三角形内切圆半径公式_数学教案-三角形的内切圆

合集下载

九年级数学下册《三角形的内切圆》教案、教学设计

九年级数学下册《三角形的内切圆》教案、教学设计
(三)学生小组讨论
1.教学内容:学生通过小组讨论,探究三角形内切圆的性质,并尝试证明。
2.教学方法:采用小组合作学习法、探究式教学法。
3.教学步骤:
(1)教师将学生分成若干小组,每组学生通过画图、测量、计算等手段,探究三角形内切圆的性质。
(2)学生讨论如何证明三角形内切圆的性质,如内切圆的半径与三角形的面积、半周长之间的关系。
(3)教师布置课后作业,要求学生巩固所学知识,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学知识,培养学生的几何解题能力和数学素养,特布置以下作业:
1.必做题:
(1)完成课本第123页练习题第1、2、3题,要求学生独立完成,强化对三角形内切圆性质的理解。
(2)利用内切圆的性质,求解以下三角形内切圆的半径:①等边三角形;②等腰直角三角形;③一般三角形。
4.创新题:
(1)请学生尝试自己设计一道与三角形内切圆相关的题目,要求具有创新性和挑战性。
(2)将设计的题目与同学分享,互相解答,提高解题能力。
作业要求:
1.学生要认真完成作业,注意书写规范,保持卷面整洁。
2.遇到问题要主动思考,积极寻求解决方法,可向同学或老师请教。
3.小组合作题要充分发挥团队合作精神,共同解决问题。
(3)讲解:教师对三角形内切圆的性质进行总结和讲解,强调内切圆与三角形之间的关系,引导学生理解并掌握求解内切圆半径的方法。
(4)巩固:设计有针对性的练习题,让学生独立完成,巩固所学知识,提高解题能力。
(5)拓展:引导学生将内切圆知识应用于解决实际问题,如求内切圆的周长、面积等,培养学生的数学应用意识。
(3)思考并证明:三角形内切圆的半径等于其半周长与面积之比。
2.选做题:

24.2.2切线长定理和三角形的内切圆(教案)

24.2.2切线长定理和三角形的内切圆(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了切线长定理和三角形内切圆的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
三角形内切圆的部分,学生们在小组讨论和实验操作中表现出了很高的热情。通过实际操作,他们能够更好地掌握内切圆半径的计算方法,这也证明了实践活动在数学教学中的重要性。今后,我会继续加大实践环节的比重,让学生在实践中学习和探索。
在小组讨论环节,我发现有些学生较为内向,不太愿意主动表达自己的观点。为了鼓励他们积极参与,我会在今后的教学中更加关注这些学生,多给予他们肯定和鼓励,提高他们的自信心。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“切线长定理和三角形内切圆在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
24.2.2切线长定理和三角形的内切圆(教案)
一、教学内容
本节课选自教材24.2.2节,主要内容包括:
1.切线长定理:探讨圆的切线与半径的关系,推导并掌握切线长定理,即从圆外一点引圆的两条切线,切线长相等。
2.三角形的内切圆:介绍三角形内切圆的概念,探讨内切圆的半径与三角形面积的关系,掌握内切圆半径的计算公式。

湘教版九年级数学下册《三角形的内切圆》精品教案

湘教版九年级数学下册《三角形的内切圆》精品教案

《三角形的内切圆》精品教案讲授新课一、三角形的内切圆【议一议】想在一块三角形硬纸板上剪下一个面积最大的圆形纸板,应当怎样剪?(出示课件5)回答:这个圆应当与三角形的三条边都相切。

【动脑筋】与三角形的三条边都相切的圆存在吗?若存在,如何画出这样的圆?(出示课件6)分析:1.如果圆与△ABC的三条边都相切,那么圆心O与三角形三边的距离应等于圆的半径,从而这些距离相等。

2.到一个角的两边距离相等的点一定在这个角的平分线上,因此圆心O应是∠A与∠B的平分线的交点。

作法:(1)作∠A,∠B的平分线AD,BE,它们相交于点O;(2)过点O作AB的垂线,垂足为M;(3)以点O为圆心,OM为半径作圆.⊙O 就是所求作的圆。

师:请同学们总结一下画三角形的内切圆的步骤是什么呢?回答:画角平分线→定内心→定半径→画圆→结论师:这样的圆可以作出几个?为什么?思考并回答问题动手作图,画三角形的内切圆通过提问,让学生知道内切圆的概念通过动手操作,让学生知道怎样画三角形的内切圆通过提问,让学(出示课件8)∵直线BE和CF只有一个交点I,并且点I 到△ABC三边的距离相等∴和△ABC三边都相切的圆可以作出一个,并且只能作一个。

