高考物理稳恒电流解题技巧讲解及练习题(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理稳恒电流解题技巧讲解及练习题(1)
一、稳恒电流专项训练
1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大?
【答案】(1)238mg B L (2)1238mgr
B B dL
【解析】
试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =3
4
I ① I dc =
1
4
I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③
由①~③,解得I ab =
2234mg
B L ④ (2)由(1)可得I =22
mg
B L ⑤
设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥
设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =3
4
r ⑦ 根据闭合电路欧姆定律,有I =
E R
⑧ 由⑤~⑧,解得v =
1212
34mgr
B B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.
2.如图,ab 和cd 是两条竖直放置的长直光滑金属导轨,MN 和M′N′是两根用细线连接的金属杆,其质量分别为m 和2m.竖直向上的外力F 作用在杆MN 上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R ,导轨间距为l.整个装置处在磁感应强度为B 的匀强磁场中,磁场方向与导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t =0时刻将细线烧断,保持F 不变,金属杆和导轨始终接触良好.求:
(1)细线烧断后,任意时刻两杆运动的速度之比; (2)两杆分别达到的最大速度. 【答案】(1)1221v v = (2)12243mgR v B l = ;22223mgR v B l
= 【解析】 【分析】
细线烧断前对MN 和M'N'受力分析,得出竖直向上的外力F=3mg ,细线烧断后对MN 和M'N'受力分析,根据动量守恒求出任意时刻两杆运动的速度之比.分析MN 和M'N'的运动过程,找出两杆分别达到最大速度的特点,并求出. 【详解】
解:(1)细线烧断前对MN 和M'N'受力分析,由于两杆水平静止,得出竖直向上的外力F=3mg .设某时刻MN 和M'N'速度分别为v 1、v 2. 根据MN 和M'N'动量守恒得出:mv 1﹣2mv 2=0 解得:
1
2
2v v =: ① (2)细线烧断后,MN 向上做加速运动,M'N'向下做加速运动,由于速度增加,感应电动势增加,MN 和M'N'所受安培力增加,所以加速度在减小.当MN 和M'N'的加速度减为零时,速度最大.对M'N'受力平衡:BIl=2mg②,E
I R
=③,E=Blv 1+Blv 2 ④ 由①﹣﹣④得:12243mgR v B l =、2
22
23mgR
v B l = 【点睛】
能够分析物体的受力情况,运用动量守恒求出两个物体速度关系.在直线运动中,速度最大值一般出现在加速度为0的时刻.
3.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料
在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化). 【答案】3.8×10-3m 【解析】 【分析】 【详解】
设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为
2ρ,电阻恒温系数为2α.根据题意有
1101)l t ρρα=+(①
2202)l t ρρα=+(②
式中1020ρρ、分别为碳和铜在0℃时的电阻率. 设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222L
R S
ρ=④ 式中S 为碳棒与铜棒的横截面积.
碳棒和铜棒连接成的导体的总电阻和总长度分别为
12R R R =+⑤,012L L L =+⑥
式中0 1.0m L = 联立以上各式得:10112022
1210
20L L L L R t S S S
ραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:202
10202101
L L ραραρα=
-⑨
代入数据解得:313810m L -=⨯.
⑩ 【点睛】
考点:考查了电阻定律的综合应用
本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件
4.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.
(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为
e .该导线通有电流时,假设自由电子定向移动的速率均为v . (a )求导线中的电流I ;
(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F
安
,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .
(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.
(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 【答案】(1)I nvSe =证明见答案 (2)21
3
F P nm S υ== 【解析】 (1)(a )电流Q
I t
=
,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .
(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ= 柱体体积V Sl = 柱体内分子总数N nV =总
因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为
’
16
N N 总总=
设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为
2p m N υ∆=,
总
依据动量定理有Ft p =∆ 又压力Ft p =∆
由以上各式得单位面积上的压力201
3
F F nm S υ=
= 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很
容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的
16
. 【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.
5.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P .
【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】
(1)由部分电路的欧姆定律,可得电阻为:5U
R I
=
=Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】
部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握.
6.环保汽车将为2008年奥运会场馆服务.某辆以蓄电池为驱动能源的环保汽车,总质量
3310kg m =⨯.当它在水平路面上以v =36km/h 的速度匀速行驶时,驱动电机的输入电流
I =50A ,电压U =300V .在此行驶状态下 (1)求驱动电机的输入功率P 电;
(2)若驱动电机能够将输入功率的90%转化为用于牵引汽车前进的机械功率P 机,求汽车所受阻力与车重的比值(g 取10m/s 2);
(3)设想改用太阳能电池给该车供电,其他条件不变,求所需的太阳能电池板的最小面积.结合计算结果,简述你对该设想的思考.
