油气管道的杂散电流腐蚀与防护
油气管道的杂散电流腐蚀防护措施
![油气管道的杂散电流腐蚀防护措施](https://img.taocdn.com/s3/m/3b376570f011f18583d049649b6648d7c1c70884.png)
油气管道的杂散电流腐蚀防护措施发布时间:2022-08-25T01:26:07.985Z 来源:《工程管理前沿》2022年4月第8期作者:王川洪刘辉金垫庆谭红熊静[导读] 文章阐述了杂散电流产生的机理、特点及其对输油管道的作用,并结合国外有关规范,王川洪刘辉金垫庆谭红熊静中国石油西南油气田分公司重庆气矿重庆渝北 401120摘要:文章阐述了杂散电流产生的机理、特点及其对输油管道的作用,并结合国外有关规范,详细阐述了杂散电流的扰动来源、输油管线的安全间隔等方面的内容,并给出了相应的预防措施。
关键词:油气管道;杂散电流;腐蚀保护引言随着我国经济的迅速发展,各个产业对能源的需求量也在日益增长,国内天然气输送管道里程也在逐年增加。
随着城市化建设的加快,轨道交通、电力设施等与油气输送管道同处一个区域时,杂散电流干扰尤为严重,加快管道腐蚀速率,严重时造成管道穿孔、失效,严重影响管道安全运行,拒不完全统计,油气输送管道中80%以上的故障与杂散电流相关。
1.杂散电流干扰腐蚀的原理杂散电流的主要来源是阳极保护装置中的阳极层等。
在长距离输送管线中,由于介质的阻值比较低,所以杂散性的电流会经过管线。
当电力通过地下管线时,会有一个很明显的泄漏,通过接地金属管,再回到电力供应,这种泄漏的散逸电流被称为杂散。
从原理上来看,1 A的杂散流可以在一年内对管线造成9公斤的侵蚀,而在实际情况下,这些管道造成的杂散流可以达到几十,甚至数百。
在外溢区域较少时,管内的局部杂散流将加速侵蚀,从而使厚度大于8 mm的管线出现锈蚀和穿孔。
在埋地石油天然气管线中,由于外层覆盖物的损坏,其破坏部位的耐蚀性明显降低,所以在地下管线的土壤中,往往会出现杂散电流的侵蚀。
另外,由于高压直流输电线路的存在,对管线产生了很大的冲击。
尽管交流电流对管道的腐蚀性要小于直流电流的百分之一,但高压电线和地下管道一般都会使用并行的方法,所以静电场和磁场对管道的不利影响不容忽视[1]。
油气管道的杂散电流腐蚀与防护
![油气管道的杂散电流腐蚀与防护](https://img.taocdn.com/s3/m/34ddd464f4335a8102d276a20029bd64783e62a4.png)
油气管道的杂散电流腐蚀与防护随着我国能源和交通工业的发展,我国油气管道与电力线路、电气化铁路的里程迅速增加。
由于地理位置的限制,在油气管道与电力线路、电气化铁路的设计和建设过程中不可避免地出现了并行敷设的情况。
由电力线路、电气化铁路产生的杂散电流会对油气管道产生巨大的危害。
辽河油田到XX化肥厂的天然气管道在投产14个月后就出现多起杂散电流引起的腐蚀穿孔事故,被迫长时间停产,开挖大修。
XX煤气公司在某电厂附近的一段输气管道受电厂杂散电流的影响,也多次出现穿孔泄漏,严重威胁管道和人身的安全。
由此可见,杂散电流对油气管道会产生强烈腐蚀作用。
因此,开展杂散电流引起的油气管道的腐蚀与防护研究,对保障油气管道的安全运行具有十分重要的意义。
1杂散电流的形成杂散电流是指在规定电路或意图电路之外流动的电流,又称迷走电流[1]。
杂散电流主要表现为直流电流、交流电流和大地中自然存在的地电流3种状态,且各自具有不同的特点。
直流杂散电流主要来源于直流电解设备、电焊机、直流输电线路;交流杂散电流主要来源于交流电气化铁路、输配电线路系统,通过阻性、感性和容性耦合在相邻的管道或金属体中产生交流杂散电流,但交流杂散电流对铁腐蚀较轻微,一般为直流腐蚀量的1%;由于地磁场的变化感应出来的地杂散电流,一般情况下只有约2μA/m2,从腐蚀角度看并不重要。
以电气化铁路车辆直流供电牵引系统产生的直流杂散电流是造成油气管道杂散电流腐蚀的主要原因。
在电气化铁路车辆直流供电牵引系统巾,列车所需要的电流由牵引变电所提供,通过架空线向列车供电,然后经行走轨回流至牵引变电所。
理想情况下行走轨电阻为0,行走轨对大地的泄漏电阻无穷大,此时经行走轨回流的电流等于牵引电流,即所有的电流都经行走轨回流至牵引变电所。
但实际上行走轨的电阻不为0,当有电流通过时就形成了电位差,并且行走轨对大地的泄漏电阻也不会为无穷大,这就不可避免地造成了部分电流不经行走轨回流,而是流入大地,然后通过大地回流至牵引变电所。
燃气管道杂散电流腐蚀及防护
![燃气管道杂散电流腐蚀及防护](https://img.taocdn.com/s3/m/ea324d7411661ed9ad51f01dc281e53a5802510f.png)
燃气管道杂散电流腐蚀及防护在燃气管道运行过程中,由于环境条件和管道使用维护等因素的不确定性,会导致管道表面产生一些杂散电流。
这些杂散电流的存在会给燃气管道带来一定的腐蚀风险,因此在燃气管道的设计、施工及运行过程中,需要考虑采取一些有效的措施,防止杂散电流对管道产生腐蚀损害。
本文将从杂散电流的产生机制、腐蚀机理以及防护措施三个方面进行阐述。
1. 杂散电流的产生机制燃气管道的杂散电流产生与周围环境及管道自身电化学池电位有关。
当管道连通另一电化学电位较低的构件或设施时,如果电位差超过一定值,就会产生杂散电流,从而引发管道腐蚀。
杂散电流可由线性和非线性两种方式产生。
1.1 线性杂散电流线性杂散电流主要受电源电位、管道电位和电路电阻的影响。
当电路中存在电位差,管道交流电阻和电位之间的电势差会产生电流,从而产生线性杂散电流。
其他因素如水分析、电解质浓度等也会影响杂散电流的大小。
1.2 非线性杂散电流非线性杂散电流往往是由高压直流线路通过电介质引起的,比如石油和天然气管道经过高压直流输电线路时就可能产生非线性杂散电流。
非线性杂散电流的幅度较大,可以对管道产生较大的腐蚀作用。
2. 腐蚀机理燃气管道在杂散电流的作用下,可能会发生如下几种腐蚀现象:2.1 金属腐蚀金属腐蚀是最为常见的一种腐蚀现象。
电流经过原本无需溶解的金属表面后,会发生电化学反应,并导致金属表面钝化层的破坏,随后金属的一部分物质就会溶解并脱落。
这样就会导致管道内部或外部的金属腐蚀。
2.2 极化腐蚀极化腐蚀是指金属表面在某些特定情况下,电化学反应速度升高而导致腐蚀的过程。
例如,在管道表面形成漏洞时,容易引起极化腐蚀。
2.3 应力腐蚀应力腐蚀是在金属表面承受着应力的情况下依然腐蚀的过程。
燃气管道由于其长期在应力状态下运行,如果存在杂散电流,则可能在管道表面形成多种应力,这就容易引起应力腐蚀。
