高考物理高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)
一、带电粒子在磁场中的运动专项训练
1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点
3
,0P L ⎛⎫ ⎪ ⎪⎝⎭
处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.
(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;
(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;
(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.
某同学查阅资料后,得到一种处理相关问题的思路:
带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq
32
2
3
0B E E v B +⎛⎫ ⎪⎝⎭
【解析】 【详解】
(1)粒子1在一、二、三做匀速圆周运动,则2
111
v qv B m r =
由几何憨可知:()2
22
1133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭
得到:123BLq
v m
=
(2)粒子2在第一象限中类斜劈运动,有:
13
3
L v t
=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到2
89qLB E m
=
又22
212v v Eh =+,得到:2221BLq
v =
(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0
E v B
'= 而'223
v v v ''=
+ 所以,运动过程中粒子的最小速率为v v v =''-'
即:2
2
003E E v v B B ⎛⎫=+- ⎪⎝⎭
2.如图所示为电子发射器原理图,M 处是电子出射口,它是宽度为d 的狭缝.D 为绝缘外壳,整个装置处于真空中,半径为a 的金属圆柱A 可沿半径向外均匀发射速率为v 的电子;与A 同轴放置的金属网C 的半径为2a.不考虑A 、C 的静电感应电荷对电子的作用和电子之间的相互作用,忽略电子所受重力和相对论效应,已知电子质量为m ,电荷量为e.
(1)若A 、C 间加速电压为U ,求电子通过金属网C 发射出来的速度大小v C ;
(2)若在A 、C 间不加磁场和电场时,检测到电子从M 射出形成的电流为I ,求圆柱体A 在t 时间内发射电子的数量N.(忽略C 、D 间的距离以及电子碰撞到C 、D 上的反射效应和金属网对电子的吸收)
(3)若A 、C 间不加电压,要使由A 发射的电子不从金属网C 射出,可在金属网内环形区域加垂直于圆平面向里的匀强磁场,求所加磁场磁感应强度B 的最小值. 【答案】(1)22e eU
v v m
=+4alt N ed π=(3) 43mv B ae = 【解析】 【分析】
(1)根据动能定理求解求电子通过金属网C 发射出来的速度大小;(2)根据=
ne
I t
求解
圆柱体A 在时间t 内发射电子的数量N ;(3)使由A 发射的电子不从金属网C 射出,则电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切,由几何关系求解半径,从而求解B. 【详解】
(1)对电子经 CA 间的电场加速时,由动能定理得
2211
22
e e U mv mv =
- 解得:22e eU
v v m
=
+ (2)设时间t 从A 中发射的电子数为N ,由M 口射出的电子数为n , 则 =
ne I t
224d dN
n N a a
ππ=
=⨯
解得4alt
N ed
π=
(3)电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切时,对应的磁感应强度为
B .设此轨迹圆的半径为 r ,则
222
(2)a r r a -=+
2
v Bev m r
=
解得:43mv
B ae
=
3.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN 上方区域的平行长金属板AB 间电压大小可调,平行长金属板AB 间距为d ,匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.MN 下方区域I 、II 为两相邻的方向相反的匀强磁场区,宽度均为3d ,磁感应强度均为B ,ef 是两磁场区的分界线,PQ 是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB 间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b ,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.
(1)要使速度为v 的正电子匀速通过平行长金属极板AB ,求此时金属板AB 间所加电压U ;
(2)通过调节电压U 可以改变正电子通过匀强磁场区域I 和II 的运动时间,求沿平行长金属板方向进入MN 下方磁场区的正电子在匀强磁场区域I 和II 运动的最长时间t m ; (3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN 下方磁场区,它们既能被收集板接收又不重叠,求金属板AB 间所加电压U 的范围.
【答案】(1)Bvd (2)Bb π
(3)3B 2d 2
b <U <221458
B d b
【解析】 【详解】
(1)正电子匀速直线通过平行金属极板AB ,需满足 Bev=Ee
因为正电子的比荷是b ,有 E=
U d
联立解得:
u Bvd =
(2)当正电子越过分界线ef 时恰好与分界线ef 相切,正电子在匀强磁场区域I 、II 运动的时间最长。

