平面向量及其应用经典例题doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、多选题
1.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且
02
C <<
π
,4b =,则以下说法正确的是( )
A .3
C π
=
B .若72
c =
,则1cos 7B =
C .若sin 2cos sin A B C =,则ABC 是等边三角形
D .若ABC 的面积是4 2.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,已知A =3
π
,a =7,则以下判断正确的是( )
A .△ABC 的外接圆面积是493
π
; B .b cos C +c cos B =7;
C .b +c 可能等于16;
D .作A 关于BC 的对称点A ′,则|AA ′|的最大
值是
3.在ABC ∆中,内角,,A B C 的对边分别为,,,a b c 若,2,6
A a c π
===则角C 的大小
是( ) A .
6
π B .
3
π C .
56
π D .
23
π 4.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( )
A .1122AE A
B A
C →
→→
=+
B .2AB EF →→
=
C .1133
CP CA CB →
→→
=+
D .2233
CP CA CB →
→→
=+
5.已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( ) A .a 与b 的夹角为钝角
B .向量a 在b
C .2m +n =4
D .mn 的最大值为2
6.已知向量()1,0a =,()2,2b =,则下列结论正确的是( ) A .()25,4a b +=
B .2b =
C .a 与b 的夹角为45°
D .()
//2a a b +
7.在ABC 中,内角,,A B C 所对的边分别为,,a b c .根据下列条件解三角形,其中有两解的是( )
A .10,45,70b A C ==︒=︒
B .45,48,60b c B ===︒
C .14,16,45a b A ===︒
D .7,5,80a b A ===︒
8.下列结论正确的是( )
A .已知a 是非零向量,b c ≠,若a b a c ⋅=⋅,则a ⊥(-b c )
B .向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则a 在b 上的投影向量为
12
b C .点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 是△ABC 的外心 D .以(1,1),(2,3),(5,﹣1),(6,1)为顶点的四边形是一个矩形 9.在RtABC 中,BD 为斜边AC 上的高,下列结论中正确的是( )
A .2
AB AB AC B .2
BC CB AC C .2AC
AB BD
D .2
BD
BA BD
BC BD
10.下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立
C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形
D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形
11.(多选)若1e ,2e 是平面α内两个不共线的向量,则下列说法不正确的是( ) A .()12,e e λμλμ+∈R 可以表示平面α内的所有向量
B .对于平面α中的任一向量a ,使12a e e λμ=+的实数λ,μ有无数多对
C .1λ,1μ,2λ,2μ均为实数,且向量1112e e λμ+与2212e e λμ+共线,则有且只有一个实数λ,使()
11122122e e e e λμλλμ+=+
D .若存在实数λ,μ,使120e e λμ+=,则0λμ==
12.点P 是ABC ∆所在平面内一点,满足20PB PC PB PC PA --+-=,则ABC ∆的形
状不可能是( ) A .钝角三角形
B .直角三角形
C .等腰三角形
D .等边三角形
13.某人在A 处向正东方向走xkm 后到达B 处,他向右转150°,然后朝新方向走3km 到达C
处,,那么x 的值为( )
A B .C .D .3
14.下列说法中错误的是( )
A .向量A
B 与CD 是共线向量,则A ,B ,
C ,
D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =
D .温度含零上温度和零下温度,所以温度是向量 15.下列命题中正确的是( )
A .对于实数m 和向量,a b ,恒有()m a b ma mb -=-
B .对于实数,m n 和向量a ,恒有()m n a ma na -=-
C .若()ma mb m =∈R ,则有a b =
D .若(,,0)ma na m n a =∈≠R ,则m n =
二、平面向量及其应用选择题
16.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2
cos 3
A =
,则b=
A B
C .2
D .3
17.若O 为ABC 所在平面内任意一点,且满足()
20BC OB OC OA ⋅+-=,则
ABC 一定为( )
A .锐角三角形
B .直角三角形
C .等腰三角形
D .钝角三角形
18.已知向量OA 与OB 的夹角为θ,2OA =,1OB =,=OP tOA ,
()1OQ t OB =-,PQ 在t t =0时取得最小值,则当01
05
t <<
时,夹角θ的取值范围为( ) A .0,3π⎛⎫ ⎪⎝⎭
B .,32ππ⎛⎫ ⎪⎝⎭
C .2,23ππ⎛⎫
⎪⎝
⎭
D .20,
3π⎛⎫ ⎪⎝⎭
19.三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,那么点P 是三角形ABC 的( ) A .重心
B .垂心
C .外心
D .内心
20.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为
S ,且222()S a b c =+-,则tan C =( )
A.