已知太阳辐射的总功率26
0410W P =⨯,太阳到地球的距离
,太阳光传播
到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%.
【答案】(1)3
1.510W P =⨯电
(2)/0.045f mg = (3)2101m S = 【解析】
试题分析:⑴31.510W P IU 电==⨯
⑵0.9P P Fv fv 电机===0.9/f P v =电/0.045f mg =
⑶当太阳光垂直电磁板入射式,所需板面积最小,设其为S ,距太阳中心为r 的球面面积
204πS r =
若没有能量的损耗,太阳能电池板接受到的太阳能功率为P ',则
00
P S P S '= 设太阳能电池板实际接收到的太阳能功率为P , 所以()130%P P =-'
由于15%P P =电,所以电池板的最小面积
()00
130%P S
P S =-
22000
4π101?m 0.70.150.7r P PS S P P ===⨯电
考点:考查非纯电阻电路、电功率的计算
点评:本题难度中等,对于非纯电阻电路欧姆定律不再适用,但消耗电功率依然是UI 的乘积,求解第3问时从能量守恒定律考虑问题是关键,注意太阳的发射功率以球面向外释放
7.守恒定律是自然界中某种物理量的值恒定不变的规律,它为我们解决许多实际问题提供了依据.在物理学中这样的守恒定律有很多,例如:电荷守恒定律、质量守恒定律、能量守恒定律等等.
(1)根据电荷守恒定律可知:一段导体中通有恒定电流时,在相等时间内通过导体不同截面的电荷量都是相同的.
a .己知带电粒子电荷量均为g ,粒子定向移动所形成的电流强度为,求在时间t 内通过某一截面的粒子数N .
b .直线加速器是一种通过高压电场使带电粒子加速的装置.带电粒子从粒子源处持续发出,假定带电粒子的初速度为零,加速过程中做的匀加速直线运动.如图l 所示,在距粒子源l 1、l 2两处分别取一小段长度相等的粒子流I ∆.已知l l :l 2=1:4,这两小段粒子流中所含的粒子数分别为n 1和n 2,求:n 1:n 2.
(2)在实际生活中经常看到这种现象:适当调整开关,可以看到从水龙头中流出的水柱越来越细,如图2所示,垂 直于水柱的横截面可视为圆.在水柱上取两个横截面A 、B ,经过A 、B 的水流速度大小分别为v I 、v 2;A 、B 直径分别为d 1、d 2,且d 1:d 2=2:1.求:水流的速度大小之 比v 1:v 2.
(3)如图3所示:一盛有水的大容器,其侧面有一个水平的短细管,水能够从细管中喷出;容器中水面的面积S l 远远大于细管内的横截面积S 2;重力加速度为g .假设 水不可压缩,而且没有粘滞性.
a .推理说明:容器中液面下降的速度比细管中的水流速度小很多,可以忽略不计:
b .在上述基础上,求:当液面距离细管的高度为h 时, 细管中的水流速度v .
【答案】(1)a. Q It N q q
=
= ;b. 21:2:1n n =;(2)2
21221::1:4v v d d ==;(3)a.设:水面下降速度为1v ,细管内的水流速度为v .按照水不可压缩的条件,可知水的体积守恒或流量守恒,即:12Sv Sv =,由12S S >>,可得12v v <<.所以:液体面下降的速度1v 比细管中的水流速度可以忽略不计. b. 2v gh 【解析】
【分析】 【详解】 (1)a.电流Q I t
=
, 电量Q Nq = 粒子数Q It N q q
== b.根据2v ax =
, 可知在距粒子源1l 、2l 两处粒子的速度之比:12:1:2v v =
极短长度内可认为速度不变,根据x v t
∆=∆, 得12:2:1t t =
根据电荷守恒,这两段粒子流中所含粒子数之比:12:2:1n n = (2)根据能量守恒,相等时间通过任一截面的质量相等,即水的质量相等.
也即:2
··
4
v d π
处处相等 故这两个截面处的水流的流速之比:22
1221::1:4v v d d ==
(3)a .设:水面下降速度为1v ,细管内的水流速度为v .
按照水不可压缩的条件,可知水的体积守恒或流量守恒,即:12Sv Sv = 由12S S >>,可得:12v v <<.
所以液体面下降的速度1v 比细管中的水流速度可以忽略不计. b.根据能量守恒和机械能守恒定律分析可知:
液面上质量为m 的薄层水的机械能等于细管中质量为m 的小水柱的机械能. 又根据上述推理:液面薄层水下降的速度1v 忽略不计,即10v =. 设细管处为零势面,所以有:2
1002
mgh mv +=+ 解得:2v gh =
8.在如图所示的电路中,电源电动势E=3V,内阻 r=0.5Ω,定值电阻R 1 =9Ω,R 2=5.5Ω,电键S 断开.