4
T t =
m t =2t
2
111
v ev B m R =
T =
122R m
v Be
=ππ 联立解得:t Bb
π
=
(3)临界态1:正电子恰好越过分界线ef ,需满足 轨迹半径R 1=3d
1ev B =m 2
11
v R
1
1U ev B e
d
=⑪ 联立解得:22
13U d B b =
临界态2:沿A 极板射入的正电子和沿B 极板射入的电子恰好射到收集板同一点 设正电子在磁场中运动的轨迹半径为R 1 有(R 2﹣
14
d )2+9d 2=22R 2Bev =m 22
2
v R
Be 2v =
2
U e d 联立解得:
2221458
B d b
U =
解得:U 的范围是:3B 2d 2
b <U <221458
B d b
4.如图所示,一匀强磁场磁感应强度为B ;方向向里,其边界是半径为R 的圆,AB 为圆的一直径.在A 点有一粒子源向圆平面内的各个方向发射质量m 、电量-q 的粒子,粒子重力不计.
(1)有一带电粒子以的速度垂直磁场进入圆形区域,恰从B点射出.求此粒子在磁场中运动的时间.
(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子沿半径方向射入磁场,经过2次碰撞后回到A点,则该粒子的速度为多大?
(3)若R=3cm、B=0.2T,在A点的粒子源向圆平面内的各个方向发射速度均为3×105m/s、比荷为108C/kg的粒子.试用阴影图画出粒子在磁场中能到达的区域,并求出该区域的面积(结果保留2位有效数字).
【答案】(1)(2)(3)
【解析】
【分析】
(1)根据洛伦兹力提供向心力,求出粒子的半径,通过几何关系得出圆弧所对应的圆心角,根据周期公式,结合t=T求出粒子在磁场中运动的时间.
(2)粒子径向射入磁场,必定径向反弹,作出粒子的轨迹图,通过几何关系求出粒子的半径,从而通过半径公式求出粒子的速度.
(3)根据粒子的半径公式求出粒子的轨道半径,作出粒子轨迹所能到达的部分,根据几何关系求出面积.
【详解】
(1)由得r1=2R
粒子的运动轨迹如图所示,则α=
因为周期.
运动时间.
(2)粒子运动情况如图所示,β=.
r2=R tanβ=R
由得
(3)粒子的轨道半径r3==1.5cm
粒子到达的区域为图中的阴影部分
区域面积为S=πr32+2×π(2r3)2−r32=9.0×10-4m2
【点睛】
本题考查了带电粒子在磁场中的运动问题,需掌握粒子的半径公式和周期公式,并能画出粒子运动的轨迹图,结合几何关系求解.该题对数学几何能力要求较高,需加强这方面的训练.
5.如图,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。

P是圆外一点,OP=3r。

一质量为m、电荷量为q(q>0)的粒子从P点在纸面内垂直于OP射出。

己知粒子运动轨迹经过圆心O,不计重力。


(1)粒子在磁场中做圆周运动的半径;
(2)粒子第一次在圆形区域内运动所用的时间。

【答案】(1)(2)
【解析】
【分析】
本题考查在匀强磁场中的匀速圆周运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力。

