高考物理曲线运动各地方试卷集合汇编
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理曲线运动各地方试卷集合汇编
一、高中物理精讲专题测试曲线运动
1.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑1
4
竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑
1
4
竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .
【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】
(1)小球恰好过最高点D ,有:
2D
v mg m r
=
解得:2m/s D v = (2)从B 到D ,由动能定理:
22
11()22
D B mg R r mv mv -+=
- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:
2B
v N mg m R
-=
N B =N
联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:
2122
B x F
mgx mv μ-= 解得:2m x =
故本题答案是:(1)2/D v m s = (2)45N (3)2m
【点睛】
利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,
2.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
杆静止时,小环靠在杆上,细绳方向竖直;当杆绕竖直轴以角速度ω旋转时,如图所示,小环与Q 点等高,细绳恰好被绷断。
重力加速度g =10m /s 2,忽略一切摩擦。
求:
(1)杆静止时细绳受到的拉力大小T ; (2)细绳断裂时杆旋转的角速度大小ω; (3)小环着地点与O 点的距离D 。
【答案】(1)5N (2)53/rad s (3)1.6m 【解析】 【详解】
(1)杆静止时环受力平衡,有2T =mg 得:T =5N
(2)绳断裂前瞬间,环与Q 点间距离为r ,有r 2+d 2=(L -r )2 环到两系点连线的夹角为θ,有d sin L r θ=-,r
cos L r
θ=- 绳的弹力为T 1,有T 1sinθ=mg T 1cosθ+T 1=m ω2r 得53/rad s ω=
(3)绳断裂后,环做平抛运动,水平方向s =vt
竖直方向:2
12
H d gt -=
环做平抛的初速度:v =ωr
小环着地点与杆的距离:D 2=r 2+s 2 得D =1.6m 【点睛】
本题主要是考查平抛运动和向心力的知识,解答本题的关键是掌握向心力的计算公式,能清楚向心力的来源即可。
3.如图所示,在竖直平面内有一半径为R 的
1
4
光滑圆弧轨道AB ,与水平地面相切于B 点。
现将AB 锁定,让质量为m 的小滑块P (视为质点)从A 点由静止释放沿轨道AB 滑下,最终停在地面上的C 点,C 、B 两点间的距离为2R .已知轨道AB 的质量为2m ,P 与B 点右侧地面间的动摩擦因数恒定,B 点左侧地面光滑,重力加速度大小为g ,空气阻力不计。
(1)求P 刚滑到圆弧轨道的底端B 点时所受轨道的支持力大小N 以及P 与B 点右侧地面间的动摩擦因数μ;
(2)若将AB 解锁,让P 从A 点正上方某处Q 由静止释放,P 从A 点竖直向下落入轨道,最后恰好停在C 点,求:
①当P 刚滑到地面时,轨道AB 的位移大小x 1;
②Q 与A 点的高度差h 以及P 离开轨道AB 后到达C 点所用的时间t 。
【答案】(1)P 刚滑到圆弧轨道的底端B 点时所受轨道的支持力大小N 为3mg ,P 与B 点右侧地面间的动摩擦因数μ为0.5;(2)若将AB 解锁,让P 从A 点正上方某处Q 由静止释放,P 从A 点竖直向下落入轨道,最后恰好停在C 点,①当P 刚滑到地面时,轨道AB 的位移大小x 1为3R ;②Q 与A 点的高度差h 为2
R
,P 离开轨道AB 后到达C 点所用的时间t 1326R g
【解析】 【详解】
(1)滑块从A 到B 过程机械能守恒,应用机械能守恒定律得:mgR =
2
12
B mv , 在B 点,由牛顿第二定律得:N -mg =m 2B
v R
,
解得:v B 2gR N =3mg ,
滑块在BC 上滑行过程,由动能定理得:-μmg •2R =0-2
