.计算:.14.已知:二次函数的图象经过点.(1)求二次函数的解析式;(2)求二次函数的图象与x轴的交点坐标;(3)将(1)中求得的函数解析式用配方法化成的形式.15.如图,在梯形ABCD中,AB∥DC,∠A=90°,点P在AD边上,且.若AB=6,DC =4,PD=2,求PB的长.16.列方程或方程组解应用题:“美化城市,改善人民居住环境”是城市建设的一项重要内容.某市近年来,通过植草、栽树、修建公园等措施,使城区绿地面积不断增加,2011年底该市城区绿地总面积约为75公顷,截止到2013年底,该市城区绿地总面积约为108公顷,求从2011年底至2013年底该市城区绿地总面积的年平均增长率.17.如图,为了估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BD,∠ACB =45°,∠ADB =30°,并且点B ,C ,D 在同一条直线上.若测得CD =30米,求河宽AB (结果精确到1米,取1.73,取1.41).18.如图,AB 是⊙O 的弦,OC ⊥AB 于点C ,连接OA ,AB =12,.(1)求OC 的长;(2)点E ,F 在⊙O 上,EF ∥AB .若EF =16,直接写出EF 与AB 之间的距离.四、解答题(本题共20分,每小题5分) 19.设二次函数的图象为C 1.二次函数的图象与C 1关于y 轴对称. (1)求二次函数的解析式; (2)当≤0时,直接写出的取值范围;(3)设二次函数图象的顶点为点A ,与y 轴的交点为点B ,一次函数( k ,m 为常数,k ≠0)的图象经过A ,B 两点,当时,直接写出x 的取值范围.20.如图,在矩形ABCD 中,E 是CD 边上任意一点(不与点C ,D 重合),作AF ⊥AE 交CB 的延长线于点F .(1)求证:△ADE ∽△ABF ;(2)连接EF ,M 为EF 的中点,AB =4,AD =2,设DE =x , ①求点M 到FC 的距离(用含x 的代数式表示);A BCO②连接BM ,设,求y 与x 之间的函数关系式,并直接写出BM 的长度的最小值.21.如图,AB 是⊙O 的直径,点C 在⊙O 上,连接BC ,AC ,作OD ∥BC 与过点A 的切线交于点D ,连接DC 并延长交AB 的延长线于点E . (1)求证:DE 是⊙O 的切线; (2)若,求的值.22.阅读下面材料:定义:与圆的所有切线和割线.......都有公共点的几何图形叫做这个圆的关联图形. 问题:⊙O 的半径为1,画一个⊙O 的关联图形.在解决这个问题时,小明以O 为原点建立平面直角坐标系xOy 进行探究,他发现能画出很多⊙O 的关联图形,例如:⊙O 本身和图1中的△ABC (它们都是封闭的图形),以及图2中以O 为圆心的 (它是非封闭的图形),它们都是⊙O 的关联图形.而图2中以P ,Q 为端点的一条曲线就不是⊙O 的关联图形.参考小明的发现,解决问题:(DmE(1)在下列几何图形中,⊙O 的关联图形是 (填序号);① ⊙O 的外切正多边形② ⊙O 的内接正多边形③ ⊙O 的一个半径大于1的同心圆 (2)若图形G 是⊙O 的关联图形,并且它是封闭的,则图形G 的周长的最小值是____; (3)在图2中,当⊙O 的关联图形 的弧长最小时,经过D ,E 两点的直线为y =__; (4)请你在备用图中画出一个⊙O 的关联图形,所画图形的长度l 小于(2)中图形G 的周长的最小值,并写出l 的值(直接画出图形,不写作法).五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知:二次函数(m 为常数).(1)若这个二次函数的图象与x 轴只有一个公共点A ,且A 点在x 轴的正半轴上. ①求m 的值;②四边形AOBC 是正方形,且点B 在y 轴的负半轴上,现将这个二次函数的图象平移,使平移后的函数图象恰好经过B ,C 两点,求平移后的图象对应的函数解析式;(2) 当0≤≤2时,求函数的最小值(用含m 的代数式表示).24.已知:△ABC ,△DEF 都是等边三角形,M 是BC 与EF 的中点,连接AD ,BE .(1)如图1,当EF 与BC 在同一条直线上时,直接写出AD 与BE 的数量关系和位置关系; (2)△ABC 固定不动,将图1中的△DEF 绕点M 顺时针旋转(≤≤)角,如图2所示,判断(1)中的结论是否仍然成立,若成立,请加以证明;若不成立,说明理由;(3)△ABC 固定不动,将图1中的△DEF 绕点M 旋转(≤≤)角,作DH ⊥BC 于点H .设BH =x ,线段AB,BE,ED ,DA 所围成的图形面积为S .当AB =6,DE =2时,求S 关于x的函数关系式,并写出相应的x 的取值范围.(DmE25.已知:二次函数的图象与x轴交于点A,B(A点在B点的左侧),与y轴交于点C,△ABC的面积为12.(1)①填空:二次函数图象的对称轴为;②求二次函数的解析式;(2)点D的坐标为(-2,1),点P在二次函数图象上,∠ADP为锐角,且,求点P的横坐标;(3)点E在x轴的正半轴上,,点O与点关于EC所在直线对称.作⊥于点N,交EC于点M.若EM·EC=32,求点E的坐标.。