【详解】
(1)找圆心,画轨迹,求半径。

设粒子在磁场中运动半径为R,由几何关系得:①
易得:②
(2)设进入磁场时速度的大小为v,由洛伦兹力公式和牛顿第二定律有

进入圆形区域,带电粒子做匀速直线运动,则

联立②③④解得
6.如图:竖直面内固定的绝缘轨道abc,由半径R=3 m的光滑圆弧段bc与长l=1.5 m的粗糙水平段ab在b点相切而构成,O点是圆弧段的圆心,Oc与Ob的夹角θ=37°;过f点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C的匀强电场,Ocb的外侧有一长度足够长、宽度d =1.6 m的矩形区域efgh,ef与Oc交于c点,ecf与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3×10-3 kg、电荷量q=3×l0-3 C的带正电小物体Q静止在圆弧轨道上b点,质量m1=1.5×10-3 kg的不带电小物体P从轨道右端a以v0=8 m/s的水平速度向左运动,P、Q碰撞时间极短,碰后P以1 m/s的速度水平向右弹回.已知P与ab间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g=10
m/s2.求:
(1)碰后瞬间,圆弧轨道对物体Q的弹力大小F N;
(2)当β=53°时,物体Q刚好不从gh边穿出磁场,求区域efgh内所加磁场的磁感应强度大小B1;
(3)当区域efgh内所加磁场的磁感应强度为B2=2T时,要让物体Q从gh边穿出磁场且在磁场中运动的时间最长,求此最长时间t及对应的β值.
【答案】(1)2
4.610N F N -=⨯ (2)1 1.25B T = (3)127s 360
t π
=
,001290143ββ==和 【解析】 【详解】
解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111
-22
m gl m v m v μ=- 解得:17m/s v =
碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '
=+
取向左为正方向,由题意11m/s v =-', 解得:24m/s v =
b 点:对Q ,由牛顿第二定律得:2
222N v F m g m R
-=
解得:2
4.610N N F -=⨯
(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:
22222211
(1cos )22
c m gR m v m v θ-+=
解得:2m/s c v =
进入磁场后:Q 所受电场力2
2310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动
由牛顿第二定律得:2
211
c c m v qv B r =
Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,222
1m c
m v r qB =
= 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:
设最大圆心角为α,由几何关系得:2
2
cos(180)d
r r α-︒-= 解得:127α=︒ 运动周期:2
2
2m T qB π=
则Q 在磁场中运动的最长时间:222127127•s 360360360
m t T qB πα
π
=
=
=︒
此时对应的β角:190β=︒和2143β=︒
7.如图甲所示,在直角坐标系0≤x ≤L 区域内有沿y 轴正方向的匀强电场,右侧有一个以点(3L ,0)为圆心、半径为L 的圆形区域,圆形区域与x 轴的交点分别为M 、N .现有一质量为m 、带电量为e 的电子,从y 轴上的A 点以速度v 0沿x 轴正方向射入电场,飞出电场后从M 点进入圆形区域,此时速度方向与x 轴正方向的夹角为30°.不考虑电子所受的重力.
(1)求电子进入圆形区域时的速度大小和匀强电场场强E 的大小;
(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴.求所加磁场磁感应强度B 的大小和电子刚穿出圆形区域时的位置坐标; (3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N 点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B 0的大小、磁场变化周期T 各应满足的关系表达式.
【答案】(1) (2) (3) (n=1,2,3…)
(n=1,2,3…)
【解析】
(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.
由速度关系可得:
解得:
由速度关系得:v y=v0tanθ=v0
在竖直方向:
而水平方向:
解得:
(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L
根据牛顿第二定律:
解得:
根据几何关系得电子穿出圆形区域时位置坐标为(,-)
(3)电子在在磁场中最简单的情景如图2所示.
在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;
在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于
2r.
综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:
解得:(n=1,2,3…)
应满足的时间条件为: (T0+T′)=T
而:
解得(n=1,2,3…)
点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合
要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.
8.在如图所示的xoy坐标系中,一对间距为d的平行薄金属板竖直固定于绝缘底座上,底座置于光滑水平桌面的中间,极板右边与y轴重合,桌面与x轴重合,o点与桌面右边相
距为7
4
d
,一根长度也为d的光滑绝缘细杆水平穿过右极板上的小孔后固定在左极板上,
杆离桌面高为1.5d,装置的总质量为3m.两板外存在垂直纸面向外、磁感应强度为B的匀强磁场和匀强电场(图中未画出),假设极板内、外的电磁场互不影响且不考虑边缘效应.有一个质量为m、电量为+q的小环(可视为质点)套在杆的左端,给极板充电,使板内有沿x正方向的稳恒电场时,释放小环,让其由静止向右滑动,离开小孔后便做匀速圆周运动,重力加速度取g.求:
(1)环离开小孔时的坐标值;
(2)板外的场强E2的大小和方向;
(3)讨论板内场强E1的取值范围,确定环打在桌面上的范围.
【答案】(1)环离开小孔时的坐标值是-1
4 d;
(2)板外的场强E2的大小为mg
q
,方向沿y轴正方向;
(3)场强E1的取值范围为
22
3
68
qB d qB d
m m
~,环打在桌面上的范围为
17
44
d d
-~.
【解析】
【详解】
(1)设在环离开小孔之前,环和底座各自移动的位移为x1、x2.由于板内小环与极板间的作用力是它们的内力,系统动量守恒,取向右为正方向,根据动量守恒定律,有:
mx1-3mx2=0 ①
而x1+x2=d ②
①②解得:x1=3
4
d③
x2=1 4 d
环离开小孔时的坐标值为:x m=3
4
d-d=-
1
4
d
(2)环离开小孔后便做匀速圆周运动,须qE2=mg
解得:2mg
E
q
=,方向沿y轴正方向
(3)环打在桌面上的范围可画得如图所示,临界点为P、Q,则
若环绕小圆运动,则R=0.75d ④
根据洛仑兹力提供向心力,有:
2
v qvB m
R
=⑤
环在极板内做匀加速运动,设离开小孔时的速度为v,根据动能定理,有:
qE1x1=1
2
mv2⑥
联立③④⑤⑥解得:
2 1
3
8
qB d E
m
=
若环绕大圆运动,则R2=(R-1.5d)2+(2d)2 解得:R=0.48d ⑦
联立③⑤⑥⑦解得:
2 16
qB d E
m