4
3
-B.
3
4
-C.
3
4
D
.
4
3
21.已知点O是ABC内部一点,并且满足2350
OA OB OC
++=,OAC的面积为1
S,ABC的面积为
2
S,则1
2
S
S
=
A.
3
10
B.
3
8
C.
2
5
D.
4
21
22.在ABC
∆中,D为BC中点,且
1
2
AE ED
=,若BE AB AC
λμ
=+,则λμ
+=()
A.1B.
2
3
-C.
1
3
-D.
3
4
-
23.ABC
∆内有一点O,满足3450
OA OB OC
++=,则OBC
∆与ABC
∆的面积之比为()
A.1:4B.4:5C.2:3D.3:5
24.已知两不共线的向量()
cos,sin
aαα
=,()
cos,sin
bββ
=,则下列说法一定正确的是()
A.a与b的夹角为αβ
-B.a b⋅的最大值为1
C.2
a b
+≤D.()()
a b a b
+⊥-
25.如图,四边形ABCD是平行四边形,E是BC的中点,点F在线段CD上,且2
CF DF
=,AE与BF交于点P,若AP AE
λ
=,则λ=()
A.
3
4
B.
5
8
C.
3
8
D.
2
3
26.如图所示,在坡度一定的山坡A处测得山顶上一建筑物CD的顶端C对于山坡的斜度为15°,向山顶前进50m到达B处,又测得C对于山坡的斜度为45°,若CD=50m,山坡对于地平面的坡度为θ,则cosθ等于()
A.
3
2
B.
2
2
C.
31
2
D.
2
1
2
-
27.在ABC 中,()
2
BC BA AC AC +⋅=,则ABC 的形状一定是( ) A .等边三角形 B .等腰三角形
C .等腰直角三角形
D .直角三角形
28.如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =
( )
A .13
24
AB AD -+ B .12
23AB AD + C .
11
32
AB AD - D .
13
24
AB AD - 29.已知菱形ABCD 边长为2,∠B =3
π
,点P 满足AP =λAB ,λ∈R ,若BD ·CP =-3,则λ的值为( ) A .
12
B .-
12
C .
13
D .-
13
30.在ABC ∆中,60A ∠=︒,1b =,3ABC S ∆,则2sin 2sin sin a b c
A B C
++=++( )
A 239
B 263
C 83
D .2331.在ABC ∆中,下列命题正确的个数是( )
①AB AC BC -=;②0AB BC CA ++=;③点O 为ABC ∆的内心,且
()()20OB OC OB OC OA -⋅+-=,则ABC ∆为等腰三角形;④0AC AB ⋅>,则
ABC ∆为锐角三角形.
A .1
B .2
C .3
D .4
32.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2
A A
B
C C A B +-+=--+
,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( ) A .()8bc b c +> B .()162ab a b +>C .612abc ≤≤
D .1224abc ≤≤
33.奔驰定理:已知O 是ABC ∆内的一点,BOC ∆,AOC ∆,AOB ∆的面积分别为A S ,
B S ,
C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.“奔驰定理”是平面向量中一个非常优美的
结论,因为这个定理对应的图形与“奔驰”轿车(Mercedes benz )的logo 很相似,故形象地
称其为“奔驰定理”若O 是锐角ABC ∆内的一点,A ,B ,C 是ABC ∆的三个内角,且点
O 满足OA OB OB OC OC OA ⋅=⋅=⋅,则必有( )
A .sin sin sin 0A OA
B OB
C OC ⋅+⋅+⋅= B .cos cos cos 0A OA B OB C OC ⋅+⋅+⋅= C .tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=
D .sin 2sin 2sin 20A OA B OB C OC ⋅+⋅+⋅=
34.在ABC 中,AB AC BA BC CA CB →
→
→
→
→
→
⋅=⋅=⋅,则ABC 的形状为( ).
A .钝角三角形
B .等边三角形
C .直角三角形
D .不确定
35.如图,ADC 是等边三角形,ABC 是等腰直角三角形,90ACB ∠︒=,BD 与
AC 交于E 点.若2AB =,则AE 的长为( )
A 62
B .
1
(62)2
C 62
D .