【内切圆的概念】(出示课件9)师:与三角形各边都相切的圆叫作三角形的内切圆,内切圆的圆心叫作三角形的内心,这个三角形叫作圆的外切三角形。

【三角形内心的性质】师:三角形内心的性质是什么呢?请同学们和同桌商量一下再回答。

回答:①三角形的内心是三角形角平分线的交点;②三角形的内心到三边的距离相等;③三角形的内心一定在三角形的内部。

【三角形内心与外心的区别与联系】师:请同学们完成下面的表格,可以和同桌商量。

师:关于三角形的内心和外心的理解,我们一起来看看几个题。

(出示课件12)1.如图1,△ABC是⊙O的内接三角形。

⊙O 是△ABC的外接圆,点O叫△ABC的外心,它是三角形三边垂直平分线的交点。

点O到△ABC的三个顶点距离相等。

三角形内切圆的半径公式推导

三角形内切圆的半径公式推导

三角形内切圆的半径公式推导一、引言在几何学中,三角形内切圆是指与三角形的三条边都相切的圆。

在三角形内切圆中,有一个重要的性质,即内切圆的半径与三角形的三边之间存在一定的关系,本文将对这一关系进行推导和证明。

二、推导过程设三角形的三条边分别为a、b、c,三个内角对应的角度分别为A、B、C。

三角形的半周长定义为s,即s=(a+b+c)/2。

我们将内切圆的半径记为r,圆心到三角形三边的距离分别记为d1、d2、d3。

由于内切圆与三角形的三边都相切,因此d1、d2、d3分别是三角形三边的垂直平分线。

1. 推导d1的长度根据直角三角形的性质,我们可以得出以下关系:tan(A/2) = d1 / (s-a)其中,A/2表示角A的一半,即A的角度除以2。

根据正切函数的性质,我们可以得到:d1 = (s-a) * tan(A/2)2. 推导d2和d3的长度同理,我们可以得到以下关系:d2 = (s-b) * tan(B/2)d3 = (s-c) * tan(C/2)3. 推导r的长度根据垂直平分线的性质,我们知道d1、d2、d3相等,即有d1=d2=d3。

将d1、d2、d3的表达式代入上述等式,可以得到:(s-a) * tan(A/2) = (s-b) * tan(B/2) = (s-c) * tan(C/2) = r由于s是三角形的半周长,可以得到以下关系:s = (a+b+c)/2将s代入上述等式,可以得到:(s-a) * tan(A/2) = (s-b) * tan(B/2) = (s-c) * tan(C/2) = r(a+b+c)/2 - a * tan(A/2) = (a+b+c)/2 - b * tan(B/2) = (a+b+c)/2 - c * tan(C/2) = r化简上述等式,可以得到:r = (s-a) * tan(A/2) = (s-b) * tan(B/2) = (s-c) * tan(C/2)4. 推导半径公式由于tan(A/2)、tan(B/2)、tan(C/2)都是三角函数,可以使用三角恒等式将其转化为三角函数的其他形式。

等边三角形内切圆半径计算公式

等边三角形内切圆半径计算公式

等边三角形内切圆半径计算公式是一个重要的几何学知识点,它在数学和工程领域都有着重要的应用。

在本文中,我们将介绍等边三角形内切圆半径的计算公式,并探讨其推导过程和几何意义。

一、等边三角形内切圆的定义等边三角形是指三条边长度相等的三角形。

内切圆是指一个圆与三角形的三条边都相切。

等边三角形内切圆的半径记为r。

二、等边三角形内切圆半径计算公式等边三角形内切圆半径的计算公式是:r = a * √3 / 6其中,a为等边三角形的边长。

三、推导过程我们来看一下等边三角形内切圆半径计算公式的推导过程。

1. 我们知道等边三角形的高等于√3/2乘边长,而内切圆的半径正好是等边三角形的高。

2. 我们可以得出等边三角形内切圆半径r等于边长a乘以√3/6。

四、几何意义等边三角形内切圆半径的计算公式给出了等边三角形内切圆半径与边长之间的关系,这有助于我们在实际问题中快速计算内切圆的半径。

五、应用举例假设一个等边三角形的边长为6cm,根据等边三角形内切圆半径的计算公式,我们可以直接求得内切圆的半径:r = 6 * √3 / 6 = √3 ≈ 1.73cm六、结论等边三角形内切圆半径的计算公式为r = a * √3 / 6,其中a为等边三角形的边长。

这个公式的推导过程清晰简单,关系直观明了,有着重要的几何意义和实际应用价值。

等边三角形内切圆半径计算公式是一个重要的数学公式,它有着广泛的应用领域,对于提高数学和工程问题的解决效率有着重要的意义。

希望本文的介绍能够对读者有所帮助。

等边三角形内切圆是一个非常有趣的几何形状,它具有许多有趣的性质和应用。

在本文的下半部分,我们将进一步探讨等边三角形内切圆的性质、相关定理以及一些实际应用。

七、等边三角形内切圆的性质1. 等边三角形内切圆的半径和等边三角形边的关系通过上文的讨论,我们已经知道等边三角形内切圆的半径r与等边三角形的边长a之间满足以下关系:r = a * √3 / 6这个关系式可以帮助我们在已知等边三角形边长的情况下快速计算出内切圆的半径,为诸如工程设计、数学建模等实际问题的解决提供了便利。

内切圆的教案

内切圆的教案

25.6三角形的内切圆教学目标:知识与技能:1、会作三角形的内切圆。

2、理解三角形内切圆的有关知识。

3、掌握三角形的内心、外心的位置、数量特征。

4、掌握关于内心的一些角度的计算。

过程与方法:通过动手操作,让学生发现三角形的内切圆的基本特性,并通过小组内的交流,讨论探索三角形的内心及内切圆的半径的确定方式,培养学生发现问题、解决问题的能力。

情感、态度与价值观:1、让学生在动手、动脑主动参与课堂教学活动的过程中体会知识间的联系,激发学生的学习兴趣。

2、通过类比思考,适时进行命名,发现三角形的内心与外心的区别,体验解决问题的乐趣。

重点难点:重点:1、掌握三角形的内切圆的画法。

2、三角形的内心及其性质。

难点:画钝角三角形的内切圆。

教学准备:直尺、圆规、课件。

教学过程:知识回顾:1. 确定圆的条件是什么?1)圆心与半径2)不在同一直线上的三点2. 叙述角平分线的性质定理与判定定理性质:角平分线上的点到这个角的两边的距离相等。