故场强E1的取值范围为
22
3
68
qB d qB d
m m
~,环打在桌面上的范围为
17
44
d d
-~.
9.如图所示,虚线OL与y轴的夹角θ=450,在OL上侧有平行于OL向下的匀强电场,在OL下侧有垂直纸面向外的匀强磁场,一质量为m、电荷量为q(q>0)的粒子以速率v0从y轴上的M(OM=d)点垂直于y轴射入匀强电场,该粒子恰好能够垂直于OL进入匀强磁场,不计粒子重力。

(1)求此电场的场强大小E;
(2)若粒子能在OL与x轴所围区间内返回到虚线OL上,求粒子从M点出发到第二次经过OL所需要的最长时间。

【答案】(1);(2).
【解析】
试题分析:根据粒子只受电场力作用,沿电场线方向和垂直电场线方向建立坐标系,利用类平抛运动;根据横向位移及纵向速度建立方程组,即可求解;由(1)求出在电场中运动的时间及离开电场时的位置;再根据粒子在磁场中做圆周运动,由圆周运动规律及几何关系得到最大半径,进而得到最长时间;
(1)粒子在电场中运动,不计粒子重力,只受电场力作用,;
沿垂直电场线方向X和电场线方向Y建立坐标系,
则在X方向位移关系有:,所以;
该粒子恰好能够垂直于OL进入匀强磁场,所以在Y方向上,速度关系有

所以,,则有.
(2)根据(1)可知粒子在电场中运动的时间;
粒子在磁场中只受洛伦兹力的作用,在洛伦兹力作用下做圆周运动,设圆周运动的周期为T
粒子能在OL与x轴所围区间内返回到虚线OL上,则粒子从M点出发到第二次经过OL在磁场中运动了半个圆周,所以,在磁场中运动时间为;
粒子在磁场运动,洛伦兹力作为向心力,所以有,;
根据(1)可知,粒子恰好能够垂直于OL进入匀强磁场,速度v就是初速度v0在X方向上的分量,即;
粒子在电场中运动,在Y方向上的位移,所以,粒子进入磁场的位置在OL上距离O点;根据几何关系,
可得,即;
所以;
所以,粒子从M 点出发到第二次经过OL 所需要的最长时间