2.4 脱化腐蚀脱化腐蚀则是指燃气管道表面物质溶解速度在电流作用下加快,这会导致管道内部物质脱落而形成腐蚀。
交流电气化铁路杂散电流对油气管道的腐蚀与防护
![交流电气化铁路杂散电流对油气管道的腐蚀与防护](https://img.taocdn.com/s3/m/3693380d90c69ec3d5bb7532.png)
交流电气化铁路杂散电流对油气管道的腐蚀与防护
司 顺
( 中铁 第 四 勘 察 设计 院 集 团 有 限公 司 电 化 处 武汉 406 ) 3 0 3
【 摘
要】 阐述 了交流 电气化铁 路产 生 的杂散 电流对埋地 油 气管 道腐蚀 的基 本原 理 , 分析 杂散 电流的特
扰 腐蚀 原理并采 取相应 的保护措 施 , 于保证 油气 对
管道 的安全运 行具有 十分 重要 的意义 。
扰, 在接地体周 围形成一个强大 的电场 , 生 电弧可 产 烧 穿管道 , 这种 情况 发生 的机率, f: 也是短 时间 I E, " E 的, 但是 电气化铁 路回流 时, 部分 电流流 入地中形成 杂散 电流 , 会对 管道 产生 阻性耦合干 扰 。 此外 , 由于
压和 电流 对 油气 管道 的危害 却不 可忽 视 。交 流 电 气化 铁路接 触 网采 用工 频单相 2 k 5 V供 电 , 触 网 接 中的电流流经机 车 的驱动 电机 后 , 一部分 电流将通
j 铡 轨 和
() 2 间歇干扰 : 电气 化铁路 附近 的管道上 , 在 因
感应而产 生的干扰 电压从 几伏 、 几十伏 , 一直到几百
输 电线路本 身强电流产生交变磁 场会对与之平行 的 管道 产生感 性耦合 干扰 。 交流 杂散 电流 通 过容性 、 阻性及 感性耦合 对相
1 杂散 电流的形成
杂散 电流 是指 在 规定 电路 或 意 图 电路 之外 流
动 的 电流 , 又称 迷走 电流 …。杂散 电流 主要表现 为
在 电磁影 响 下都 会对 电气化 铁路 附近 的埋地 金属
管 道构 成耦合干 扰 , 并在管 线上产 生感应 电位和 感 应 电流 , 而引起或 加 速管道 的腐 蚀 。 从 造 成交流 干扰 的原 因很 多 , 由于静 电场感应 会 产生容性耦合干扰 , 不过对于埋地管道 来说 , 大地是 良好 的静 电屏 蔽体 , 这种 原 因导致 的交流干扰 因素
油气管道的杂散电流腐蚀防护措施
![油气管道的杂散电流腐蚀防护措施](https://img.taocdn.com/s3/m/1068f4e3856a561252d36f5c.png)
维普资讯
唐 永祥 宋生奎 朱坤锋
油气管道 的杂散 电流腐 蚀防护措施
பைடு நூலகம்
腐 蚀 。杂散 电流来 自于 电气化 铁路 、有 轨 电车 、地 下 变 电所 ; 电缆 的漏 电、建筑物 的接 地装 置 等 。它 可 分为 直流 杂 散 电流和交 流杂散 电流 。 () MAF 2 ̄ KN0 一l8 3 9 2关于三 相高压 电力 系统和 单 线铁道牵 引系统 附近的管道设 备和运行标 准 规定 :
杂散 电流的流动过 程形成 了2 由外加 电位差建立 蚀 ,其 中 杂散 电流 造成 的 集 中腐 蚀 破 坏 后 果 非 常 严 个 的腐 蚀 电池 ,一个 是 电流流 出铁轨 进入 管道 处 ,铁 轨 重 。油气 管道 与 电气化铁 路 并行 时 ,会对 油气管道 产 是腐 蚀 电池 的 阳极 ,发 生腐 蚀 ,管 道 为 阴极 ,不 腐 生直 流或交流 电流腐蚀 【 3 J 。散流于 大地 中的电流对埋地 蚀 ;另一个 是 电流 流 出管 道返 回铁 轨处 ,这 时管道 是 钢质管道所产生的腐蚀称为杂散 电流腐蚀,又名干扰
国民经济 的快速 发展对 能 源和 交通提 出了更高 的 腐 蚀 电池 的 阳极 ,发生 腐 蚀 ,铁 轨 则 是 阴极 ,不 腐 给出 了管道 电位的变化 图,由图l 可判断 出管道 需求,我国油气管道与电力线路和动力牵引系统( 包括 蚀 。图 l 电气化铁路 ) 的里程 与 日俱增 ,由于地理 位置 的限制 , 腐 蚀 电池 的 阳 极 区 和 阴 极 区 以及 杂 散 电流 最 强 的 部 .5 在油气 管道 与 电力 线路 和 电气化铁 路 的设计 和建设 过 位 。通常没有杂散 电流时腐 蚀 电池两极 电位差仅 06V 程 中不可避 免的 出现 并行 敷设 的情 况 ,彼此 会产 生干 左 右 ,杂散 电流存在 时管地 电位 可达 8 ~9V,因此 , 扰和 影响 ,处理 不 当会对 油 气管道 产 生很大 的危 害 。 20 m,由于 电气化铁路等设施 的大规模建设 ,受到 00k 杂散 电流干扰 影响的管道 日益增多 ,其 中8%的腐蚀穿 0 孔事故 是 由杂散 电流 引起 的 ,位于 直 流 电气 化铁 路 附 近 的管道 ,严重 时半年 就 发生腐蚀 穿 孔 ,腐 蚀速 度大 于 l ~1mm/ 。资料表 明 ,对于 壁厚为 8 mm的钢 0 2 a ~9 质管道 ,快则几个 月就发生穿 孔… 。杂散 电流对 金属管 道 的强烈腐 蚀作 用 由此可见 。因此与 电气化 铁 路并行 敷设 油气管道 时 ,了解 电气 化铁 路对 管道 的影 响并采 取相 应的保 护措 施 ,对 于保 证油 气管道 的安 全运 行具
油气管道直流杂散电流的腐蚀与防护
![油气管道直流杂散电流的腐蚀与防护](https://img.taocdn.com/s3/m/2eaadf047cd184254b3535c2.png)
Ke r s sr y c re t o l a i ei e c ro i n d an d c re tp o e t n; r v n ie me u e y wo d : t u r n ; i g s pp l ; o r so ; r i e u n r t ci p e e t a r s a n o v s
13 0 ) 1 0 1 ( 宁石油化工大学油气储运工 程系 , 宁抚顺 辽 辽
摘 要 : 中较 全 面地 阐述 了直流 杂散 电流 对 埋地 金 属 管道 的腐 蚀 原 理 , 绍 了杂散 电流 对 埋 地金 文 介 属 管道 的腐蚀 特 点和排 流保 护 的方 法 , 并提 出防止 直流杂散 电流腐 日益 增 多 , 中大 部 分 的 其
L ann nvri fP to u & C e cl eh oo yF su 1 0 1 C ia io igU iesyo e l m t re h mi cn lg ,uh n13 0 , hn ) aT