①求流过电阻R 1的电流; ②求电阻 R 1消耗的电功率;
③将S 闭合时,流过电阻R 1的电流大小如何变化?
【答案】(1)0.2A ;(2)0.36W ;(3)变大 【解析】
试题分析:(1)电键S 断开时,根据闭合电路的欧姆定律求出电流;(2)根据2
11
P I R =求出1R 消耗的电功率;(3)将S 闭合时回路中的总电阻减小,根据闭合电路的欧姆定律分析电流的变化.
(1)电键S 断开时,根据闭合电路的欧姆定律得:12E
I R
R r
=
++,解得:I=0.2A
(2)根据211P I R =,得210.290.36P W =⨯=
(3)将S 闭合时,2R 被短接,回路中的总电阻减小,根据闭合电路的欧姆定律:
E
I R r
=
+,可知电流变大,即流过电阻1R 的电流变大 【点睛】本题主要考查了闭合电路的欧姆定律,解决本题的关键就是要知道闭合电路的欧姆定律的表达式,并且知道回路中的电阻变化了,根据闭合电路的欧姆定律可以判断电流的变化.
9.已知电流表的内阻R g =120 Ω,满偏电流I g =3 mA ,要把它改装成量程是6 V 的电压表,应串联多大的电阻?要把它改装成量程是3 A 的电流表,应并联多大的电阻? 【答案】改装成量程是6 V 的电压表,应串联1 880 Ω的电阻; 要把它改装成量程是3 A 的电流表,应并联0.12 Ω的电阻. 【解析】 【分析】 【详解】
根据欧姆定律和串联电路特点可知,需串联的电阻
1880g g
U
R R I =
-=Ω; 同理,根据欧姆定律的并联电路的特点可知,改装成3A 电流表需并联的电阻
0.12g g g
I R R I I =
=Ω-.
10.如图所示,已知R 3=3Ω,理想电压表读数为3v ,理想电流表读数为2A ,某时刻由于电路中R 3发生断路,电流表的读数2.5A ,R 1上的电压为5v ,求:
(1)R 1大小、R 3发生断路前R 2上的电压、及R 2阻值各是多少?(R 3发生断路时R 2上没有
电流)
(2)电源电动势E 和内电阻r 各是多少? 【答案】(1)1V 1Ω(2)10 V ;2Ω 【解析】
试题分析:(1)R 3断开时 电表读数分别变为5v 和2.5A 可知R 1=2欧 R 3断开前R 1上电压U 1=R 1I=4V U 1= U 2 + U 3 所以 U 2=1V U 2:U 3 = R 2:R 3 =1:3 R 2=1Ω
(2)R 3断开前 总电流I 1=3A E = U 1 + I 1r
R 3
断开后 总电流I 2=2.5A
E = U 2 + I 2r
联解方程E= 10 V r=2Ω 考点:闭合电路的欧姆定律 【名师点睛】
11. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】
(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻
器选择分压式接法;由于
x V
A x
R R R R >,所以电流表应内接.电路图如图所示.
(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:
130.4515000.3010R -=Ω=Ω⨯,23
0.91
1516.70.6010R -=Ω=Ω⨯,33
1.50
15001.0010
R -=
Ω=Ω⨯,
431.791491.71.2010R -=Ω=Ω⨯,53
2.7115051.8010R -=Ω=Ω⨯, 故电阻的测量值为
1234515035R R R R R R ++++=
Ω=Ω(1500-1503Ω都算正确.) 由于0150010150
R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).
(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);
(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.
本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.
12.如图所示,一电荷量q=3×10-5C 带正电的小球,用绝缘细线悬于竖直放置足够大的平行金属板中的O 点.电键S 合上后,当小球静止时,细线与竖直方向的夹角α=37°.已知两板相距d=0.1m ,电源电动势=15V ,内阻r=0.5Ω,电阻R 1=3Ω,R 2=R 3= R 4=8Ω.g 取10m/s 2,已知,.求:
(1)电源的输出功率;
(2)两板间的电场强度的大小;
(3)带电小球的质量.