1
(62)2
【参考答案】***试卷处理标记,请不要删除
一、多选题 1.AC 【分析】
对于,利用正弦定理可将条件转化得到,即可求出; 对于,利用正弦定理可求得,进而可得;
对于,利用正弦定理条件可转化为,结合原题干条件可得,进而求得; 对于,根据三角形面积公式求得,利 解析:AC
【分析】
对于A
2sin sin A C A =,即可求出C ; 对于B ,利用正弦定理可求得sin B ,进而可得cos B ;
对于C ,利用正弦定理条件可转化为2cos a c B =,结合原题干条件可得B ,进而求得
A B C ==;
对于D ,根据三角形面积公式求得a ,利用余弦定理求得c ,进而由正弦定理求得R . 【详解】
2sin c A =
2sin sin A C A =, 因为sin 0A ≠
,故sin C =, 因为(0,
)2
C π
∈,则3
C π
=
,故A 正确;
若72
c =,则由正弦定理可知sin sin c b C B =
,则4sin sin 72
b B C
c == 因为(0,)B π∈
,则1
cos 7
B =±,故B 错误; 若sin 2cos sin A B
C =,根据正弦定理可得2cos a c B =,
2sin c A =
,即sin a A =
sin 2cos A c B =
,所以sin A B =,
因为23A B C ππ+=-=,则23
A B π=
-
,故2sin()3B B π
-=,
1
sin 2B B B +=
,即1sin 2B B =,
解得tan B =3
B π
=,则3
A π
=
,
即3
A B C π
===
,所以ABC 是等边三角形,故C 正确; 若ABC
的面积是
1
sin 2
ab C =2a =,
由余弦定理可得2
2
2
1
2cos 416224122
c a b ab C =+-=+-⨯⨯⨯=
,即c = 设三角形的外接圆半径是R ,
由正弦定理可得24
sin c R C =
==,则该三角形外接圆半径为2,故D 错误, 故选:AC . 【点睛】
本题考查正余弦定理的应用及同角三角函数的基本关系和两角和与差的三角公式,转化思想,计算能力,属于中档题.
2.ABD 【分析】
根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】
对于A ,设的外接圆半径为,根据正弦定理,可得,所以的外接圆面积是,故A 正确;
对于B ,根据正弦定
解析:ABD 【分析】
根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】
对于A ,设ABC 的外接圆半径为R ,根据正弦定理
2sin a R A =,可得3
R =,所以ABC 的外接圆面积是2
49
3
S R ππ==
,故A 正确; 对于B ,根据正弦定理,利用边化角的方法,结合A B C π++=,可将原式化为
2sin cos 2sin cos 2sin()2sin R B C R C B R B C R A a +=+==,故B 正确.
对于C ,22(sin sin )2[sin sin(
)]3
b c R B C R B B π
+=+=+-
114(cos )14sin()23
B B B π=+=+
14b c ∴+≤,故C 错误.
对于D ,设A 到直线BC 的距离为d ,根据面积公式可得
11
sin 22
ad bc A =,即sin bc A
d a
=
,再根据①中的结论,可得d =D 正确. 故选:ABD. 【点睛】 本题是考查三角恒等变换与解三角形结合的综合题,解题时应熟练掌握运用三角函数的性质、诱导公式以及正余弦定理、面积公式等.
3.BD 【分析】
由正弦定理可得,所以,而,可得,即可求得答案. 【详解】
由正弦定理可得, ,而, , , 故或. 故选:BD. 【点睛】
本题考查了根据正弦定理求解三角形内角,解题关键是掌握
解析:BD 【分析】
由正弦定理可得sin sin a c A C =,所以sin sin 2
c C A a ==,而a c <,可得A C <,即可求得答案. 【详解】 由正弦定理可得
sin sin a c
A C
=,
∴ sin sin 2
c C A a ==,而a c <,
∴ A C <, ∴
566
C π
π<<, 故3C π
=
或
23
π. 故选:BD. 【点睛】
本题考查了根据正弦定理求解三角形内角,解题关键是掌握正弦定理和使用正弦定理多解的判断,考查了分析能力和计算能力,属于中等题.
4.AC 【分析】
由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:
根据三角形中线性质和平行四边形法则知, , A 是正确的;
因为EF 是中位线,所以B 是正确的; 根据三角形重心
解析:AC 【分析】
由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:
根据三角形中线性质和平行四边形法则知,
111()()222
AE AB BE AB BC AB AC AB AC AB →
→
→
→
→→→→→
→=+=+=+-=+, A 是正确的;
因为EF 是中位线,所以B 是正确的; 根据三角形重心性质知,CP =2PG ,所以22113323CP CG CA CB CA CB →
→→→→→⎛⎫⎛⎫
==⨯+=+ ⎪ ⎪⎝⎭⎝⎭
,
所以C 是正确的,D 错误. 故选:AC 【点睛】
本题主要考查了平面向量基本定理的简单应用,熟记一些基本结论是求解问题的关键,属于中档题.