Ab t a t T i a e x o n st e p n il fmea l ie i e or so a s d b ta u r n ,n r d c st e C r — sr c : h sp p re p u d h r cp e o tl cp p l s c ro in c u e y DC sry c re t i t u e h O O i i n o s n fau e o t l i ei e n h n d s r e h t o s o r i e u e t p oe t n a d p o s s t e me s r s a d i e t r fme a i pp l s a d t e e c b s t e me h d f d an d c r n r tc i n r p e h a u e n o l c n i o o
燃气管道杂散电流腐蚀及防护
![燃气管道杂散电流腐蚀及防护](https://img.taocdn.com/s3/m/6567e110ba68a98271fe910ef12d2af90242a8e7.png)
燃气管道杂散电流腐蚀与防护一、杂散电流干扰模式杂散电流是指设计范围外流入地面的直流电流,它来自直流的接地系统,如直流电气轨道、直流供电所接地极、电解电镀设备的接地、直流电焊设备及阴极保护系统等。
其中,以城市和矿区电机车为最甚。
它的干扰途径如图10-60所示。
从图中可以划分三种情况:1.直流供电站附近的管道属于阳极区,杂散电流从管道上流出,造成杂散电流电解。
2. 干涉段中间的管道属于极性交替区,杂散电流可能流入也可能流出。
当电流流出时,造成腐蚀。
3.电力机车附近的管道属于阴极区,杂散电流流入管道,它起着某种程度的阴极保护作用。
以上是一般规律。
实际上杂散电流干扰源是多中心的。
如矿区电机车轨道已形成网状,供电所很多,当多台机车运行时,会产生无序的地下电流。
作用在管道上的杂散电流干扰电位如图10-61所示。
由直流杂散电流引起的埋地钢质管道腐蚀称为干扰腐蚀。
因属电解腐蚀,所以有时也称电蚀。
这是管道腐蚀穿孔的主要原因之一。
例如:东北地区输油管道受直流干扰的约占5%,腐蚀穿孔事故原因的80%是由杂散电流引起的;北京地下铁路杂散电流腐蚀已经形成公害,引起了有关部门的重视。
随着阴极保护技术的推广应用,也会给地下带来大量的杂散电流。
如近些年来城市地下燃气管道给水管道、地下电缆等采用了外加电流保护,在它的阳极地床附近可能会造成阳极地电场干扰。
在被保护的管道(或电缆)附近可能会造成阴极电场的干扰。
其干扰形式如图10-62和图10-63所示。
干扰范围与阳极放电电流和阴极保护电流密度成正比。
当单组牺牲阳极输出电流大于100mA时,也应注意其干扰。
二、杂散电流腐蚀特性1.强度高、危害大埋地钢质管道在没有杂散电流时,只发生自然腐包蚀。
大部分属腐蚀原电池型。
腐蚀电池的驱动电位只有几百毫伏,而所产生的腐蚀电流只有几十毫安。
在土壤中的杂散电流腐蚀,则是电解电池原理。
即外来的直流电流或电位差,造成了土壤溶液中金属腐蚀。
其腐蚀量与杂散电流强度成正比,服从法拉第电解定律。
城市杂散电流对油气管道的影响与防护措施
![城市杂散电流对油气管道的影响与防护措施](https://img.taocdn.com/s3/m/d5d9e3603a3567ec102de2bd960590c69ec3d89e.png)
城市杂散电流对油气管道的影响与防护措施摘要:随着城市发展的快速推进,油气管道网络成为城市能源供应的重要组成部分。
然而,城市环境中存在着丰富的电气设备和电力线路,这使得油气管道面临着城市杂散电流的影响。
城市杂散电流对油气管道的正常运行产生了一系列的不利影响,包括腐蚀、电化学反应等。
因此,研究城市杂散电流对油气管道的影响,并提出相应的防护措施,具有重要的理论和实际意义。
本文通过对城市杂散电流的特点、油气管道的工作原理及杂散电流对其影响的分析,总结了城市杂散电流对油气管道的主要影响因素,并提出了一系列的防护措施,这些措施可以有效地减少城市杂散电流对油气管道的影响,保证其安全运行。
关键词:城市杂散电流;油气管道影响;防护措施;电化学腐蚀;电位异常;1. 引言1.1 研究背景和意义城市杂散电流对天然气油气管道的影响是天然气储运领域的一个重要问题。
由于城市化带来的复杂环境和各种建设设施的相互影响,产生的杂散电流往往会对油气管道的正常运行和安全性产生潜在的威胁。
首先,城市杂散电流对天然气油气管道的影响进行研究能够揭示其对管道腐蚀和老化的影响机制。
城市杂散电流会导致管道金属材料腐蚀和老化加速,降低管道的使用寿命。
研究杂散电流对腐蚀过程的影响,可以为制定相应的防护策略和维护措施提供理论基础。
其次,城市杂散电流对天然气油气管道的影响进行研究,能够评估管道安全风险,并为风险管控提供科学依据,可以为制定相应的防护措施和风险控制策略提供参考。
最后,研究城市杂散电流对天然气油气管道的影响,有助于完善相关技术和标准,提高天然气储运的安全性和可靠性。
1.2 国内外研究现状总结在国内,围绕城市杂散电流对天然气油气管道的影响进行的研究较少,但近年来随着天然气行业的快速发展,这一问题引起了更多的关注。
在国外,城市杂散电流对天然气油气管道的影响也受到了一定的关注,相关研究相对较为成熟,同时也逐渐形成了一些规范和标准。
国内外对于城市杂散电流对天然气油气管道的影响的研究还比较有限,但是随着天然气行业的发展,这一问题逐渐得到了更多的关注。
油气管道的杂散电流腐蚀保护措施
![油气管道的杂散电流腐蚀保护措施](https://img.taocdn.com/s3/m/7e99a30002020740be1e9bb8.png)
敷设油气管道时, 了解电 气化铁 路对管道的影响并采
取相应的保护措施 , 于保 证油气管道的安全运行具 对 有十分 重要的意义 。 此外交流高压输 电线对输油管道的影响也应给予
1杂散电流干扰腐 蚀原理1 ] 2 杂 散电流的主要来源是直流电气化铁路、直流电 解设备接地极、 阴极保护系统中的阳极地床等。其中 以 直流电 气化铁路引起的杂散 电流干扰腐蚀最为严 重。当直流电 流沿地面敷设的铁轨流动时, 直流电 流 除了在铁轨上流动,还会从铁轨绝缘不良 处泄漏到大 地,在大地的金属管道上流动,然后返回电 源。这部 分泄漏的电 流称为杂散电 流。 杂散电 流的流动 过程形成了2 外加电 个由 位差建立 的腐蚀电池, 一个是电流流出铁轨进人管道处, 铁轨 是腐蚀电池的阳极,发生腐蚀,管 道为阴极,不 腐
&C迢 P
石 油 化 工 建 设
2 0 年第2 卷第4 07 , 期