判定:到这个角的两边距离相等的点在这个角的平分线上。

设疑激思:李明在一家木料厂上班,工作之余想对厂里的三角形废料进行加工:要在三角形木料上裁下一块圆形用料,且使圆的面积最大,他就找我这个数学老师帮忙,同学们,你能帮他确定一下吗?探究:思考并交流下列问题:1.如图,若⊙O与∠ABC的两边相切,那么圆心O的位置有什么特点?圆心0在∠ABC的平分线上。

2.如图2,如果⊙O与△ABC的内角∠ABC的两边相切,且与内角∠ACB的两边也相切,那么此⊙O的圆心在什么位置?圆心O在∠ABC与∠ACB的两个角的角平分线的交点上.3.如何确定一个与三角形的三边都相切的圆的圆心与半径的长?作出两个内角的平分线,两条内角平分线相交于一点,这点就是符合条件的圆心,过圆心作一边的垂线,垂线段的长是符合条件的半径.4.你能作出几个与一个三角形的三边都相切的圆?只能作一个,因为三角形的三条内角平分线相交,且只有一个交点.作法:1. 作∠B、∠C的平分线BM和CN,交点为I.2.过点I作ID⊥BC,垂足为D.3.以I为圆心,ID为半径作⊙I. ⊙I就是所求的圆.识记:1. 请类比三角形的外接圆给三角形的内切圆下个定义:和三角形各边都相切的圆叫做三角形的内切圆。

三角形内切圆求半径公式

三角形内切圆求半径公式

三角形内切圆求半径公式咱们先来说说三角形内切圆求半径公式这个事儿哈。

咱都知道,在数学的世界里,三角形那可是个常见的“主角”。

而这三角形内切圆呢,就像是藏在三角形里面的一个小秘密宝藏。

那怎么才能找到开启这个宝藏的钥匙,也就是求出内切圆的半径呢?这就得提到一个神奇的公式:r = (S)/ p ,这里的 r 就是内切圆的半径,S 呢是三角形的面积,p 是三角形的半周长。