【答案】(1)28W (2)140V/m (3)45.610kg ⨯-
【解析】
(1)R 外=7.0Ω R 总=7.5Ω I="15/7.5=2A " 2’
P 出=I2R 外=22×7.="28w " 2’
(2) U 外=IR=2×7="14V " 2’
E="U/d=14/0.1=140V/m " 2’
(3) Eq="mgtg37° " 2’
m=Eq/gtg37°=(140×3×10-5)/(10×0.75)=5.6×10-4kg
13.如图所示,两足够长平行光滑的金属导轨MN 、PQ 相距L ,导轨平面与水平面夹角为α,导轨电阻不计,磁感应强度为B 的匀强磁场垂直导轨平面斜向上,长为L 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,金属棒的质量为m 、电阻为R.两金属导轨的上端连接右侧电路,电路中R 2为一电阻箱,已知灯泡的电阻R L =4R ,定值电阻R 1=2R ,调节电阻箱使R 2=12R ,重力加速度为g ,闭合开关S ,现将金属棒由静止释放,求:
(1)金属棒下滑的最大速度v m ;
(2)当金属棒下滑距离为s 0时速度恰好达到最大,则金属棒由静止下滑2s 0的过程中,整个电路产生的电热;
(3)改变电阻箱R 2的值,当R 2为何值时,金属棒达到匀速下滑时R 2消耗的功率最大.
【答案】(1)226sin m mgR v B L α= (2)322204418sin 2sin m g R Q mgs B L
αα=- (3) 24R R =时,R 2消耗的功率最大.
【解析】
试题分析:(1)当金属棒匀速下滑时速度最大,达到最大时有
mgsina =F 安① F 安=BIL②
I =③
其中 R 总=6R④
联立①~④式得金属棒下滑的最大速度
⑤ (2)由动能定理W G -W 安=mv m 2⑥
由于W G =2mgs 0sinαW 安= Q
解得Q =2mgs 0sinα-mv m 2
将⑤代入上式可得
也可用能量转化和守恒求解:
再将⑤式代入上式得
(3)因金属棒匀速下滑
故mgsinα = BIL⑦
P2=I22R2 ⑧
联立得
即
当,即时,R2消耗的功率最大.
考点:导体切割磁感线时的感应电动势、闭合电路欧姆定律、电磁感应中的能量转化.【名师点睛】略.
14.如图所示,无限长金属导轨EF、PQ固定在倾角为θ=53o的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值为R=0.4Ω的定值电阻,上端开口。
整个空间有垂直斜面向上的匀强磁场,磁感应强度B=2T.一质量为m=0.5kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.2,ab连入导轨间的电阻r=0.1Ω,电路中其余电阻不计.现用一质量M=2.86kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放M,当M下落高度h=2.0m时,ab开始匀速运动(运动中ab始终垂直导轨,并接触良好).不计空气阻力,sin53o=0.8,cos53o=0.6,g取10m/s2.求
(1)ab棒沿斜面向上运动的最大速度V m
(2)ab棒从开始运动到匀速运动的这段时间内流过电阻R的总电荷量q.
(3)ab棒从开始运动到匀速运动的这段时间内电阻R上产生的焦耳热Q R
【答案】(1)(2)(3)
【解析】
试题分析:(1)当ab棒匀速时,M也匀速,所以绳的拉力,
ab棒受安培力,其中
ab棒受力平衡: ,
所以
(2)该过程电路的平均电动势
该过程电路的平均电流
流经R的电荷量
所以
(3)由系统的能量守恒
电阻R上产生的焦耳热为
所以
【名师点睛】首先明确电路,发生电磁感应现象的部分是电源,其余为外电路,要抓住导体棒的受力情况,运动情况的动态分析,即导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住时,速度v达最大值的特点;再根据电磁感应中的功能关系,克服安培力做的功全部转化为电能及动能定理计算转化为电能的表达式。
考点:电磁感应现象的综合应用。
15.(10分)如图所示,倾角θ=30°、宽L=1m的足够长的U形光滑金属导轨固定在磁感应强度大小B=IT、范围足够大的匀强磁场中,磁场方向垂直导轨平面向上。
一根质量m=0.2kg,电阻R=l 的金属棒ab垂直于导轨放置。
现用一平行于导轨向上的牵引力F作用在棒上,使棒由静止开始沿导轨向上运动,运动中ab棒始终与导轨接触良好,导轨电阻不计,重力加速度g取l0m/s2。
求:
(1)若牵引力的功率P恒为56W,则ab棒运动的最终速度为多大?
(2)当ab棒沿导轨向上运动到某一速度时撤去牵引力,从撤去牵引力到ab棒的速度为零,通过ab棒的电量q=0.5C,则撤去牵引力后ab棒向上滑动的距离多大?
【答案】(1)7 m/s ;(2)0.5m
【解析】
试题分析:(1)当以恒定功率牵引ab棒达到最大速度时:P=Fv,E=BLv,I=E/R,F安=BIL
()0sin =+-安F mg F θ
解得:v=7 m/s
(2)设撤去F 后ab 棒沿导轨向上运动到速度为零时滑动的距离为x ,通过ab 的电荷量,
t BLx t E ∆=∆∆Φ=,R
BLx t I q =∆⋅= 联立解得:m BL
qR x 5.0== 考点:本题考查电磁感应。