10.如图,空间某个半径为R 的区域内存在磁感应强度为B 的匀强磁场,与它相邻的是一对间距为d ,足够大的平行金属板,板间电压为U 。

一群质量为m ,带电量为q 的带正电的粒子从磁场的左侧以与极板平行的相同速度射入磁场。

不计重力,则
(1)离极板AB 距离为2
R 的粒子能从极板上的小孔P 射入电场,求粒子的速度? (2)极板CD 上多长的区域上可能会有带电粒子击中? (3)如果改变极板的极性而不改变板间电压,发现有粒子会再次进入磁场,并离开磁场区域。

计算这种粒子在磁场和电场中运动的总时间。

【答案】(1)入射粒子的速度qBR v m
=;(2)带电粒子击中的长度为222222B R d q x mU
=;(3)总时间122m dBR t t t qB U π=+=+ 【解析】
【详解】
(1)洛伦兹力提供向心力,2
mv qvB r
=,解得mv r qB = 根据作图可解得,能从极板上的小孔P 射入电场,r R =
所以,入射粒子的速度qBR v m
= (2)所有进入磁场的粒子都能从P 点射入电场,从最上边和最下边进入磁场的粒子将平行
极板进入电场,这些粒子在垂直于电场方向做匀加速直线运动,F qU a m md == 212d
at = 解得2
2md t qU
= 沿极板运动的距离2222B R d q x vt mU
== 有带电粒子击中的长度为222222B R d q x mU
= (3)能再次进入磁场的粒子应垂直于极板进入电场,在电场中运动的时间
122v dBR t a U
== 在磁场中运动的时间为22T t =
,22R m T v qB ππ== 所以2m
t qB π=
总时间122m
dBR t t t qB U
π=+=+
11.如图所示,在xOy 平面的第一象限有一匀强磁场,方向垂直于纸面向外;在第四象限有一匀强电场,方向平行于y 轴向下.一电子以速度v 0从y 轴上的P 点垂直于y 轴向右飞入电场,经过x 轴上M 点进入磁场区域,又恰能从y 轴上的Q 点垂直于y 轴向左飞出磁场已知P 点坐标为(0,-L),M 点的坐标为(
23L ,0).求 (1)电子飞出磁场时的速度大小v
(2)电子在磁场中运动的时间t
【答案】(1)02v v =;(2)20
49L t v π=
【解析】
【详解】
(1)轨迹如图所示,设电子从电场进入磁场时速度方向与x 轴夹角为θ,
(1)在电场中x 轴方向:0123L v t =,y
轴方向12y v L t =:,0tan 3y v v θ== 得60θ=,002cos v v v θ
== (2)在磁场中,234sin 3L r L θ=
= 磁场中的偏转角度为23
απ= 20
2439r
L t v v ππ==
12.如图所示,在平面直角坐标系xOy 内,第一、四象限有与y 轴相切于O 点、圆心为O 1、半径一定的有界圆形区域,其内存在垂直于纸面匀强磁场,第二、三象限有平行y 轴的匀强电场.一带电粒子(重力不计)自P(-d ,3d )点以平行于x 轴的初速度v 0开始运动,粒子从O 点离开电场,经磁场偏转后又从y 轴上的Q 点(图中未画出)垂直于y 轴回到电场区域,并恰能返回到P 点.求:
(1)粒子经过O 点时的速度;
(2)电场强度E 和磁感应强度B 的比值.
【答案】(1)2v 0
(2)
058
E v B = 【解析】
【详解】
试题分析:(1)粒子从P 到O 的过程中做类平抛运动,设时间为t 1,经过O 点时的速度为v ,其在y 轴负方向的分速度为v y ,与y 轴负方向的夹角为θ