我给您讲讲我之前遇到的一件事儿,那时候我在给学生们讲这个知识点。

有个小同学瞪着大眼睛,一脸迷茫地问我:“老师,这公式怎么来的呀?”我当时就想,得让他们明白这里面的道理,不能死记硬背。

我就拿出了一张纸,画了一个三角形,然后一点点地给他们解释。

我先把三角形的三条边的切点连起来,把三角形分成了三块。

这三块呀,分别以三角形的三条边为底,内切圆的半径为高。

然后我就说:“同学们,你们看,这三角形的面积 S 是不是就等于这三块小三角形的面积之和呀?”他们都点头。

我接着说:“那每一块小三角形的面积就是 1/2 乘以底乘以高,也就是 1/2 ×边长 × r 。

”这么一解释,他们好像有点开窍了。

然后我再带着他们把整个公式推导了一遍,看着他们恍然大悟的表情,我心里那叫一个满足。

咱们再回到这个公式。

知道了这个公式,那用处可大了。

比如说,给您一个三角形,告诉您三条边的长度,您先算出半周长 p ,再算出面积 S ,就能轻松求出内切圆的半径 r 啦。

在实际解题的时候,有时候题目不会直接告诉您三角形的面积和边长,这就得靠您灵活运用其他的知识来先求出这些条件。

这就像是玩一个解谜游戏,每一个条件都是一个线索,您得把它们都串起来,才能找到最终的答案。

比如说,给您一个直角三角形,两条直角边分别是 3 和 4 ,那斜边就是 5 。

这时候先算出三角形的面积,就是 1/2 × 3 × 4 = 6 。

半周长 p 就是(3 + 4 + 5)÷ 2 = 6 。

三角形的内切圆 教案

三角形的内切圆 教案

浙教版数学九年级下册2.3三角形的内切圆教学设计课题 2.3三角形的内切圆单元第二单元学科数学年级九年级学习目标(一)知识目标1.通过作图和探索,体验并理解三角形内切圆的性质;2.通过作图操作,经历三角形内切圆的产生过程;3.类比三角形内切圆与三角形外接圆,进一步理解三角形内心和外心所具有的性质.(二)能力训练点培养学生解决实际问题的能力和应用数学的意识.(三)情感目标通过作图操作,经历三角形内切圆的产生过程,培养探索精神和合作意识.重点三角形内切圆的概念和画法.难点三角形内切圆有关性质的应用.教学过程教学环节教师活动学生活动设计意图导入新课创设情景:问题 1.这条美丽的花边图案主要是由哪些几何图形组成的?它们有着怎样的位置关系?问题 2. 从一块三角形的材料上裁下一块圆形的用料,怎样才能使圆的面积尽可能最大呢?(1)当裁得的圆最大时,圆与三角形的各边有什么位置关系?(2)与三角形的一个角的两边都相切的圆的圆心在哪里?(3)如何确定这个圆的圆心和半径?问题3.作圆,使它和已知三角形的各边都相切教师示范作图1.积极思考,主动抢答2..独立思考,组内交流;动手操作,认真探索.1.设置问题情景,引导学生进入学习状态,充分调动学生学习的新知的兴趣.2.通过动手操作经历知识的探索过程,讲授新课 1.探究概念:(1)定义:与三角形三边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.(2)三角形的内心是三角形的三条角平分线的交点,它到三边的距离相等.(3)连接内心和三角形的顶点平分三角形的这个内角.(4)内心在三角形内部.2.辨析引导学生采用观察、类比的方法,理解三角形的内切圆及圆的外切三角形的概念,并于三角形的外接圆与圆的内接三角形概念相比较.3.讲解例题例1 如图,等边三角形ABC的边长为3cm,求△ABC的内切圆的半径.提醒:常用的辅助线是连接半径例2 已知:如图,⊙O 是△ABC 的内切圆,1.合作交流,探索概念.2.组内合作,、组间交流,进一步理解概念,3.积极参加学习活动中,探索新知的应用.并思考总结每种题型的解题思路.1.学习有关概念2.辨析内心与外心.3.为学生作示范切点分别为C,E,F, 设△ABC 的周长为l,求证:AE+BC=12l,例3 已知:点I是△ABC的内心,AI交BC于D,交外接圆于E.求证:EB=EI=EC注意:1. 任何一个三角形可作一个内切圆,内心都在三角形的内部;在以后解有关正多边形的问题时,常常要用到这些性质.2.三角形的内切圆中,切点与圆心的连线既是圆的半径,又垂直于边,同时三角形的边长可利用切线长定理,还可利用面积公式在三角形的三边与内切圆半径之间建直角三角形.随堂演练 1.如图,⊙O是△ABC的内切圆,D、E、F是切点,∠A=50°,∠C=60°,则∠DOE=()A.70°B.110°C.120°D.130°组内合作,人从过关,分组展示巩固、应用新学的知识.2.如图,⊙O是△ABC的内切圆,则点O 是的()A.三条边的垂直平分线的交点B.三角形平分线的交点C. 三条中线的交点D.三条高的交点3.如图,在△ABC中,∠A=66°,点I是内心,则∠BIC的大小为()A.114°B.122° C.123°D.132°拓展提升如图,⊙O是Rt△ABC的内切圆,∠C=90°,AO 的延长线交BC于点D,若AC=6,CD=2,则⊙O的半径是()A.1B.1.5C.2D.2.5 自学、互学、组内合作,组间竞争,共同进步,提升能力.进一步巩固新学的知识.课堂小结 1.内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.2任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.3三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.认真回顾,思考并积极回答,系统化本节知识要点板书 1.内切圆的有关概念:2任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.3三角形内心的性质:给学生留下学习的参照。

数学教案-三角形的内切圆-三角形内切圆半径公式

数学教案-三角形的内切圆-三角形内切圆半径公式

名称
多边形叫做圆的外切多边形.
第2页共4页
4、概念理解:
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
交于点 D
引导学生理解三角形的内切圆及圆的外切三角形的与圆的内接三角形概念相比较,以加深对这四个概念的理解.使
分析:从条件想,E 是内心,则 E 在∠A 的平分线上,同时也在∠ABC
学生弄清“内〞与“外〞、“接〞与“切〞的含义.“接〞与“切〞是说 的平分线上,考虑连结 BE,得出∠3=∠4.
明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接〞;
从结论想,要证 DE=DB,只要证明 BDE 为等腰三角形,同样考虑到
三角形的边都与圆相切叫做“切〞.
连结 BE.于是得到下述法.
的圆可以作一个且只可以作出一个.
〔二〕类比联想,学习新学问.
〔1〕到三边的距离相等;
1、概念:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的
〔2〕OA、OB、OC 分别平分∠BAC、∠ABC、∠ACB;
圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.
〔3〕内心在三角形内部.
2、类比:
3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个
〔四〕小结
第3页共4页
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
1.教师先向学生提出问题:这节课学习了哪些概念?怎样作已知三角 的方法找出圆心,若能请你度量出圆的半径〔精确到 0.1cm〕;
形的内切圆?学习时互该留意哪些问题?
〔2〕计算出最大的圆形纸片的半径〔要求精确值〕.
2.学生回答的基础上,归纳总结:
圆的圆心,交点到任意一边的距离是圆的半径.

沪科版数学九年级下册24.5《三角形的内切圆》教学设计

沪科版数学九年级下册24.5《三角形的内切圆》教学设计

沪科版数学九年级下册24.5《三角形的内切圆》教学设计一. 教材分析《三角形的内切圆》是沪科版数学九年级下册第24.5节的内容。

本节内容主要介绍三角形的内切圆的概念、性质及其在几何中的应用。

通过本节的学习,学生能够理解三角形的内切圆的定义,掌握其基本性质,并能运用内切圆的知识解决一些几何问题。

二. 学情分析九年级的学生已经学习了三角形的相关知识,对三角形的性质有一定的了解。

但是,对于三角形的内切圆这一概念,学生可能比较陌生。

因此,在教学过程中,需要引导学生从已知的三角形性质出发,逐步引入内切圆的概念,并引导学生探索内切圆的性质。

三. 说教学目标1.知识与技能:学生能够理解三角形的内切圆的概念,掌握其基本性质,并能运用内切圆的知识解决一些几何问题。

2.过程与方法:通过观察、操作、猜想、验证等过程,学生能够培养自己的空间想象能力和几何思维能力。

3.情感态度与价值观:学生能够积极参与课堂讨论,培养自己的合作意识和团队精神。

四. 说教学重难点1.教学重点:三角形的内切圆的概念及其性质。

2.教学难点:内切圆的性质的证明和运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、探究学习法等教学方法,引导学生主动参与课堂讨论,提高学生的学习兴趣和积极性。