12
B mv , 代入数据解得:μ=0.5;
(2)①滑块与轨道组成的系统在水平方向动量守恒,以向右为正方向,由动量守恒定律得: mv 1-2mv 2=0 m
1R x t -2m 1x
t
=0,
解得:x 1=
3
R ;
②滑块P 离开轨道AB 时的速度大小为v B ,P 与轨道AB 组成的系统在水平方向动量守恒,以向右为正方向,由动量守恒定律得:mv B -2mv =0, 由机械能守恒定律得:mg (R +h )=2211
222
B mv mv +⋅, 解得:h =
2
R
; P 向右运动运动的时间:t 1=1
B
x v ,
P 减速运动的时间为t 2,对滑片,由动量定理得:-μmgt 2=0-mv B , 运动时间:t =t 1+t 2, 解得:t =
1326R
g
;
4.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
(1)求小物块经过B 点时对轨道的压力大小;
(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】
(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04
m /5m /cos370.8
A v v s s =
==︒
小物块经过A 点运动到B 点,根据机械能守恒定律有:
()2211cos3722
A B mv mg R R mv +-︒=
小物块经过B 点时,有:2B
NB v F mg m R
-= 解得:()232cos3762N B
NB
v F mg m R
=-︒+=
根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:
22011222
C B mgL mg r mv mv μ--⋅=
- 在C 点,由牛顿第二定律得:2
C
NC v F mg m r
+=
代入数据解得:60N NC F =
根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N
(3)小物块刚好能通过C 点时,根据22C
v mg m r
=
解得:2100.4m /2m /C v gr s s =
=⨯=
小物块从B 点运动到C 点的过程,根据动能定理有:
22211222
C B mgL mg r mv mv μ--⋅=
- 代入数据解得:L =10m
5.地面上有一个半径为R 的圆形跑道,高为h 的平台边缘上的P 点在地面上P′点的正上方,P′与跑道圆心O 的距离为L (L >R ),如图所示,跑道上停有一辆小车,现从P 点水平抛出小沙袋,使其落入小车中(沙袋所受空气阻力不计).问:
(1)当小车分别位于A 点和B 点时(∠AOB=90°),沙袋被抛出时的初速度各为多大? (2)要使沙袋落在跑道上,则沙袋被抛出时的初速度在什么范围内?
(3)若小车沿跑道顺时针运动,当小车恰好经过A 点时,将沙袋抛出,为使沙袋能在B 处落入小车中,小车的速率v 应满足什么条件?
【答案】(1)()2A g
v L R h =-22()
2B g L R v h
+=
(2)0((L R v L R -≤≤+
(3)1(41)0,1,2,3...)2v n n π=+= 【解析】 【分析】 【详解】
(1)沙袋从P 点被抛出后做平抛运动,设它的落地时间为t ,则h=12
gt 2
解得t =
(1) 当小车位于A 点时,有x A =v A t=L-R (2)
解(1)(2)得v A =(L-R
当小车位于B 点时,有B B x v t ==3)
解(1)(3)得B
v (2)若小车在跑道上运动,要使沙袋落入小车,最小的抛出速度为
v 0min =v A =(L-R 4) 若当小车经过C 点时沙袋刚好落入,抛出时的初速度最大,有x c =v 0max t="L+R" (5)
解(1)(5)得 v 0max =(L+R
所以沙袋被抛出时的初速度范围为(L-R ≤v 0≤(L+R (3)要使沙袋能在B 处落入小车中,小车运动的时间应与沙袋下落时间相同 t AB =(n+
14
)2R
v π(n=0,1,2,3…)(6)
所以t AB
解得v=
12(4n+1)n=0,1,2,3…). 【点睛】
本题是对平抛运动规律的考查,在分析第三问的时候,要考虑到小车运动的周期性,小车并一定是经过
14圆周,也可以是经过了多个圆周之后再经过1
4
圆周后恰好到达B 点,这是
同学在解题时经常忽略而出错的地方.