d=v 0t 1 1322
x v d t = v 2=v 02+v y 2 0tan y θ=v v
解得:v=2v 0θ=300
(2)设粒子质量为m ,电荷量为q ,粒子在电场中运动的加速度为a :Eq=ma
213122
d at = 粒子从Q 到P 的过程中,也做类平抛运动,设时间为t 2,Q 点的纵坐标为y Q
22312
Q y at = d=vt 2 解得:38Q y d =
设粒子由S 点离开磁场,粒子从O 到S 过程中做圆周运动,半径为r ,由几何关系有:r+rsinθ=y Q
2
v qvB m r
= 53r = 058
E v B = 考点:带电粒子在电场及磁场中的运动
【点睛】
【名师点睛】此题是带电粒子在电场及磁场中的运动问题;关键是搞清粒子的运动情况,画出粒子运动的轨迹图,结合平抛运动及匀速圆周运动的规律,并利用几何关系进行求解;此题难度中等,考查学生运用基础知识解决问题的能力.
13.如图所示,y,N为水平放置的平行金属板,板长和板间距均为2d.在金属板左侧板间中点处有电子源S,能水平发射初速为V0的电子,电子的质量为m,电荷量为e.金属板右侧有两个磁感应强度大小始终相等,方向分别垂直于纸面向外和向里的匀强磁场区域,两磁场的宽度均为d.磁场边界与水平金属板垂直,左边界紧靠金属板右侧,距磁场右边界d处有一个荧光屏.过电子源S作荧光屏的垂线,垂足为O.以O为原点,竖直向下为正方向,建立y轴.现在y,N两板间加上图示电压,使电子沿SO方向射入板间后,恰好能够从金属板右侧边缘射出.进入磁场.(不考虑电子重力和阻力)
(1)电子进人磁场时的速度v;
(2)改变磁感应强度B的大小,使电子能打到荧光屏上,求
①磁场的磁感应强度口大小的范围;
②电子打到荧光屏上位置坐标的范围.
【答案】(1)
2v,方向与水平方向成45°
(2)①
()0
12mv
B
ed
+
<,②4224
d d d
-→
【解析】
试题分析:(1)电子在MN间只受电场力作用,从金属板的右侧下边沿射出,有(1分)
(1分)
(1分)
(1分)
解得(1分)
速度偏向角(1分)
(1分)
(2)电子恰能(或恰不能)打在荧光屏上,有磁感应强度的临界值0B ,此时电子在磁场中作圆周运动的半径为R
(2分)
又有2
0mv qvB R
=(2分)
由⑦⑧解得:00(12)m
B v +=
(1分) 磁感应强度越大,电子越不能穿出磁场,所以取磁感应强度0(12)m
B v +<时电子能打
在荧光屏上(得0(12)m
B v ed
+≤
不扣分). (1分) 如图所示,电子在磁感应强度为0B 时,打在荧光屏的最高处,由对称性可知,电子在磁场右侧的出射时速度方向与进入磁场的方向相同,
即. (1分)
出射点位置到SO 连线的垂直距离
12sin 45y d R =-︒(1分)
电子移开磁场后做匀速直线运动,则电子打在荧光屏的位置坐标
021tan 45y y d =+(1分)
解得2422y d d =-(1分)
当磁场的磁感应强度为零时,电子离开电场后做直线运动,打在荧光屏的最低点,其坐标
为0
33tan 454y d d d =+=(1分)
电子穿出磁场后打在荧光民屏上的位置坐标范围为:
422d d -到4d (2分)
考点:带电粒子在磁场中受力运动.
14.(20分)如图所示,平面直角坐标系xOy 的第二象限内存在场强大小为E ,方向与x 轴平行且沿x 轴负方向的匀强电场,在第一、三、四象限内存在方向垂直纸面向里的匀强磁场。