2.教学手段:利用多媒体课件、几何画板等教学手段,直观地展示三角形的内切圆的性质,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过复习三角形的相关知识,引导学生回顾已学的三角形性质,为新课的学习做好铺垫。

2.探究内切圆的概念:通过展示几何画板上的三角形,引导学生观察和操作,让学生自己发现三角形的内切圆的性质,并引导学生总结出内切圆的定义。

3.证明内切圆的性质:引导学生运用已学的三角形性质,证明内切圆的性质,如切线定理、角平分线定理等。

4.运用内切圆的知识解决几何问题:通过一些具体的例题,引导学生运用内切圆的知识解决一些几何问题,如求三角形的面积、证明几何定理等。

《三角形的内切圆》 讲义

《三角形的内切圆》 讲义

《三角形的内切圆》讲义一、三角形内切圆的定义在一个三角形中,如果一个圆与三角形的三边都相切,那么这个圆就被称为这个三角形的内切圆。

想象一下,我们有一个三角形,就像一个三角形的蛋糕。

现在我们要在这个蛋糕内部放一个圆,使得这个圆能够刚好触碰到三角形的三条边,而且与这三条边都相切。

这个圆就是三角形的内切圆。

二、三角形内切圆的性质1、圆心三角形内切圆的圆心被称为内心,内心是三角形三条角平分线的交点。

这意味着从内心到三角形三边的距离相等。

为什么是角平分线的交点呢?我们可以这样理解,角平分线上的点到角两边的距离相等。

而内切圆的圆心到三角形三边的距离都相等,所以内心必然在三条角平分线的交点上。

2、半径内切圆的半径被称为内切半径,我们通常用字母 r 来表示。

内切半径的长度可以通过三角形的面积和周长来计算。

假设三角形的三条边分别为 a、b、c,周长为 p(p = a + b + c),面积为 S,那么内切圆的半径 r = S / p 。

3、与三角形的关系内切圆与三角形的边相切,这就产生了一些特殊的线段和角度关系。

例如,我们连接内心与三角形的三个顶点,会将三角形分成三个小三角形。

这三个小三角形的面积之和就等于原来大三角形的面积。

三、三角形内切圆的作图方法接下来,我们一起学习如何作一个三角形的内切圆。

步骤如下:1、作三角形的两条角平分线,它们的交点就是内心。

2、过内心作三角形任意一边的垂线,这条垂线的长度就是内切圆的半径。

3、以内心为圆心,以内切圆的半径为半径作圆,这个圆就是三角形的内切圆。

在作图的过程中,要保证角平分线的准确性和垂线的垂直性,这样才能作出精确的内切圆。

四、三角形内切圆的应用三角形的内切圆在数学和实际生活中都有广泛的应用。

在数学问题中,我们可以利用内切圆的性质来求解三角形的面积、边长等问题。

例如,已知一个三角形的三条边分别为 6、8、10,求其内切圆的半径。

首先,我们可以判断这是一个直角三角形(因为 6²+ 8²= 10²)。

内切圆三角形公式(二)

内切圆三角形公式(二)

内切圆三角形公式(二)内切圆三角形公式1. 内切圆半径公式内切圆半径公式是指在一个三角形中,内切圆的半径与三角形的三边之间存在一定的关系。

内切圆半径R可以通过以下公式计算:R = A / S其中,A表示三角形的面积,S表示三角形的半周长。

示例假设存在一个边长分别为a、b、c的三角形,半周长为s,面积为A。

根据公式我们可以得到:R = A / s2. 内切圆心公式内切圆心公式是指在一个三角形中,内切圆的圆心与三角形的三边之间存在一定的关系。

内切圆的圆心可以通过以下公式计算:Sx = (a * x1 + b * x2 + c * x3) / (a + b + c) Sy = (a * y1 + b * y2 + c * y3) / (a + b + c)其中,x1、x2、x3表示三角形的三个顶点在x轴上的坐标,y1、y2、y3表示三角形的三个顶点在y轴上的坐标。

示例假设存在一个三角形,其中的顶点分别为A(x1, y1)、B(x2, y2)、C(x3, y3)。

根据公式我们可以得到内切圆的圆心坐标为:Sx = (a * x1 + b * x2 + c * x3) / (a + b + c) Sy = (a *y1 + b * y2 + c * y3) / (a + b + c)3. 内切圆的切点公式内切圆的切点公式是指在一个三角形中,内切圆与三个边的切点之间存在一定的关系。

内切圆与三个边的切点可以通过以下公式计算:Tx1 = (a * x1 + R * x4) / (a + R) Ty1 = (a * y1 + R * y4) / (a + R)Tx2 = (b * x2 + R * x5) / (b + R) Ty2 = (b * y2 + R * y5) / (b + R)Tx3 = (c * x3 + R * x6) / (c + R) Ty3 = (c * y3 + R * y6) / (c + R)其中,R表示内切圆的半径,x4、y4、x5、y5、x6、y6分别表示三角形的三个顶点与内切圆的切点在x轴和y轴上的坐标。