6.如图所示,粗糙水平地面与半径 1.6m R =的光滑半圆轨道BCD 在B 点平滑连接, O 点是半圆轨道BCD 的圆心, B O D 、、三点在同一竖直线上,质量2kg m =的小物块(可视为质点)静止在水平地面上的A 点.某时刻用一压缩弹簧(未画出)将小物块沿AB 方向水平弹出,小物块经过B 点时速度大小为10m/s (不计空气阻力).已知10m AB x =,小物块与水平地面间的
动摩擦因数=0.2μ,重力加速度大小2
10m/s g =.求:
(1)压缩弹簧的弹性势能;
(2)小物块运动到半圆轨道最高点时,小物块对轨道作用力的大小; (3)小物块离开最高点后落回到地面上的位置与B 点之间的距离. 【答案】(1)140J (2)25N (3)4.8m 【解析】
(1)设压缩弹簧的弹性势能为P E ,从A 到B 根据能量守恒,有
2
12
P B AB E mv mgx μ=
+ 代入数据得140J P E =
(2)从B 到D ,根据机械能守恒定律有
22
11222
B D mv mv mg R =+⋅ 在D 点,根据牛顿运动定律有2
D
v F mg m R
+=
代入数据解得25N F =
由牛顿第三定律知,小物块对轨道作用力大小为25N (3)由D 点到落地点物块做平抛运动竖直方向有2122
R gt = 落地点与B 点之间的距离为D x v t = 代入数据解得 4.8m x =
点睛:本题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,关键是确定运动过程,分析运动规律,选择合适的物理规律列方程求解.
7.如图所示,在光滑水平桌面EAB 上有质量为m =2 kg 的小球P 和质量为M =1 kg 的小球Q ,P 、Q 之间压缩一轻弹簧(轻弹簧与两小球不拴接),桌面边缘E 处放置一质量也为M =1 kg 的橡皮泥球S ,在B 处固定一与水平桌面相切的光滑竖直半圆形轨道。
释放被压缩的轻弹簧,P 、Q 两小球被轻弹簧弹出,小球P 与弹簧分离后进入半圆形轨道,恰好能够通
过半圆形轨道的最高点C ;小球Q 与弹簧分离后与桌面边缘的橡皮泥球S 碰撞后合为一体飞出,落在水平地面上的D 点。
已知水平桌面高为h =0.2 m ,D 点到桌面边缘的水平距离为x =0.2 m ,重力加速度为g =10 m/s 2,求:
(1)小球P 经过半圆形轨道最低点B 时对轨道的压力大小N B ′; (2)小球Q 与橡皮泥球S 碰撞前瞬间的速度大小v Q ; (3)被压缩的轻弹簧的弹性势能E p 。
【答案】(1)120N (2)2 m/s (3)3 J 【解析】 【详解】
(1)小球P 恰好能通过半圆形轨道的最高点C ,则有
mg =m 2C
v R
解得
v C gR 对于小球P ,从B →C ,由动能定理有
22
11222
C B mgR mv mv -=-
解得
v B 5gR 在B 点有
N B -mg =m 2
B
v R
解得
N B =6mg =120 N
由牛顿第三定律有
N B ′=N B =120 N
(2)设Q 与S 做平抛运动的初速度大小为v ,所用时间为t ,根据公式h =
12
gt 2
,得 t =0.2 s
根据公式x =vt ,得
v =1 m/s
碰撞前后Q 和S 组成的系统动量守恒, 则有
Mv Q =2Mv
解得
v Q =2 m/s
(3)P 、Q 和弹簧组成的系统动量守恒, 则有
mv P =Mv Q
解得
v P =1 m/s
对P 、Q 和弹簧组成的系统,由能量守恒定律有
22
1122
p P Q E mv Mv =+
解得
E p =3 J
8.如图所示,水平绝缘轨道AB 长L =4m ,离地高h =1.8m ,A 、B 间存在竖直向上的匀强电
场。
一质量m =0.1kg ,电荷量q =-5×10-
5C 的小滑块,从轨道上的A 点以v 0=6m/s 的初速度
向右滑动,从B 点离开电场后,落在地面上的C 点。
已知C 、B 间的水平距离x =2.4m ,滑块与轨道间的动摩擦因数μ=0.2,取g =10m/s 2,求:
(1)滑块离开B 点时速度的大小; (2)滑块从A 点运动到B 点所用的时间; (3)匀强电场的场强E 的大小.