5.CD 【分析】
对于A ,利用平面向量的数量积运算判断;
对于B ,利用平面向量的投影定义判断;对于C ,利用()∥判断;对于D ,利用C 的结论,2m+n=4,结合基本不等式判断. 【详解】 对于A ,向量(
解析:CD 【分析】
对于A ,利用平面向量的数量积运算判断; 对于B ,利用平面向量的投影定义判断;对于C ,利用(a b -)∥c 判断;对于D ,利用C 的结论,2m +n =4,结合基本不等式判断. 【详解】
对于A ,向量a =(2,1),b =(1,﹣1),则2110a b ⋅=-=>,则,a b 的夹角为锐角,错误;
对于B ,向量a =(2,1),b =(1,﹣1),则向量a 在b 方向上的投影为2
2
a b b
⋅=
,错误;
对于C ,向量a =(2,1),b =(1,﹣1),则a b -= (1,2),若(a b -)∥c ,则(﹣n )=2(m ﹣2),变形可得2m +n =4,正确;
对于D ,由C 的结论,2m +n =4,而m ,n 均为正数,则有mn 12=
(2m •n )12
≤ (
22m n +)2
=2,即mn 的最大值为2,正确; 故选:CD. 【点睛】
本题主要考查平面向量的数量积运算以及基本不等式的应用,属于基础题.
6.AC 【分析】
利用向量线性的坐标运算可判断A ;利用向量模的坐标求法可判断B ;利用向量数量积的坐标运算可判断C ;利用向量共线的坐标表示即可求解. 【详解】 由向量,, 则,故A 正确; ,故B 错误;
解析:AC 【分析】
利用向量线性的坐标运算可判断A ;利用向量模的坐标求法可判断B ;利用向量数量积的坐标运算可判断C ;利用向量共线的坐标表示即可求解. 【详解】
由向量()1,0a =,()2,2b =,
则()()()21,022,25,4a b +=+=,故A 正确;
222b =+=,故B 错误;
2cos ,1a b a b a b
⋅<>=
=
=
⋅+
又[],0,a b π<>∈,所以a 与b 的夹角为45°,故C 正确; 由()1,0a =,()25,4a b +=,140540⨯-⨯=≠,故D 错误. 故选:AC 【点睛】
本题考查了向量的坐标运算,考查了基本运算能力,属于基础题.
7.BC 【分析】
根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】
对于选项A 中:由,所以,即三角形的三个角是确定的值,故只有一解; 对于选项B 中:因为,且,所以角有两
解析:BC 【分析】
根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】
对于选项A 中:由45,70A C =︒=︒,所以18065B A C =--=︒,即三角形的三个角是确定的值,故只有一解;
对于选项B 中:因为csin sin 115B C b =
=<,且c b >,所以角C 有两解;
对于选项C 中:因为sin sin 17
b A B a ==<,且b a >,所以角B 有两解; 对于选项D 中:因为sin sin 1b A
B a
=<,且b a <,所以角B 仅有一解. 故选:BC . 【点睛】
本题主要考查了三角形解得个数的判定,其中解答中熟记三角形解得个数的判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.
8.ABD
【分析】
利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择. 【详解】
对:因为,又,故可得, 故,故选项正确;
对:因为||=1,||=2,与的夹角为
解析:ABD 【分析】
利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择. 【详解】
对A :因为()a b c a b a c ⋅-=⋅-⋅,又a b a c ⋅=⋅,故可得()
0a b c ⋅-=,
故()
a b c ⊥-,故A 选项正确;
对B :因为|a |=1,|b |=2,a 与b 的夹角为60°,故可得1
212
a b ⋅=⨯
=. 故a 在b 上的投影向量为
12a b b b b ⎛⎫⋅ ⎪= ⎪⎝⎭
,故B 选项正确; 对C :点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 为三角形ABC 的重心,
故C 选项错误;
对D :不妨设()()()()1,1,2,3,6,1,5,1A B C D -,
则()()()1,24,25,0AB AD AC +=+-==,故四边形ABCD 是平行四边形; 又()14220AB AD ⋅=⨯+⨯-=,则AB AD ⊥,故四边形ABCD 是矩形. 故D 选项正确;
综上所述,正确的有:ABD . 故选:ABD . 【点睛】
本题考查向量数量积的运算,向量的坐标运算,向量垂直的转化,属综合中档题.