数学教案-三角形的内切圆

数学教案-三角形的内切圆

数学教案-三角形的内切圆一、教学目标1.理解三角形的内切圆的定义及性质。

2.掌握三角形内切圆的作法及相关的定理。

3.能够运用内切圆的性质解决实际问题。

二、教学重难点重点:三角形的内切圆的定义、性质及作法。

难点:三角形内切圆性质的应用。

三、教学过程一、导入1.回顾三角形的外接圆性质,引导学生思考:三角形是否还有其他特殊的圆与之相关?2.引导学生观察三角形内部的圆,提出内切圆的概念。

二、新课讲解1.定义三角形的内切圆是指一个圆与三角形的三边都相切,这个圆的圆心称为三角形的内心。

2.性质性质1:三角形的内切圆的圆心是三角形三边垂直平分线的交点。

性质2:三角形的内切圆半径等于三角形的面积除以半周长。

性质3:三角形的内切圆与三角形的三边相切,切点分别是三边的中垂线与三边的交点。

3.作法作法1:作出三角形的三边垂直平分线,交点即为内心。

作法2:以内心为圆心,半径为内切圆半径,作内切圆。

4.应用应用1:求解三角形面积。

通过内切圆半径和三角形的半周长,可以求解三角形的面积。

应用2:求解三角形边长。

已知三角形的内切圆半径和面积,可以求解三角形的边长。

三、案例分析1.案例一:已知三角形ABC,内切圆半径为r,求三角形ABC的面积。

解析:根据内切圆的性质,可以得到三角形ABC的半周长p,进而求解三角形的面积S=√[p(pa)(pb)(pc)]。

2.案例二:已知三角形ABC,边长分别为a、b、c,求三角形ABC 的内切圆半径。

解析:根据海伦公式,可以求解三角形的面积S,进而求解内切圆半径r=S/p。

四、课堂小结2.强调内切圆在求解三角形面积和边长中的应用。

五、课后作业1.已知三角形ABC,内切圆半径为r,求三角形ABC的面积。

2.已知三角形ABC,边长分别为a、b、c,求三角形ABC的内切圆半径。

3.证明:三角形的内切圆半径等于三角形的面积除以半周长。

六、教学反思本节课通过讲解三角形的内切圆的定义、性质、作法及应用,使学生掌握了内切圆的相关知识。

三角形的内切圆半径公式

三角形的内切圆半径公式

《三角形的内切圆半径公式》
1、对于任意一个三角形,其内切圆的半径等于外接圆直径减去内切圆直径。

2、在解析几何中,以三角形内切圆为顶点的三角形面积,等于两条高线与该三角形面积的比值(S\/ A);以边角为顶点的三角形面积,是以同样大小的外接圆面积(πA)再除以同样大小的内切圆面积(πr)。

当S\/ A>3时,三角形面积大于内切圆面积, S\/ A<3时,三角形面积等于内切圆面积.在这些情况下,都存在唯一的最大面积。

[1]
1、内切圆半径=外接圆半径-
2、内切圆面积=外接圆面积-4、外接圆面积=2倍底乘以高÷2。

直角三角形内切圆半径公式推导

直角三角形内切圆半径公式推导

直角三角形内切圆半径公式推导
直角三角形的内切圆半径公式:r=(a+b-c)/2推导如下:
设Rt△ABC中,∠C=90度,BC=a,AC=b,AB=c内切圆圆心为O,三个切点为D、E、F,连接OD、OE
显然有OD⊥AC,OE⊥BC,OD=OE
所以四边形CDOE是正方形
所以CD=CE=r
所以AD=b-r,BE=a-r
因为AD=AF,CE=CF
所以AF=b-r,CF=a-r
因为AF+CF=AB=r
所以b-r+a-r=r
内切圆半径r=(a+b-c)/2
即内切圆直径L=a+b-c
直角三角形的判定方法:
判定1:有一个角为90°的三角形是直角三角形。

判定2:一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形。

判定3:若a的平方+b的平方=c的平方,则以a、b、c为边的三角形是以c 为斜边的直角三角形(勾股定理的逆定理)。

判定4:若一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形。

判定5:两个锐角互余的三角形是直角三角形。

浙教版数学九年级下册2.3《三角形的内切圆》教案1

浙教版数学九年级下册2.3《三角形的内切圆》教案1

浙教版数学九年级下册2.3《三角形的内切圆》教案1一. 教材分析《三角形的内切圆》是浙教版数学九年级下册第2.3节的内容,本节主要让学生了解三角形的内切圆的概念,性质及其在几何中的应用。

通过学习,学生能更好地理解三角形的内心,提高解题能力。

二. 学情分析九年级的学生已经学习了圆的基本概念和性质,对几何图形的认知有一定的基础。

但是,对于三角形的内切圆这一概念,学生可能较为陌生,需要通过实例和讲解让学生逐步理解和掌握。

三. 教学目标1.了解三角形的内切圆的定义及其性质。

2.学会运用三角形的内切圆解决相关几何问题。

3.提高学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.三角形的内切圆的定义及其性质。

2.运用三角形的内切圆解决实际问题。

五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生探究、讨论,激发学生的学习兴趣,提高学生解决问题的能力。