方案确定 。排流保护措施通常采用直接排流 、极性排 流、强制排流、接地排流 四种方案。 管/ 地电位偏移稳定在正方向时 ,可采用直接排流 保护措施 。通过导线将管道和干扰源测的负极直接连 通, 使管道中的干扰 电源引人干扰源的负极 。此法适用 于牵引变 电所附近, 简单经济几 效果好 , 但范围有限。
电气化铁路 ) 的里程与 日俱增 ,由于地理位置的限制,
腐蚀电池的阳极,发生腐蚀, 铁轨则是阴极,不 腐 蚀。图1 了管 给出 道电 变化图,由 可 位的 图1 判断出 管道
腐蚀 电池 的阳极 区和 阴极 区 以及 杂散 电流最强 的部
在油气管道与电 力线路和电气化 铁路的设计和建设过 程中不可避免的出现并行敷设的 情况, 彼此会产生干 扰和影响, 处理不当会对油气管道产生很大的危害。 据东北输油管理局统计, 东北地区共有长输油管道约 2洲 kl 于电 0〕n,由 气化铁路 施的 1 等设 大规模建 受到 设, 杂散电 扰影响的 流干 管道日 多, 益增 其中8 腐蚀穿 0 %的 孔事故是由 杂散电 流引起的,位于直流电 气化铁路附 近的管道, 严重时半年就发生腐蚀穿孔, 腐蚀速度大 于1一 2 门 a 料表明, 0 1 1 。资 n r / 对于壁厚为8 g m 一 m 的钢 质管 道, 快则几个月 就发生 穿孔川 杂散电流 。 对金属管
油气管道常见腐蚀原因及防护措施应用
![油气管道常见腐蚀原因及防护措施应用](https://img.taocdn.com/s3/m/46a888b5e43a580216fc700abb68a98271feacbb.png)
油气管道常见腐蚀原因及防护措施应用摘要:油气管道运输是石油或者成品油、天然气等最基础的运输手段,但是因为管道铺设在地下,所以它很容易遭受到物理腐蚀,再加上石油和天然气自身的化学腐蚀等因素,很可能会导致石油和天然气的泄漏、爆炸、火灾等事故发生,所以,要保证石油和天然气的安全输送,必须要对石油和天然气管道进行防腐处理。
本文从油气管道常见的腐蚀原因入手,并介绍相应的防护措施。
关键词:油气管道;腐蚀原因;防护措施石油和天然气是非常重要的能源,在我国经济不断发展的过程中,对于能源的需求也在不断地增加,油气管道是石油和天然气输送的重要工具,其重要性不言而喻。
油气管道在运输过程中会受到很多因素的影响,如介质、温度、压力、杂散电流等。
在油气管道运输过程中,如果发生了管道腐蚀,就会导致管道失效,给油气生产带来严重损失。
因此,在运输油气管道的时候必须要采取有效的防腐措施,避免发生更多的管道腐蚀事故[1]。
一、常见油气管道腐蚀原因(一)土壤腐蚀土壤中含有很多腐蚀性物质,如水、二氧化碳等。
这些腐蚀性物质与土壤接触后,会对管道造成腐蚀。
此外,土壤中还含有各种离子,如钠、钾、钙、镁等元素以及硫离子等,这些元素都会对金属产生化学作用,进而使金属材料受到腐蚀。
同时,土壤中有的还存在少量的杂散电流,比较容易发生电解质作用。
(二)大气腐蚀大气中含有大量水分和氧气,这些物质与油气管道接触后会对其产生腐蚀作用。
另外,空气中的水蒸气、二氧化碳和其他气体也会对油气管道造成影响。
(三)微生物腐蚀微生物腐蚀是指在各种原因(如温度、湿度等)的作用下,土壤中的微生物将金属材料或其他非金属材料分解的过程。
这些分解反应可能是化学反应(如氧化)或物理反应(如电化学反应),也可能是化学反应(如生物作用)。
(四)水腐蚀一些管道由于地域原因,会将其放置在海河当中,也会造成管道的腐蚀。
由于一些水的溶氧浓度、酸碱度、水的硬度、水流快慢、水的温度等等一系列因素都会影响管道的使用寿命。
燃气管道杂散电流腐蚀及防护
![燃气管道杂散电流腐蚀及防护](https://img.taocdn.com/s3/m/53a675f12dc58bd63186bceb19e8b8f67d1cef55.png)
燃气管道杂散电流腐蚀及防护燃气管道是连接城市与城市之间天然气输送的重要管道,其安全性和可靠性对于人民生命财产安全和经济发展具有重要意义。
然而,在使用燃气管道的过程中,可能会出现一些意想不到的问题,其中之一就是杂散电流造成的腐蚀问题。
本文介绍燃气管道杂散电流腐蚀及防护的相关知识。
一、杂散电流的来源杂散电流(stray current)是指在地下电解质(如土壤、岩石)中产生的电流。
杂散电流是无序流动的,来源于各种电气设备、铁路、工厂等,甚至个人家用电器也会产生杂散电流。
这些电流在地下电解质中形成变化复杂的电磁场和电位分布,可能会导致管道腐蚀。
二、杂散电流腐蚀的危害杂散电流带有一定的电位,当燃气管道与地下物质接触时,可能会发生电解反应。
这种反应具有腐蚀性,会使燃气管道的金属表面逐渐被侵蚀,从而损坏燃气管道。
如果管道被侵蚀得足够厉害,不仅会损坏管道本身,而且还可能导致爆炸、泄漏等严重后果。
三、燃气管道杂散电流的防护为了保证燃气管道的安全和可靠性,需要采取一些措施来防止杂散电流腐蚀。
以下是几种有效的方法:1. 接地保护燃气管道需要进行电气接地,从而将燃气管道与地面的电位接通。
这样可以使燃气管道的电位与地面接近,从而减少管道的腐蚀。
此外,地电位降低也有助于减小管道与地面之间的电势差,降低杂散电流对管道的腐蚀作用。
2. 阴极保护阴极保护是一种通过为管道表面制造负电位,从而减少管道表面腐蚀的方法。
在燃气管道阴极保护中,常使用电流池来为管道表面提供负电位。
这样可以降低管道表面的电位,减小管道表面的腐蚀。
3. 隔离保护隔离保护是指将需要保护的燃气管道与可能产生杂散电流的设备、设施隔离开来,阻止杂散电流流入燃气管道。
这种保护方式需要对可能存在的电气设备、地铁、电缆等进行检测和隔离处理。
4. 路线设计燃气管道的路线设计也是减少杂散电流对燃气管道腐蚀的关键。
为了确保燃气管道的安全运行,应在管道敷设前进行地形勘察,选择地形较平坦的区域,减少管道敷设的长度和弯曲程度。
杂散电流对燃气管道的干扰腐蚀调查与防护技术分析
![杂散电流对燃气管道的干扰腐蚀调查与防护技术分析](https://img.taocdn.com/s3/m/dc588049f121dd36a22d8277.png)
河南建材201812019年第6期摘要:燃气管道在长时间的运行过程中,受杂散电流干扰造成的腐蚀破坏情况不断加剧,对城镇燃气管道系统的运行安全有较大威胁。
因此,文章针对城镇燃气管道受杂散电流干扰的现状,分析了直流杂散电流的主要排流方法,并对厦门湖排流可行性进行了探究。
关键词:城镇;天然气管道;杂散电流杂散电流对燃气管道的干扰腐蚀调查与防护技术分析杨帆厦门华润燃气有限公司(361012)0前言在城镇发展过程中,埋地敷设的燃气管道的运行环境很复杂。
