五年级数学上册《植树问题》

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《植树问题》教学设计

教学内容:人教版《义务教育课程标准实验教材》五年级上册《植树问题》,106页例1、及做一做1、2;练习二十四第109面第1,2,3题。

教学目标: 1.在摸一摸、摆一摆、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。

2.在亲身体验、交流中,进一步理解间隔数与棵数之间规律,并解决生活中的植树问题。

3.在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。

教学重点:理解“植树问题(两端要种;两端都不种;一端种、一端不种)”的特征,应用规律解决问题。

教学难点:让学生发现植树的棵数和间隔数之间的关系。应用规律解决问题。

教学准备:课件、准备4张纸条。5-12棵小树。

教学过程:一、初步感知间隔的含义

1.肢体体验:同学们都有一双灵巧的小手,它不但会写字、画画、干活,在它里面还蕴藏着有趣的数学知识,你想了解它吗?请举起你的右手,并将五指伸直、张开、用左手摸摸右手,数一数,五个手指有几个空格?(4个空格),师:在数学上,我们把这个空格叫“间隔”。也就是说,大小拇指在一只手的两端:5个手指之间有几个间隔?(4个间隔)。弯弯你的大拇指看:4个手指之间有几个间隔?(3个间隔);把大、小拇指一齐弯弯看:3个手指之间有几个间隔?(2个间隔),那么,将5个手指换成小树,5棵小树之间有几个间隔(4个)。

师:生活中的“间隔”到处可见,你知道生活中还有哪些间隔吗?(两棵树之间、两个同学之间、楼梯、锯木头、敲钟…都有间隔。)

2.引入课题:师:树可以美化环境,清新空气,我们要多植树。在一条直线上种树,每两棵树之间相等的段数叫做间隔数,每个间隔的长度叫间距,也叫株距。间隔数与棵数的关系,数学里统称植树问题,这就是我们今天要探究的内容——在一条不封闭的直路上的“植树问题”。(揭题,板书:植树问题)

二、探究规律,解决问题。

1.找出两端都种树的规律

课件播放植树问题情景1,师出示:例1.同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?师:请同学们默读题目,谁来分析一下这道题的条件、问题、关键词和单位?要求一共需多少棵树苗?先要知道两端都栽树,棵数与间隔数有什么关系?要解决这个问题,实践是检验真理的唯一标准,但是100米这个数字有点大,不好验证,在遇到比较复杂的问题时,我们可以先用比较简单的例子来验证。

假设路长只有10米、15米、20米,每5米栽一棵,两端都栽:(两端就是路的两头),要栽几棵呢?(同桌合作拿出三条纸条当小路,从短到长摆好,再用小树摆一摆,假设路10米,每隔5米种一棵,这条小路平均分成了几个间隔?两端都栽,摆几棵小树呢?…)师:请同学们仔细观察,两端都栽树,栽树的棵数与平均分成的间隔数谁多谁少呢?(棵数都比间隔数多1或间隔数比棵数少1)师问为什么两端都种树,棵树只比间隔数多1呢?(因为从一端看过去,棵数和间隔数一一对应,一端只多了一棵树。)已知间隔数怎样求棵数呢?出示并板书:两端都栽:棵数=间隔数+1)考考你:如果这条路是25米、每隔5米栽一棵,各要平均分成几个间隔?两端都栽,栽几棵树呢?30米呢?

师:现在我们用研究出的两端都栽树,棵数等于间隔数加1的规律来解决例1中的问题,在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?生:100÷ 5 = 20 (个

间隔)20+ 1= 21(棵)。利用两端都栽树,棵数等于间隔数+1”这个规律解决了两端都植树的问题。

2.发现两端都不种树规律

如果两端不种树呢?我们还用举例子的方法来验证,先用小树摆一摆,把前面小路上摆的树两端各撤掉一棵,两端不种树,棵树与间隔数又有什么关系呢?生发现两端不栽树,棵树比间隔数少1或减隔个数比棵数多1)。师问为什么两端都不种,棵数等于间隔数只少1呢?(从一端看过去,间隔数和棵数一一对应,后面只多了一个间隔数,而少了一棵树,。)两端不栽,已知间隔数怎样求棵树呢?(棵数=间隔数-1,板书),利用这个规律来解决下面问题。

例2: 动物园的大象馆和猩猩馆相距60米,绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?同学们默读题目,理解题意。分析条件和问题,两端都是房子,两端种不种树呢?(两端不种树,因为路的两端是建筑物,所以两端不种)先用60÷3=20(个间隔)求出间隔数,再想两端不种树每边要栽的棵数比间隔数少1,20-1=19(棵),两旁植树(就是路的两边植树):19 ×2=38(棵)师质疑:为什么乘2(为了美观,要对称栽树)?答: 一共要栽38棵树.

3.理解只种一端的规律

植树问题还一种情况:一端栽,一端不栽。举例:2个间隔,2棵树;3个间隔,3棵树;4个间隔,4棵树。只栽一端,间隔数与棵数又有什么关系呢?师问为什么只种一端,棵树和间隔数相等?(从一端看过去,棵数和间隔数一一对应,成套了,后面没多间隔数或棵数,所以棵树和间隔数一样多。得出:棵数 = 间隔数(板书)。出示做一做例2.可以画线段图来体验植树问题的规律以及检验做的对不对。

4.看书106-107面,比较例1与例2的不同?例1两端要栽树,所以棵数比间隔数多1;例2两端不栽树,所以棵数比间隔数少1。例

1是路的一边栽树,例2是路的两边栽树。完成做一做1。

三、应用规律,走进生活。。

走进生活:

1.图中衬衣长60厘米,每隔10厘米缝一颗纽扣。这件衬衣上需要多少颗纽扣?领口一端为了美观整齐有纽扣,一端为了方便没有纽扣,类似植树问题的哪种情况?(只栽一端,棵数等于间隔数):60÷10=6(颗)答:这件衬衣上需要6颗纽扣。

2.如果每上一层楼梯需要2分钟,那么从一楼上到四楼需要多少分钟?(两楼之间一个层高,时间用在上楼层上,类似植树问题的哪种情况?(两端都栽的植树问题。这个过程就是两端都栽树时,已知棵数求间隔数,一到四楼,只有3个层高)4-1=3 (层),2×3=6(分钟),答:从一楼上到四楼需要6分钟。

3.知识扩展:一根木头长10米,要把它平均分成5段,每锯下一段需要8分钟,锯完一共要花多少分钟?(撕纸条体验锯木)看锯木图,类似植树问题的哪种情况?(两端不栽的植树问题,棵数等于间隔数减1,据的次数比间隔数少一,平均分成5段据4次。)5-1=4(次)8×4=32(分)答:锯完一共要花32分钟。木头长10米是无用条件。

四、总结:通过这节课的学习,你们有什么收获?学到了植树问题的3种间隔数与棵数关系的三个规律;还学到了通过举简单例子,发现规律,利用规律,解决问题的数学学习方法。方便以后更好地学好数学,我们还将学习在封闭图形的植树问题。

五、作业设计:书本第109面,第1,2,3题。

六、板书设计:植树问题 2 两端要栽:棵数=间隔数+1;两端不栽:棵数=间隔数-1 ;只栽一端:棵数=间隔数。

相关文档
最新文档