六. 教学准备1.课件、教案。

2.三角板、直尺、圆规等几何画图工具。

3.相关例题和练习题。

七. 教学过程1. 导入(5分钟)通过复习圆的定义和性质,引导学生思考:圆与三角形有什么联系?进而引入三角形的内切圆的概念。

2. 呈现(15分钟)利用课件展示三角形的内切圆的定义和性质,通过几何画图工具,演示内切圆的画法及其与三角形的关系。

同时,给出相关例题,让学生理解并掌握内切圆的性质。

3. 操练(15分钟)学生分组讨论,运用三角形的内切圆的性质解决实际问题。

教师巡回指导,解答学生的疑问。

4. 巩固(10分钟)教师给出一些有关三角形的内切圆的练习题,让学生独立完成,巩固所学知识。

5. 拓展(10分钟)引导学生思考:内切圆与三角形的内心有什么关系?内切圆在实际问题中的应用。

可以给出一些相关的几何问题,让学生探讨。

6. 小结(5分钟)教师引导学生总结本节课所学内容,让学生明确三角形的内切圆的定义、性质及其应用。

7. 家庭作业(5分钟)布置一些有关三角形的内切圆的练习题,让学生课后巩固所学知识。

已知三角形三边求内切圆半径公式

已知三角形三边求内切圆半径公式

已知三角形三边求内切圆半径公式
在数学中,内切圆是指与三角形的三条边都相切的圆。

要求我们根据已知三角形的三条边来求解内切圆的半径公式。

下面,我将为大家详细介绍这个公式。

我们假设已知三角形的三边分别为a、b和c。

我们可以利用海伦公式来求得三角形的面积S。

海伦公式是根据三角形的三边长来计算面积的公式,它的表达式为:
S = √[s(s-a)(s-b)(s-c)]
其中,s是三边之和的一半,即s = (a+b+c)/2。

接下来,我们可以利用三角形的面积公式 S = r * p,其中r表示内切圆的半径,p表示三角形的半周长,即p = (a+b+c)/2。

将上述两个公式联立,我们可以得到内切圆的半径公式:
r = √[(s-a)(s-b)(s-c) / s]
通过这个公式,我们可以根据已知三角形的三边长来求得内切圆的半径。

这个公式的推导过程相对简单,但需要注意的是,当三角形的三边长都为正数时,公式才成立。

总结一下,已知三角形的三边长,我们可以通过内切圆的半径公式 r = √[(s-a)(s-b)(s-c) / s] 来求解内切圆的半径。

这个公式在实际问题
中具有很重要的应用,可以帮助我们计算三角形的内切圆相关的参数。

希望通过本文的介绍,大家对内切圆的半径公式有了更深入的理解。

三角形的内切圆 优课教案

三角形的内切圆 优课教案

三角形的内切圆【教学目标】1.使学生了解尺规作三角形的内切圆的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;2.应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;3.激发学生动手、动脑主动参与课堂教学活动。

【教学重点】三角形内切圆的作法和三角形的内心与性质。

【教学难点】三角形内切圆的作法和三角形的内心与性质。

【教学过程】一、提出问题(一)提出问题:如图,你能否在△ABC中画出一个圆?画出一个最大的圆?想一想,怎样画?(二)分析、研究问题:让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义。

(三)解决问题:例1.作圆,使它和已知三角形的各边都相切。

引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法。

提出以下几个问题进行讨论:1.作圆的关键是什么?2.假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件?3.这样的点I应在什么位置?4.圆心I确定后半径如何找。

完成这个题目后,启发学生得出如下结论:和三角形的各边都相切的圆可以作一个且只可以做出一个。

二、类比联想,学习新知识。

(一)概念:与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的=(分析:从条件想,E是内心,则E在∠A的平分线上,同时也在∠ABC的平分线上,考虑连结BE,得出∠3=∠4。

从结论想,要证DE=DB,只要证明BDE为等腰三角形,同样:考虑到连结BE。

于是得到下述法。

证明:连结BE。

E是△ABC的内心。

又∵∠1=∠2,∴∠1+∠3=∠4+∠5∴∠BED=∠EBD∴DE=DB练习分析做出已知的锐角三角形、直角三角形、钝角三角形的内切圆,并说明三角形的内心是否都在三角形内。

四、小结(一)教师先向学生提出问题:这节课学习了哪些概念?怎样作已知三角形的内切圆?学习时应该注意哪些问题?(二)学生回答的基础上,归纳总结:1.学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念。

25.6三角形内切圆教案

25.6三角形内切圆教案

25.6《三角形圆内切圆》教案授课班级:九年级(1)班授课人:丁超授课时间:2013年12月24日上午第三节一、学情分析:本节课是在学习了直线与圆的三种位置关系、直线与圆相切的判定性质的基础上的,是切线的进一步运用,本节课涉及到三角形的角平分线,过直线外一点作直线的垂线,切线的性质与判定,等知识,动手能力强。

并且内心与外心做法、性质容易混淆,因此教学中一定让学生亲自动手操作。

二、教学目标:(一)知识和技能1、让学生学会作三角形的内切圆。

2、理解三角形内切圆的有关概念。

3、掌握三角形的内心、外心的区别。

4、会做关于内心的一些角度计算,会计算直角三角形的内切圆的半径。

(二)过程和方法:通过作图操作,经历三角形内切圆的产生过程,通过作图和探索,体验并理解三角形内切圆的性质。

应用类比的思想方法研究内切圆逐步培养学生研究问题的能力。

(三)情感态度和价值观:通过作图、操作、合作探究培养学生科学的学习方法和集体主义精神,和正确的世界观。

三、教学重难点:1、重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一.2、难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好。