9.AD 【分析】
根据向量的数量积关系判断各个选项的正误. 【详解】
对于A ,,故A 正确; 对于B ,,故B 错误; 对于C ,,故C 错误; 对于D ,, ,故D 正确. 故选:AD. 【点睛】 本题考查三角形
解析:AD 【分析】
根据向量的数量积关系判断各个选项的正误. 【详解】 对于A ,2
cos AB AB AC
AB AC A AB AC
AB AC
,故A 正确;
对于B ,
2
cos cos CB CB AC CB AC C CB AC C CB AC
CB AC
,
故B 错误; 对于C ,
2
cos cos BD AB BD AB BD ABD AB BD ABD AB BD
BD
AB
,故C 错误; 对于D ,2
cos BD BA BD
BA BD ABD BA BD
BD BA
,
2
cos BD BC BD
BC BD CBD BC BD
BD BC
,故D 正确.
故选:AD. 【点睛】
本题考查三角形中的向量的数量积问题,属于基础题.
10.ABD 【分析】
对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得
解析:ABD 【分析】
对于选项A 在ABC ∆中,由正弦定理可得sin sin A B a b A B >⇔>⇔>,即可判断出正误;对于选项B 在锐角ABC ∆中,由
02
2
A B π
π
>>
->,可得
sin sin()cos 2
A B B π
>-=,即可判断出正误;对于选项C 在ABC ∆中,由
cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ∆中,利用余弦定理可得:
2222cos b a c ac B =+-,代入已知可得a c =,又60B =︒,即可得到ABC ∆的形状,即
可判断出正误. 【详解】
对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ∆中,A ,(0,
)2
B π
∈,
2
A B π
+>
,∴
02
2
A B π
π
>>
->,
sin sin()cos 2
A B B π
∴>-=,因此不等式sin cos A B >恒成立,正确;
对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:
sin cos sin cos A A B B =, sin 2sin 2A B ∴=, A ,(0,)B π∈, 22A B ∴=或222A B π=-,
A B ∴=或2
A B π
+=,
ABC ∆∴是等腰三角形或直角三角形,因此是假命题,C 错误.
对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,
可得2
()0a c -=,解得a c =,可得60A C B ===︒,故正确.
故选:ABD . 【点睛】
本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.
11.BC 【分析】
由平面向量基本定理可判断出A 、B 、D 正确与否,由向量共线定理可判断出C 正确与否. 【详解】
由平面向量基本定理,可知A ,D 说法正确,B 说法不正确, 对于C ,当时,这样的有无数个,故C
解析:BC 【分析】
由平面向量基本定理可判断出A 、B 、D 正确与否,由向量共线定理可判断出C 正确与否. 【详解】
由平面向量基本定理,可知A ,D 说法正确,B 说法不正确,
对于C ,当12120λλμμ====时,这样的λ有无数个,故C 说法不正确. 故选:BC 【点睛】
若1e ,2e 是平面α内两个不共线的向量,则对于平面α中的任一向量a ,使
12a e e λμ=+的实数λ,μ存在且唯一. 12.AD 【解析】
【分析】
由条件可得,再两边平方即可得答案. 【详解】
∵P 是所在平面内一点,且, ∴, 即, ∴,
两边平方并化简得, ∴,
∴,则一定是直角三角形,也有可能是等腰直角三角形, 故
解析:AD 【解析】 【分析】
由条件可得||||AB AC AC AB -=+,再两边平方即可得答案. 【详解】
∵P 是ABC ∆所在平面内一点,且|||2|0PB PC PB PC PA --+-=, ∴|||()()|0CB PB PA PC PA --+-=, 即||||CB AC AB =+, ∴||||AB AC AC AB -=+, 两边平方并化简得0AC AB ⋅=, ∴AC AB ⊥,
∴90A ︒∠=,则ABC ∆一定是直角三角形,也有可能是等腰直角三角形, 故不可能是钝角三角形,等边三角形, 故选:AD. 【点睛】
本题考查向量在几何中的应用,考查计算能力,是基础题.
13.AB 【分析】
由余弦定理得,化简即得解. 【详解】
由题意得,由余弦定理得, 解得或. 故选:AB. 【点睛】
本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平.
解析:AB 【分析】
由余弦定理得293
cos306x x
︒
+-=,化简即得解.
【详解】
由题意得30ABC ︒∠=,由余弦定理得293
cos306x x
︒
+-=
,
解得x =x 故选:AB. 【点睛】
本题主要考查余弦定理的实际应用,意在考查学生对这些知识的理解掌握水平.