特别是大规模的地铁建设,带来了大量杂散电流,不仅加剧了埋地燃气管道的电化学腐蚀程度,而且影响了燃气管道运行的安全性,甚至会导致燃气管道灾难性事故的发生。
因此,探究燃气管道杂散电流干扰的防护措施具有非常重要的意义。
1城镇燃气管道受杂散电流干扰影响的现状山西省太原市城镇区域内通讯电缆、燃气管道、电力电缆、电车轨道、埋地水管等地下设施数量随着经济的快速发展而不断增加。
该城镇燃气管道腐蚀速度较快,已出现了多起燃气管道穿孔泄露事故。
特别是在西气东输管道宁陕西段宁-GX-20~宁-GX-64越48.0km 管道中,受包兰电气化铁路的交流干扰,使该管道防腐层受损严重。
2燃气工程施工质量控制对策2.1杂散电流概况本次试验以该城镇燃气管道收费站阀室~盐排阀室之间5.3km 作为试验段,该段管道于2013年5月投产,埋深为1.18m,管道设计压力及运行压力分别为1.58MPa、1.45MPa,管道规格为ϕ506×7.8mm,管道材质为L360MB 钢。
在燃气管路沿线设置20处测量点,开挖检测验证点NS-40位于该区域宁-GX-58测试桩上游约102.0m 位置,防腐层缺陷发生在弯头FBE 涂层时钟12点位置,交流干扰测试结果见表1。
由表1可知,该燃气管道在长时间的运行过程中出现了多个破损点,在2018年各破损点均出现了管道失效事故,且埋地电力、输水管、电信管线与燃气管网分布较密集,相互干扰严重。
油气长输管道杂散电流干扰腐蚀与防护
![油气长输管道杂散电流干扰腐蚀与防护](https://img.taocdn.com/s3/m/dbb335a9f9c75fbfc77da26925c52cc58bd690a6.png)
油气长输管道杂散电流干扰腐蚀与防护发布时间:2022-08-30T07:20:25.980Z 来源:《科技新时代》2022年第2期第1月作者:崔路飞[导读] 随着国内油气长输管道被杂散电流干扰腐蚀的情况越渐严重崔路飞国家管网集团东部原油储运有限公司新乡输油处河南省新乡市 453000摘要:随着国内油气长输管道被杂散电流干扰腐蚀的情况越渐严重,本文着重从杂散电流干扰腐蚀的原理、特点和预防措施三个方面进行了分析,希望通过这些分析在一定程度上去对油气长输管道达到一定防护作用。
关键词:油气长输管道;杂散电流;干扰腐蚀与防护杂散电流对埋地金属结构是具有强烈腐蚀性的,加上近年来我国的油气长输管道日益增多,杂散电流的干扰腐蚀严重影响到了油气长输管道的运行。
因此,研究杂散电流的原理并对其进行防护措施的研究刻不容缓。
一、杂散电流干扰腐蚀原理杂散电流其实就是那些不在规定电路内流动的电流,这种电路非常容易使得油气长输管道被干扰腐蚀,而被腐蚀的根本原因其实就是化学反应中的电解作用。
首先埋入地下的钢制管道本身就已经带有一定的导电性,加上杂散电流的不规则流动,使得电位差形成,最终造成电池被腐蚀的现象。
杂散电流流入金属导管中往往会带上负电,人们普遍把这个区域称为阴极区,其实处在阴极区的管道正常情况下是不会被电流所影响到的,可是当如果阴极区的电位值超出了管道所能承受的正常值,就会导致管道的表层覆盖上大量的氢,这些氢会极大程度的造成腐蚀层的剥离[1]。
而管道被腐蚀破坏后,从破坏点流出的电流则带正电,人们普遍把这个区域称为阳极区,而阳极区的部分管道以离子的形式融入到周围的介质之中,最终对油气长输管道造成了电化学腐蚀。
过程如下:二、杂散电流干扰腐蚀特点(一)强度高、危害大被腐蚀是无法避免的,即使没有杂散电流从中作梗,埋在地下的油气长输管道也是会被自然反应所腐蚀的,但是这种腐蚀反应是非常微弱且缓慢的,正常情况下腐蚀电流不会超过一百毫安。
油气管道受直流杂散电流影响规律及防护措施研究
![油气管道受直流杂散电流影响规律及防护措施研究](https://img.taocdn.com/s3/m/52661f14f11dc281e53a580216fc700aba685255.png)
技术应用/TechnologyApplication油气管道受直流杂散电流影响规律及防护措施研究鄂志国(大庆油田有限责任公司第五采油厂)摘要:为降低高压直流输电线路在接地极放电时引发的杂散电流干扰,降低管道腐蚀速率和失效率。
利用电位远程监测系统,采用断电试片法监测管道的通、断电电位,得到不同放电类型下的干扰规律,并针对管道分段绝缘和敷设锌带两种缓解措施进行效果评价。
结果表明,高压直流接地极每年的干扰频次、时长远超过标准要求;越靠近接地极,管道电位的偏移量越大,阳极放电时远离接地极的管段为杂散电流流出段,阴极放电时靠近接地极的管段为杂散电流流出段,此时管道存在腐蚀风险;分段绝缘可有效降低管道中点处的电位差,敷设锌带可在局部范围内降低泄露电流密度;采用双重防护措施后,风险减缓幅度比任何一种防护措施都大;防护措施实施后,可节约管道更换里程,减少天然气泄露量,年可节约运行成本105万元~259万元。
研究结果可为直流接地极和油气管道之间的腐蚀防护设计提供实际参考。
关键词:管道;直流杂散电流;干扰;防护;接地极;管道电位DOI :10.3969/j.issn.2095-1493.2023.09.004Research on rule and protection measures of oil and gas pipelines affected by DC stray current influence E ZhiguoNo.5Oil Production Plant of Daqing Oilfield Co .,Ltd .Abstract:In order to reduce the stray current interference caused by the grounding electrode dis-charge of high voltage direct current transmission lines,the corrosion rate and failure rate of pipelines are reduced.The potential remote monitoring system is used to monitor the on-off potential and off-off potential of the pipeline by using the power off test piece method,and the interference rule under different discharge types is obtained.What's more,the effects of two mitigation measures,segmental insulation