四、教学方法:1、在教学中,组织学生自己画图、类比、分析进行自主学习,合作探究,深刻理解三角形内切圆的概念及内心的性质。

2、在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学。

五、教具准备:制作课件、三角板、圆规。

六、教学过程(一)知识回顾1、确定一个圆的位置与大小的条件是什么?2、叙述角平分线的性质与判定。

3、三角形外接圆和圆内接三角形。

4、圆的切线长定理。

(二)新课引入三角形的外接圆在实际中很有用,但还有用它不能解决的问题.如图:是一块三角形木料,木工师傅要从中裁下一块圆形用料,怎样才能使裁下的圆的面积尽可能大呢?(三)新课讲解:探究:三角形内切圆的作法(思考下列问题?) 1.如图,若⊙O 与∠ABC 的两边相切,那么圆心O 的位置有什么特点?2.如图2,如果⊙O 与△ABC 的内角∠ABC 的两边相切,且与内角∠ACB 的两边也相切,那么此⊙O 的圆心在什么位置?ABC试一试:你能画出一个三角形的内切圆吗?(找学生上黑板演示)作法(找学生口答) 3 .三角形内切圆和圆外切三角形(1)概念:三角形内切圆、圆外切三角形、内心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形内切圆半径公式_数学教案-三角形的内切圆
1、教材分析
(1)知识结构
(2)重点、难点分析
重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一.
难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好.
2、教学建议
本节内容需要一个课时.
(1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;
(2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学.
教学目标:
1、使学生了解尺规作三角形的内切圆的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;
2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;
3、激发学生动手、动脑主动参与课堂教学活动.
教学重点:
三角形内切圆的作法和三角形的内心与性质.
教学难点:
三角形内切圆的作法和三角形的内心与性质.
教学活动设计
(一)提出问题
1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个最大的圆?想一想,怎样画?
2、分析、研究问题:
让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义.
3、解决问题:
例1 作圆,使它和已知三角形的各边都相切.
引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法.
提出以下几个问题进行讨论:
①作圆的关键是什么?
②假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件?
③这样的点I应在什么位置?
④圆心I确定后半径如何找.
A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成.
完成这个题目后,启发学生得出如下结论:和三角形的各边都相切的圆可以作一个且只可以作出一个.
(二)类比联想,学习新知识.
1、概念:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.
2、类比:
名称
确定方法
图形
性质
外心(三角形外接圆的圆心)
三角形三边中垂线的交点
(1)OA=OB=OC;
(2)外心不一定在三角形的内部.
内心(三角形内切圆的圆心)
三角形三条角平分线的交点
(1)到三边的距离相等;
(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;
(3)内心在三角形内部.
3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的
外切多边形.
4、概念理解:
引导学生理解三角形的内切圆及圆的外切三角形的概念,并与三角形的外接圆与圆的
内接三角形概念相比较,以加深对这四个概念的理解.使学生弄清“内”与“外”、“接”与“切”的含义.“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都
在圆上,叫做“接”;三角形的边都与圆相切叫做“切”.
(三)应用与反思
例2 如图,在△ABC中,∠ABC=50°,∠ACB=75°,点O是三角形的内心.
求∠BOC的度数
分析:要求∠BOC的度数,只要求出∠OBC和∠0CB的度数之和就可,即求∠l十∠3
的度数.因为O是△ABC的内心,所以OB和OC分别为∠ABC和∠BCA的平分线,于是有
∠1十∠3=∠ABC十∠ACB,再由三角形的内角和定理易求出∠BOC的度数.
解:引导学生分析,写出解题过程
例3 如图,△ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D
求证:DE=DB
分析:从条件想,E是内心,则E在∠A的平分线上,同时也在∠ABC的平分线上,考虑连结BE,得出∠3=∠4.
从结论想,要证DE=DB,只要证明BDE为等腰三角形,同样考虑到连结BE.于是得
到下述法.
证明:连结BE.
E是△ABC的内心
又∵∠1=∠2
∠1=∠2
∴∠1+∠3=∠4+∠5
∴∠BED=∠EBD
∴DE=DB
练习分析作出已知的锐角三角形、直角三角形、钝角三角形的内切圆,并说明三角
形的内心是否都在三角形内.
(四)小结
1.教师先向学生提出问题:这节课学习了哪些概念?怎样作已知三角形的内切圆?学
习时互该注意哪些问题?
2.学生回答的基础上,归纳总结:
1学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外
切多边形的概念.
2利用作三角形的内角平分线,任意两条角平分线的交点就是内切圆的圆心,交点到
任意一边的距离是圆的半径.
3在学习有关概念时,应注意区别“内”与“外”,“接”与“切”;还应注意“连
结内心和三角形顶点”这一辅助线的添加和应用.
(五)作业
教材P115习题中,A组13,10,11,12题;A层学生多做B组3题.
探究活动
问题:如图1,有一张四边形ABCD纸片,且AB=AD=6cm,CB=CD=8cm,∠B=90°.
(1)要把该四边形裁剪成一个面积最大的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径(精确到0.1cm);
(2)计算出最大的圆形纸片的半径(要求精确值).
提示:(1)由条件可得AC为四边形似的对称轴,存在内切圆,能用折叠的方法找出
圆心:
如图2,①以AC为轴对折;②对折∠ABC,折线交AC于O;③使折线过O,且EB与
EA边重合.则点O为所求圆的圆心,OE为半径.
(2)如图3,设内切圆的半径为r,则通过面积可得:6r+8r=48,∴r=.数学教案-三角形的内切圆
感谢您的阅读,祝您生活愉快。

相关文档
最新文档