14.AD 【分析】
利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】
向量与是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B
解析:AD 【分析】
利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】
向量AB 与CD 是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B 正确; 若,a b b c ==,则a c =,故C 正确; 温度是数量,只有正负,没有方向,故D 错误. 故选:AD 【点睛】
本题考查零向量、单位向量的定义,平行向量和共线向量的定义,属于基础题.
15.ABD 【详解】
解:对于:对于实数和向量、,根据向量的数乘满足分配律,故恒有:,故正确.
对于:对于实数,和向量,根据向量的数乘运算律,恒有,故 正确. 对于:若,当 时,无法得到,故不正确. 对
解析:ABD 【详解】
解:对于A :对于实数m 和向量a 、b ,根据向量的数乘满足分配律,故恒有:
()m a b ma mb -=-,故A 正确.
对于B :对于实数m ,n 和向量a ,根据向量的数乘运算律,恒有()m n a ma na -=-,故 B 正确.
对于C :若()ma mb m =∈R ,当 0m =时,无法得到a b =,故C 不正确. 对于D :若(,,0)ma na m n a =∈≠R ,则m n =成立,故D 正确. 故选:ABD . 【点睛】
本题考查相等的向量,相反的向量的定义,向量的数乘法则以及其几何意义,注意考虑零向量的情况.
二、平面向量及其应用选择题
16.D 【详解】 由余弦定理得,
解得(
舍去),故选D.
【考点】 余弦定理 【名师点睛】
本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记! 17.C 【分析】
由向量的线性运算可知2OB OC OA AB AC +-=+,所以()
0BC AB AC ⋅+=,作出图形,结合向量加法的平行四边形法则,可得BC AD ⊥,进而可得AB AC =,即可得出答案. 【详解】
由题意,()()
2OB OC OA OB OA OC OA AB AC +-=-+-=+, 所以()
0BC AB AC ⋅+=,
取BC 的中点D ,连结AD ,并延长AD 到E ,使得AD DE =,连结BE ,EC ,则四边形ABEC 为平行四边形,所以AB AC AE +=.
所以0BC AE ⋅=,即BC AD ⊥, 故AB AC =,ABC 是等腰三角形. 故选:C.
【点睛】
本题考查三角形形状的判断,考查平面向量的性质,考查学生的计算求解能力,属于基础题. 18.C 【解析】 【分析】
根据向量的数量积运算和向量的线性表示可得,
()()2
2
254cos 24cos 1PQ PQ t t θθ==+-++,根据二次函数的最值可得出
012cos 54cos t θθ
+=
+,再由01
05t <<,可求得夹角θ的取值范围.
【详解】 因为2cos OA OB θ⋅=,()1PQ OQ OP t OB tOA =-=--,
()()22
254cos 24cos 1PQ PQ t t θθ==+-++,
∵PQ 在t t =0时取得最小值,所以012cos 54cos t θθ
+=
+,又01
05t <<,则
12cos 1054cos 5
θθ+<
<+,得1
cos 02θ-<<,∵0θπ≤≤,
所以223ππθ<<,
故选:C. 【点睛】
本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题. 19.B 【分析】
先化简得0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=,即得点P 为三角形ABC 的垂心. 【详解】
由于三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅, 则()()()
0,0,0PA PB PC PB PA PC PC PB PA ⋅-=⋅-=⋅-= 即有0,0,0PA CB PB CA PC AB ⋅=⋅=⋅=, 即有,,PA CB PB CA PC AB ⊥⊥⊥, 则点P 为三角形ABC 的垂心. 故选:B. 【点睛】
本题主要考查向量的运算和向量垂直的数量积,意在考查学生对这些知识的理解掌握水平. 20.A 【分析】
由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan
2
C
,从而求得tan C . 【详解】
∵222222()2S a b c a b ab c =+-=++-,即2221
2sin 22
ab C a b ab c ⨯⋅=++-, ∴222sin 2ab C ab a b c ⋅-=+-,
又222sin 2sin cos 1
222
a b c ab C ab C
C ab ab +-⋅-===-,∴sin cos 12C C +=, 即22cos sin cos 222C C C =,则tan 22C =,∴2
22tan
2242tan 1231tan 2
C
C C ⨯===---, 故选:A . 【点睛】
本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力. 21.A 【解析】
∵2350OA OB OC ++=,∴()()
23OA OC OB OC +=-+.