【答案】(1)4m/s ;(2)0.8s ;(3)3510N/C 【解析】 【详解】
(1)从B 到C 过程中,有
h =
12gt 2 x =v B t
解得
v B =4m/s
(2)从A 到B 过程中,有
x AB =
2
A B
v v t ' 解得
t '=0.8s
(3)在电场中运动过程中,受力如图
由牛顿第二定律,得
μ(mg +Eq )=mα
由运动学公式,有
v B 2-v A 2=2αx
解得
E =5×103N/C
9.如图所示,AB 是光滑的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,将弹簧水平放置,一端固定在A 点.现使质量为m 的小滑块从D 点以速度v 0=
进入轨道DCB ,然后沿着BA 运动压缩弹簧,弹簧压缩最短时小滑块处于P 点,重
力加速度大小为g ,求:
(1)在D 点时轨道对小滑块的作用力大小F N ; (2)弹簧压缩到最短时的弹性势能E p ;
(3)若水平轨道AB 粗糙,小滑块从P 点静止释放,且PB =5l ,要使得小滑块能沿着轨道BCD 运动,且运动过程中不脱离轨道,求小滑块与AB 间的动摩擦因数μ的范围. 【答案】(1)
(2)
(3)μ≤0.2或0.5≤μ≤0.7 【解析】(1)
解得
(2)根据机械能守恒
解得
(3)小滑块恰能能运动到B点
解得μ=0.7
小滑块恰能沿着轨道运动到C点
解得μ=0.5
所以0.5≤μ≤0.7
小滑块恰能沿着轨道运动D点
解得μ=0.2
所以μ≤0.2
综上μ≤0.2或0.5≤μ≤0.7
10.摄制组在某大楼边拍摄武打片,要求特技演员从地面飞到屋顶,为此导演在某房顶离地高H=8m处架设了轻质轮轴.如题图所示,连汽车的轻质钢缆绕在轴上,连演员的轻质钢缆绕在轮上,轮和轴固连在一起可绕中心固定点无摩擦转动.汽车从图中A处由静止开始加速运动,前进s=6m到B处时速度为v=5m/s.人和车可视为质点,轮和轴的直径之比为3:1,轮轴的大小相对于H可忽略,钢缆与轮轴之间不打滑,g取10m/s2.提示:连接汽车的钢缆与连接演员的钢缆非同一根钢缆.试求:
(1)汽车运动到B处时演员的速度大小:
(2)汽车从A运动到B的过程演员上升的高度;
(3)若汽车质量M=1500kg,特技演员的质量m=60kg,且在该过程中汽车受地面阻力大小恒为1000N,其余阻力不计,求汽车从A运动到B的过程中汽车发动机所做的功.
【答案】(1)9m/s (2)6m (3)30780J
【解析】(1)将汽车的速度v分解为如图所示的情况,有:,
解得:α=37°
则得绳子的伸长速度v1=vsin37°=5×0.6=3m/s,
由于轮轴的角速度相等.设人的上升速度为v3,轮的半径为R,轴的半径为r,则有,
得v3==9 m/s;
(2)由图可知,在这一过程中,连接轨道车的钢丝上升的距离为:△l=-H=2m
轮和轴的直径之比为3:1.所以演员上升的距离为h=3×2m=6m.
(3)汽车发动机所做的功转化为人的动能,人的重力势能,车的动能,及车与地面的摩擦
力生热.因此:W=mv人2+mg△h+Mv2+fs=30780J;
点睛:考查运动的合成与分解,掌握角速度与线速度的关系,理解功能关系的应用,同时注意:轮和轴的角速度相同,根据轮和轴的直径之比知道线速度关系.掌握速度分解找出分速度和合速度的关系.。