and laying zinc strip,are evaluated.The results show that the annual interference frequency and time of high voltage direct current grounding electrode exceed the standard requirement.The clos-er to the grounding electrode,the greater the potential offset of the pipeline.When the anode is dis-charged,the pipe segment that is far away from the grounding electrode is the stray current outflow section.When the cathode is discharged,the pipe segment that is close to the grounding electrode is the stray current outflow section.there is a risk of pipeline corrosion at this point.The segmental insu-lation can effectively reduce the potential difference at the middle point of the pipeline,and the zinc strip can reduce the leakage current density in a local scope.After the use of dual protective measures,the risk reduction is greater than any other protective measures.After the implementation of protective measures,it can be saved the mileage of pipeline replacement and reduced the amount of natural gas leakage,saving the operation cost of 1.05million yuan ~2.59million yuan every year.The research results can provide practical reference for corrosion protection design between DC grounding pole and oil and gas pipeline .Keywords:pipeline ;DC stray current ;interference ;protection ;grounding electrode ;pipelinepotential作者简介:鄂志国,工程师,2007年毕业于大庆石油学院(土木工程专业),从事土建设计工作,180****6782,****************,黑龙江省大庆市红岗区第五采油厂工艺研究所,163513。
关于杂散电流对燃气管道的干扰腐蚀调查与防护技术的探讨
![关于杂散电流对燃气管道的干扰腐蚀调查与防护技术的探讨](https://img.taocdn.com/s3/m/4a05aa38c1c708a1294a4456.png)
关于杂散电流对燃气管道的干扰腐蚀调查与防护技术的探讨摘要:燃气管道在运行过程中,会受到杂散电流的破坏和腐蚀,对于燃气管道有很大的破坏力,因此,对通过对杂散电流干扰腐蚀的调查和防护技术的调查,针对燃气管道城镇燃气管道受杂散电流干扰影响的现状,提出关于杂散电流对燃气管道的干扰腐蚀调查与防护技术的探讨。
关键词:燃气工程;杂散电流;排流方式;干扰腐蚀调查;防护技术引言:随着我国经济建设速度的加快,燃气管道和交通路线同时运行和施工的现象日益增加。
近年来,我国电气化轨道的投入建设力度在不断加大,然而,这同时以为着很多城镇区域的地下燃气管道结构越来越复杂,地下燃气管道的结构越复杂,周围钢管管道出现腐蚀现象的情况越严重,尤其是遇到大面积的铁路建设时期,就会带来巨大面积的杂散电流,导致加快燃气管道的腐蚀速度。
地下杂散电流在人们社会生活和社会生产方面存在着巨大的安全隐患,给能源管线和交通线路建设的发展带来很多潜在的问题。
由于闲散电流对管道造成的严重腐蚀现象带来的困扰日益凸显,已经引起了当地管道公司的广泛关注[1]。
1.城镇天然气管道受杂散电流干扰影响现状某城市新区成立以后,城市区域内的通讯电缆、城区埋地水管、电车轨道等地下铺设工程数量日益增加。
随着该新区基础设施建筑的增多,铺设天然气管道的空间逐渐狭窄,线路和管道过多,内部管道和线路拥挤不堪,存在交错、平行的混乱状态。
除此之外,受到电气化铁路、工厂内部设备、市政设施等各种电力设备的干预,该新区的管道腐蚀的速度很快,发生了燃气管道穿孔泄漏等一系列困扰,带来了大量的不安定因素。
根据2019年该区的维护抢修可以发现,在抢修的250处燃气管道的维修报告可以看出,在管道故障的维护抢修中,管道外部的被严重腐蚀,受损严重。
由表1中的数据可以看出,没有进行保护措施的管道和安装管道措施的管道相比腐蚀现象差距极大,通过数据我们可以看出:该城市新区的管道损坏次数较多,管道和其他管网纵横交错、相互扰乱,市中心和郊区铁路错综复杂,到处都有着各式各样的电力配置,电流干预情况严重,除了对近10年的管道进行了保护防护以外,其他年久失修的管道没有实施防护措施。
油气管道的杂散电流腐蚀防护措施85
![油气管道的杂散电流腐蚀防护措施85](https://img.taocdn.com/s3/m/f2e537d7f18583d04864599c.png)
油气管道的杂散电流腐蚀防护措施摘要:随着我国社会经济的发展,油气管道铺设里程也在不断增长。
在油气管道使用过程中,会因各种原因产生不同性质的危害,而其中由杂散电流造成的油气管道腐蚀现象越来越受到的关注。
本文简要阐述了油气管道杂散电流腐蚀的机理,并对杂散电流腐蚀的基本特点深入分析,提出了杂散电流腐蚀的防腐措施,希望对油气管道的正常运转提供必要的帮助。
关键词:油气管道;杂散电流;腐蚀;防护措施进入21世纪以来,我国管道建设日益增多,管道途径大中城市的铁路、公路网等设施由于地理位置的限制,油气管道线路与电气化铁路在设计和建设过程中不可避免地出现了并行和交叉敷设的情况。