设AC 中点为M ,BC 中点为N ,则23OM ON =-, ∵MN 为ABC 的中位线,且
32
OM ON
=
, ∴3
613
225
54
10OAC
OMC
CMN
ABC ABC S
S
S
S S ⎛⎫==⨯=⨯= ⎪⎝⎭
,即
12310
S S =.选A . 22.B 【分析】
选取向量AB ,AC 为基底,由向量线性运算,求出BE ,即可求得结果. 【详解】
13BE AE AB AD AB =-=
-,1
()2
AD AB AC =+ , 51
66
BE AB AC AB AC λμ∴=-+=+,
56λ∴=-,1
6μ=,23
λμ∴+=-.
故选:B. 【点睛】
本题考查了平面向量的线性运算,平面向量基本定理,属于基础题. 23.A 【解析】
分析:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,利用三角形的奔驰定理,即可求解结论.
详解:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,
由奔驰定理可得::3:4:5BOC AOC BOA S S S ∆∆∆=,所以:3:121:4BOC ABC S S ∆∆==, 故选A .
点睛:本题考查了向量的应用,对于向量的应用问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决. 24.D 【分析】
由向量夹角的范围可判断A 选项的正误;计算出a b ⋅,利用余弦函数的值域以及已知条件可判断B 选项的正误;利用平面向量模的三角不等式可判断C 选项的正误;计算
()()a b a b +⋅-的值可判断D 选项的正误.综合可得出结论.
【详解】
()cos ,sin a αα=,()cos ,sin b ββ=,则22cos sin 1a αα=+=,同理可得
1b =,
a 与
b 不共线,则()sin cos cos sin sin 0αβαβαβ-=-≠,则()k k Z αβπ-≠∈.
对于A 选项,由题意知,a 与b 的夹角的范围为()0,π,而()R αβ-∈且
()k k Z αβπ-≠∈,A 选项错误;
对于B 选项,设向量a 与b 的夹角为θ,则0θπ<<,所以,
()cos cos 1,1a b a b θθ⋅=⋅=∈-,B 选项错误;
对于C 选项,由于a 与b 不共线,由向量模的三角不等式可得2a b a b +<+=,C 选项错误; 对于D 选项,()()2
2
2
20a b a b a
b a b +⋅-=-=-=,所以,()()
a b a b +⊥-,D
选项正确. 故选:D. 【点睛】
本题考查平面向量有关命题真假的判断,涉及平面向量的夹角、数量积与模的计算、向量垂直关系的处理,考查运算求解能力与推理能力,属于中等题. 25.A 【分析】
设出()()()
11AP mAB m AF mAB m AD DF =+-=+-+,求得
()21
13
m AP AB m AD +=
+-,再利用向量相等求解即可. 【详解】 连接AF ,因为B ,P ,F 三点共线,
所以()()()
11AP mAB m AF mAB m AD DF =+-=+-+, 因为2CF DF =,所以11
33
DF DC AB ==, 所以()21
13
m AP AB m AD +=
+-. 因为E 是BC 的中点, 所以11
22
AE AB BC AB AD =+
=+. 因为AP AE λ=, 所以
()211132m AB m AD AB AD λ+⎛⎫+-=+ ⎪⎝⎭
,
则21
3
112m m λλ
+⎧=⎪⎪⎨⎪-=⎪⎩
,
解得3
4
λ=. 故选:A 【点睛】
本题主要考查平面向量的线性运算,考查了平面向量基本定理的应用,属于基础题. 26.C 【分析】
易求30ACB ∠=︒,在ABC 中,由正弦定理可求BC ,在BCD 中,由正弦定理可求
sin BDC ∠,再由90BDC θ∠=+︒可得答案. 【详解】
45CBD ∠=︒,30ACB ∴∠=︒,
在ABC 中,由正弦定理,得sin sin BC AB CAB ACB =∠∠,即50
sin15sin30BC =︒︒
,
解得BC =-, 在BCD 中,由正弦定理,得sin sin BC CD BDC CBD
=∠∠
50
sin 45=
︒,
sin BDC ∴∠=
sin(90)θ+︒=
cos θ∴=
故选:C . 【点睛】
该题考查正弦定理在实际问题中的应用,由实际问题恰当构建数学模型是解题关键. 27.D 【分析】
先根据向量减法与向量数量积化简得边之间关系,再判断三角形形状. 【详解】
因为()()()
2
22BC BA AC BC BA BC BA BC BA AC +⋅=+⋅-=-=,所以
222a c b -=,即ABC 是直角三角形,选D.
【点睛】
判断三角形形状的方法
①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状. ②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用πA B C ++=这个结论.