现将一挡板放在第二象限内,其与x,y 轴的交点M 、N 到坐标原点的距离均为2L 。

一质量为m ,电荷量绝对值为q 的带负电粒子在第二象限内从距x 轴为L 、距y 轴为2L 的
A 点由静止释放,当粒子第一次到达y 轴上C 点时电场突然消失。

若粒子重力不计,粒子与挡板相碰后电荷量及速度大小不变,碰撞前后,粒子的速度与挡板的夹角相等(类似于光反射时反射角与入射角的关系)。

求:
(1)C 点的纵坐标。

(2)若要使粒子再次打到档板上,磁感应强度的最大值为多少?
(3)磁感应强度为多大时,粒子从A 点出发与档板总共相碰两次后到达C 点?这种情况下粒子从A 点出发到第二次到达C 点的时间多长?
【答案】(1)3L ;(2)qL mE B 221=;(3)qL Em B 2322=;9(2)24mL
t qE
π+=总
【解析】
试题分析:(1)设粒子到达挡板之前的速度为v 0
有动能定理 2
02
1mv qEL = (1分)
粒子与挡板碰撞之后做类平抛运动
在x 轴方向 2
2t m
qE L =
(1分) 在y 轴方向 t v y 0= (1分) 联立解得 L y 2=
C 点的纵坐标为L L y 3=+ (1分) (2)粒子到达C 点时的沿x 轴方向的速度为m
qEL
at v x 2== (1分) 沿y 轴方向的速度为m
qEL
v v y 20=
= (1分) 此时粒子在C 点的速度为m
qEL
v 2= (1分)
粒子的速度方向与x 轴的夹角
x
y v
v =
θtan
45=θ (1分)
磁感应强度最大时,粒子运动的轨道半径为 L r 2
2
1=
(2分)
根据牛顿第二定律 1
2
1r v m qvB = (1分)
要是粒子再次打到挡板上,磁感应强度的最大值为 qL
mE
B 22
1= (1分) (3)当磁感应强度为B 2时,粒子做半径为r 2的圆周运动到达y 轴上的O 点,之后做直线运动打到板上,L r 2
2
32=
(2分) 此时的磁感应强度为qL
Em
B 2322=
(1分)
此后粒子返回到O 点,进入磁场后做匀速圆周运动,由对称性可知粒子将到达D 点,接着做直线运动到达C 点 从A 到板,有2121t m Eq L =
qE
mL
t 21= (1分) 在磁场中做圆周运动的时间 qE
mL
T t 24
9232π
==
(1分) 从O 到板再返回O 点作直线运动的时间qE
mL
t 23=
(1分) 从x 轴上D 点做匀速直线运动到C 点的时间为qE
mL
t 2234= (1分)
总时间为qE
mL
t t t t t t 24)2(94321π+=
++++=总 (1分)
考点:带电粒子在磁场中的运动,牛顿第二定律,平抛运动。

15.(加试题)有一种质谱仪由静电分析器和磁分析器组成,其简化原理如图所示。

左侧静电分析器中有方向指向圆心O 、与O 点等距离各点的场强大小相同的径向电场,右侧的磁分析器中分布着方向垂直于纸面向外的匀强磁场,其左边界与静电分析器的右边界平行,两者间距近似为零。

离子源发出两种速度均为v 0、电荷量均为q 、质量分别为m 和0.5m 的正离子束,从M 点垂直该点电场方向进入静电分析器。

在静电分析器中,质量为m 的离子沿半径为r 0的四分之一圆弧轨道做匀速圆周运动,从N 点水平射出,而质量为0.5m 的离子恰好从ON 连线的中点P 与水平方向成θ角射出,从静电分析器射出的这两束离子垂直磁场方向射入磁分析器中,最后打在放置于磁分析器左边界的探测板上,其中质量为m 的离子打在O 点正下方的Q 点。

已知OP=0.5r 0,OQ=r 0,N 、P 两点间的电势差
2NP
mv
U q =,4cos θ5
=,不计重力和离子间相互作用。

(1)求静电分析器中半径为r 0处的电场强度E 0和磁分析器中的磁感应强度B 的大小; (2)求质量为0.5m 的离子到达探测板上的位置与O 点的距离l (用r 0表示); (3)若磁感应强度在(B —△B )到(B +△B )之间波动,要在探测板上完全分辨出质量为m 和0.5m 的两東离子,求
ΔB
B
的最大值 【答案】(1)2
00mv E qr =,00
B mv qr =;(2)01.5r ;(3)12%
【解析】 【详解】
(1)径向电场力提供向心力:2
c c c
v E q m r =
2
c c c
mv E qr = c c mv B qr =
(2)由动能定理:
2211
0.50.522
c NP mv mv qU ⨯-⨯=。

相关文档
最新文档