特别是近年来,随着特高压输电线路的出现以及高速铁路的建设,我国油气管道与输电线路、电气化铁路的并行交叉的里程也不断增加,电力输电线路、电气化铁路产生的杂散电流对油气管道造成严重的腐蚀。
电力传输或电气化铁路使用过程中,会在土壤中产生大量杂散电流,对地下油气管道造成严重的腐蚀现象。
据不完全统计,因杂散电流引起的管道腐蚀已成为近年来管道腐蚀的重要因素之一,并且距离铁路或高压线路越近的油气管道,其腐蚀速度越快,给油气管道运行工作带来十分严重的影响。
一、杂散电流腐蚀的机理与危害杂散电流通常指流入土壤中的非常规电路以外的电流。
由杂散电流引发的油气管道腐蚀问题,其本质上是电化学腐蚀中的电解作用。
油气管道为钢质材料,其自身具备较强的导电性,当杂散电流在管道中流动时就会产生电位差,并形成腐蚀电池。
由电气化铁路或高压输电线路流出的杂散电流进入油气管道,铁路或输电线路为阳极,发生腐蚀油气管道为阴极,不腐蚀。
当杂散电流由管道返回铁路或输电线路时,管道为阳极,发生腐蚀;铁路或输电线路为阴极,不腐蚀。
油气管道长期在杂散电流干扰的影响下,管道防腐层会析出大量氢离子,从而引发管道防腐层的破坏。
研究表明,杂散电流对油气管道具有较强的危害,杂散电流会对管道的绝缘层、绝缘法兰造成严重损坏,加速油气管道的腐蚀情况。
油气管道腐蚀原因及腐蚀防护措施
![油气管道腐蚀原因及腐蚀防护措施](https://img.taocdn.com/s3/m/27edbf62c1c708a1294a4444.png)
油气管道腐蚀原因及腐蚀防护措施关键词:油气管道腐蚀,油气管道腐蚀原因,油气管道腐蚀防护,索雷CMI重防腐涂料油气管道腐蚀受到外部环境、输送介质等因素的影响,其腐蚀主要分为土壤腐蚀、杂散电流腐蚀、大气腐蚀以及油气管道内腐蚀。
➢土壤腐蚀:油气长输管道80%~90%处于埋地状态,土壤中腐蚀性成分的含量、杂散电流以及细菌等直接影响到管道的腐蚀速率。
➢杂散电流腐蚀:如果在杂散电流流动的地方,埋有地下金属构件(如油气管道)时,杂散电流就会从金属构件上流入和流出,流入处形成阴极区,流出处形成阳极区,金属产生腐蚀。
➢大气腐蚀:位于大气环境中的管道,如跨越管段及站场地上管道,其腐蚀均属于大气腐蚀。
金属表面的潮湿程度是决定大气腐蚀的主要因素。
➢油气管道的内腐蚀:(1)输油管道的内腐蚀:原油中的腐蚀性成分主要是水、硫化氢、二氧化碳、细菌以及各种的盐类物质。
但是,在长距离输送之前经过油水分离、泥沙净化等处理环节的原油,其腐蚀性成分含量一般很微小。
成品油的主要成分为各种的烃类,属于非电解质,所以长距离原油、成品油管道的内腐蚀具有腐蚀速度较低的特点。
在输油管道的低洼地段、弯头等部位,油品中所含的一些水分及固体性杂质如泥沙会沉淀下来,引起管道的内腐蚀,如孔蚀。
若油品中存在腐蚀性细菌,会加速管道内壁的电化学腐蚀。
(2)输气管道的内腐蚀:天然气中含有水、硫化氢、二氧化碳等影响金属腐蚀的成分。
在输气过程中,这些成分会引起管道内壁严重的电化学腐蚀,尤其是硫化氢是威胁管道的大敌。
油气管道腐蚀会导致各种渗漏问题、设备结构强度问题、工作效率降低或者失效问题等,直接影响企业的安全连续生产,并隐藏着极大的安全隐患。
同时也造成了大量资源的浪费和成本的增加。
所以油气管道腐蚀防护工作迫在眉睫。
重防腐涂料是指相对常规防腐涂料而言,能在相对苛刻腐蚀环境里应用,并具有能达到比常规防腐涂料更长保护期的一类防腐涂料,索雷CMI重防腐涂料就是其中之一。
该涂料具有良好的耐腐蚀性能,可耐受众多种类的腐蚀性化学品,包括强酸、强碱、气体、溶剂和氧化剂;对金属基材、复合材料和混凝土具有优异的粘合度和附着力;可耐高温达400°F(204°C);可耐冷热循环性能,范围从-40°F至+400°F(- 40°至204°C);可蒸汽清洗;可在线修复;与其他防腐涂料相比,该涂料具有更好的防渗透(吸收)性能,几乎不可渗透的薄膜涂层可最大程度地减少货物吸收并确保货物的纯度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
油气管道的杂散电流腐蚀与防护随着我国能源和交通工业的发展,我国油气管道与电力线路、电气化铁路的里程迅速增加。
由于地理位置的限制,在油气管道与电力线路、电气化铁路的设计和建设过程中不可避免地出现了并行敷设的情况。
由电力线路、电气化铁路产生的杂散电流会对油气管道产生巨大的危害。
辽河油田到鞍山化肥厂的天然气管道在投产14个月后就出现多起杂散电流引起的腐蚀穿孔事故,被迫长时间停产,开挖大修。
郑州煤气公司在某电厂附近的一段输气管道受电厂杂散电流的影响,也多次出现穿孔泄漏,严重威胁管道和人身的安全。
由此可见,杂散电流对油气管道会产生强烈腐蚀作用。
因此,开展杂散电流引起的油气管道的腐蚀与防护研究,对保障油气管道的安全运行具有十分重要的意义。
1杂散电流的形成杂散电流是指在规定电路或意图电路之外流动的电流,又称迷走电流[1]。
杂散电流主要表现为直流电流、交流电流和大地中自然存在的地电流3种状态,且各自具有不同的特点。
直流杂散电流主要来源于直流电解设备、电焊机、直流输电线路;交流杂散电流主要来源于交流电气化铁路、输配电线路系统,通过阻性、感性和容性耦合在相邻的管道或金属体中产生交流杂散电流,但交流杂散电流对铁腐蚀较轻微,一般为直流腐蚀量的1%;由于地磁场的变化感应出来的地杂散电流,一般情况下只有约2μA/m2,从腐蚀角度看并不重要。
以电气化铁路车辆直流供电牵引系统产生的直流杂散电流是造成油气管道杂散电流腐蚀的主要原因。
在电气化铁路车辆直流供电牵引系统巾,列车所需要的电流由牵引变电所提供,通过架空线向列车供电,然后经行走轨回流至牵引变电所。
理想情况下行走轨电阻为0,行走轨对大地的泄漏电阻无穷大,此时经行走轨回流的电流等于牵引电流,即所有的电流都经行走轨回流至牵引变电所。
但实际上行走轨的电阻不为0,当有电流通过时就形成了电位差,并且行走轨对大地的泄漏电阻也不会为无穷大,这就不可避免地造成了部分电流不经行走轨回流,而是流入大地,然后通过大地回流至牵引变电所。
若铁路附近有导电性能较好的埋地金属管道(燃气管道、输油管道、供水管道等),则部分电流会选择电阻率较低的埋地金属管道作为电流回流路径,从牵引变电所附近的管道中流出流回牵引变电所。
杂散电流形成原理见图1,杂散电流形成原理等效电路见图2。
由图2可知:式中I s——杂散电流,AI t——牵引电流,AR r——行走轨电阻,ΩR t——负荷端与大地之间的泄漏电阻,ΩR s——变电所与大地之间的泄漏电阻,ΩR——土壤的横向电阻,Ωρ——土壤电阻率,Ω·ml——负荷端与变电所之间的距离,mA——土壤的横向面积,m2由于A趋向无穷大,因此R趋向于零。