28.D 【分析】
利用向量的三角形法则和向量共线定理可得:
DF AF AD =-,1=
2AF AE ,=AE AB BE +,1
=2
BE BC ,=BC AD ,即可得出答案. 【详解】
利用向量的三角形法则,可得DF AF AD =-,=AE AB BE +,
E 为BC 的中点,
F 为AE 的中点,则1=
2AF AE ,1
=2
BE BC 1111
=
=()=+2224
DF AF AD AE AD AB BE AD AB BC AD ∴=--+-- 又
=BC AD
13
24
DF AB AD ∴=
-. 故选D.
【点睛】
本题考查了向量三角形法则、向量共线定理,考查了推理能力与计算能力. 向量的运算有两种方法:
一是几何运算,往往结合平面几何知识和三角函数知识解答,运算法则是: (1)平行四边形法则(平行四边形的对角线分别是两向量的和与差); (2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);
二是坐标运算,建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单). 29.A 【分析】
根据向量的基本定理,结合数量积的运算公式,建立方程即可得到结论. 【详解】
法一:由题意可得BA ·BC =2×2cos
3
π
=2, BD ·CP =(BA +BC )·
(BP -BC ) =(BA +BC )·
[(AP -AB )-BC ] =(BA +BC )·
[(λ-1)·AB -BC ] =(1-λ) BA 2-BA ·BC +(1-λ)·BA ·BC -BC 2 =(1-λ)·4-2+2(1-λ)-4 =-6λ=-3, ∴λ=
1
2
,故选A.
法二:建立如图所示的平面直角坐标系,
则B (2,0),C (1,
),D (-13.
令P (x,0),由BD ·CP =(-33)·(x -13=-3x +3-3=-3x =-3得x =1. ∵AP =λAB ,∴λ=1
2
.故选A. 【点睛】
1.已知向量a ,b 的坐标,利用数量积的坐标形式求解. 设a =(a 1,a 2),b =(b 1,b 2),则a ·
b =a 1b 1+a 2b 2. 2.通过建立平面直角坐标系,利用数量积的坐标形式计算. 30.A 【分析】
根据面积公式得到4c =,再利用余弦定理得到13a =,再利用正弦定理得到答案. 【详解】
13sin 342ABC S bc A c ∆=
=== 利用余弦定理得到:2222cos 11641313a b c bc A a =+-=+-=∴= 正弦定理:
sin sin sin a b c
A B C
== 故213239
sin 2sin sin sin 3
a b c a A B C A ++===
++ 故选A 【点睛】
本题考查了面积公式,正弦定理,余弦定理,综合性强,意在考查学生的综合应用能力. 31.B 【解析】 【分析】
利用向量的定义和运算法则逐一考查所给的命题是否正确即可得到正确命题的个数.
【详解】
逐一考查所给的命题:
①由向量的减法法则可知:AB AC CB -=,题中的说法错误; ②由向量加法的三角形法则可得:0AB BC CA ++=,题中的说法正确; ③因为()(2)0OB OC OB OC OA -⋅+-=, 即()0CB AB AC ⋅+=; 又因为AB AC CB -=, 所以()()0AB AC AB AC -⋅+=, 即||||AB AC =,
所以△ABC 是等腰三角形.题中的说法正确;
④若0AC AB ⋅>,则cos 0AC AB A ⨯⨯>,据此可知A ∠为锐角,无法确定ABC ∆为锐角三角形,题中的说法错误. 综上可得,正确的命题个数为2. 故选:B . 【点睛】
本题主要考查平面向量的加法法则、减法法则、平面向量数量积的应用,由平面向量确定三角形形状的方法等知识,意在考查学生的转化能力和计算求解能力. 32.A 【分析】
由条件()()1sin 2sin sin 2A A B C C A B +-+=--+
化简得出1sin sin sin 8
A B C =,设ABC ∆的外接圆半径为R ,根据12S ≤≤求得R 的范围,然后利用不等式的性质判断即
可.
【详解】
ABC ∆的内角A 、B 、C 满足()()1
sin 2sin sin 2
A A
B
C C A B +-+=--+,
即()()1
sin 2sin sin 2A A B C A B C +-+++-=,
即()()1
sin 2sin sin 2
A A
B
C A B C +--++-=⎡⎤⎣⎦, 即()1
2sin cos 2sin cos 2
A A A
B
C +-=,
即()()1
2sin cos 2sin cos 2
A B C A B C -++-=,
即()()1
2sin cos cos 4sin sin sin 2
A B C B C A B C --+==⎡⎤⎣⎦,。