则式(1)可以简化为:由式(3)可知,在牵引电流一定的情况下,杂散电流随着行走轨电阻的增大而增大,随着泄漏电阻的增大而减小。
杂散电流流入土壤以后就会产生地电场,土壤中不同地电位之间便有电流流动,两个不同区域之间电位差越大,电流就越大。
当土壤全部都是均匀的介质时,电流分布也相对均匀。
如果土壤中埋置有油气管道时,管道中的杂散电流密度与土壤中的杂散电流密度之比见式(4)[2、3]:式中j0——管道中的杂散电流密度,mA/m2j——土壤中的杂散电流密度,mA/m2δ——管壁厚度,mmD——管道内径,mmρ0——管道电阻率,Ω·m因为ρ>>ρ0,所以杂散电流基本上沿油气管道流动,不再流经土壤。
2杂散电流的腐蚀原理杂散电流进入金属管道的地方带负电,这一区域称为阴极区,处于阴极区的管道一般不会受影响,若阴极区的电位值过大时,管道表面会析出氢,而造成防腐层脱落。
当杂散电流经金属管道回流至变电所时,金属管道带正电,成为阳极区,金属以离子的形式溶于周围介质中而造成金属体的电化学腐蚀。
因此杂散电流的危害主要是对金属管道、混凝土管道的结构钢筋、电缆等产生电化学腐蚀,其电化学腐蚀过程发生如下反应:①析氢腐蚀阳极反应:2Fe→Fe2++4e-在无氧酸性环境中的阴极反应:4H++4e-→2H2↑在无氧中性、碱性环境中的阴极反应:4H20+4e-→4OH-+2H2↑②吸氧腐蚀阳极反应:2Fe→2Fe2++4e-在有氧酸性环境中的阴极反应:02+4H++4e-→2H20在有氧中性、碱性环境中的阴极反应:02+2H20+4e-→0H当油气管道受到杂散电流电化学腐蚀时,金属腐蚀量和电量之间符合法拉第定律[4]:m=KIt (5)式中m——金属腐蚀量,gK——金属的电化学当量,g/(A·h),铁取1.047g/(A·h)I——杂散电流,At——时间,h利用式(5)可以对杂散电流的危害作出大概的估计。
经计算,1A的杂散电流可以在1年内腐蚀掉9.13kg的钢铁。
杂散电流腐蚀具有局部集中特征,当杂散电流通过油气管道防腐层的缺陷点或漏铁点流出时,在该部位管道将产生激烈的电化学腐蚀,短期内就可以造成油气管道的穿孔事故。
防腐层的缺陷点或漏铁点愈小,相应的电流密度愈大,杂散电流的局部集中效应愈突出,腐蚀速度愈快。
3杂散电流的防护由于杂散电流对油气管道的安全存在着极大威胁,因此必须采取相应的措施对杂散电流进行防护。
对杂散电流的防护应从以下两个方面着手:从源头上控制杂散电流的形成,减小杂散电流;对已产生的杂散电流采取排流或者其他方法降低杂散电流对油气管道的腐蚀危害。
3.1从源头上控制杂散电流的形成由于行走轨本身具有电阻,当有电流流过时,就会产生电位差,而且行走轨对地的泄漏电阻不可能无穷大,因此会产生杂散电流。
由式(1)可知,当牵引电流一定时,杂散电流随着行走轨电阻的增大而增大,随着泄漏电阻的增大而减小,因此要从源头上控制杂散电流的形成,必须减小行走轨电阻、增大泄漏电阻,可以采取以下几种方法:①增加单根行走轨的长度,减少行走轨间的电阻。
单根行走轨越长,行走轨之间的接头越少,行走轨的电阻就越小,从行走轨向外流失的杂散电流就越少。
②各段行走轨之间都应有畅通的电气连接,以减少行走轨之间的接缝电阻,保证低电阻的回流路径。
③缩短供电半径,增设变电所。
当供电半径缩短以后,供电网络的电压降随之而降低,行走轨上的电位差也随之而降低,因此流过油气管道的杂散电流就会减少。
④增加行走轨对地的泄漏电阻。
枕木的端面和道钉必须经过绝缘处理或设置专门的绝缘层,行走轨采用点支撑。
⑤增大油气管道的电阻。
油气管道外部的覆盖层要求完整无针孔,与金属管道结合牢固,增大管道的电阻,减小杂散电流的流入量。
3.2排流防护措施[5]把油气管道中流动的杂散电流直接流回至电气化铁路的行走轨,需要将油气管道与铁路的行走轨用导线做电气上的连接,这一做法称为排流法。
利用排流法保护油气管道不受杂散电流的危害,称为排流防护措施。
排流保护法可以分为直接排流法、极性排流法、强制排流法和接地排流法。
①直接排流法。
把油气管道与电气化铁路的负极或行走轨用导线直接连接起来。
这种方法不需要排流设备,简单,造价低,排流效果好。
但当管道的对地电位低于行走轨对地电位时,行走轨电流将流入管道内而产生逆流。
因此这种排流方法只适合管地电位永远高于轨地电位、不会产生逆流的场所,而这种机会不多,限制了该方法的应用。
②极性排流法。
由于负荷的变动,变电所负荷分配的变化等,管地电位低于轨地电位而产生逆流的现象比较普遍。
为防止逆流,使杂散电流只能由管道流入行走轨,必须在排流线路中设置单向导通的二极管整流器、逆电压继电器等装置,这种装置称为排流器,这种防止逆流的排流法称为极性排流法。
极性排流法安装方便,应用广泛。
③强制排流法。
就是在油气管道和行走轨的电气接线中加入直流电流,促进排流的方法。
在管地电位正负极性交变,电位差小,且环境腐蚀性较强时,可以采用此防护措施。
通过强制排流器将管道和行走轨连通,杂散电流通过强制排流器的整流环排放到行走轨上,当无杂散电流时,强制排流器给管道提供一个阴极保护电流,使管道处于阴极保护状态。
强制排流法防护范围大,铁路停运时可对油气管道提供阴极保护,但对行走轨的电位分布有影响,需要外加电源。
④接地排流法。
此法与前3种排流方法不尽相同。
管道上的排流电缆并不是直接连接到行走轨上,而是连接到一个埋地辅助阳极上,将杂散电流从管道上排出至辅助阳极上,经过土壤再返回到行走轨上。
接地排流法使用方便,但效果不显著,需要辅助阳极,还要定期更换辅助阳极。
4结语杂散电流会对油气管道产生电化学腐蚀危害,严重威胁到油气管道的运行安全,缩短油气管道的使用寿命,因此必须采取防护措施对杂散电流产生的电化学腐蚀进行控制,减少对油气管道的危害。
首先,要从源头上控制杂散电流的形成,减小杂散电流;其次,对油气管道采用合适的排流方法进行排流。
虽然杂散电流对油气管道带来了很多危害,但是只要采取合理有效的防护措施,就能减少其对油气管道的危害,达到防护与治理的目的。
参考文献:[1] 唐明华.油气管道阴极保护[M].北京:石油工业甘版社,1986.[2] 马洪儒.北京地下铁道的杂散电流腐蚀与防护[J].城市轨道交通,1990,(1):11-19.[3] 朱孝信.地铁的杂散电流腐蚀与防治[J].材料开发与应用,1997,12(5):40-97.[4] 俞蓉蓉.地下金属管道的腐蚀与防护[M].北京:石油工业出版社,1998.[5] 程善胜,张力君,杨安辉.地铁直流杂散电流对埋地金属管道的腐蚀[J].煤气与热力,2003,23(7):435-437.。