2018年普通高等学校招生全国统一考试数学(理)(全国3卷) 双向细目表 及试卷
2018年高考理科数学(3卷)答案详解(附试卷)
2018年普通高等学校招生全国统一考试理科数学3卷 答案详解一、选择题:本题共12小题,每小题5分,共60分。
1.已知集合,,则A .B .C .D . 【解析】∵}1|{≥=x x A ,}2,1{=B A . 【答案】C 2. A .B .C .D .【解析】i i i +=-+3)2)(1(. 【答案】D3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【解析】看不见的线应该用虚线表示. 【答案】A 4.若,则 A .B .C .D . {}|10A x x =-≥{}012B =,,A B ={}0{}1{}12,{}012,,()()1i 2i +-=3i --3i -+3i -3i+1sin 3α=cos2α=897979-89-【解析】227cos212sin 199αα=-=-=. 【答案】B5.252()x x+的展开式中4x 的系数为A .10B .20C .40D .80【解析】由二项式定理得252()x x +的展开式的通项为251031552()2rr r r r rr T C x C x x --+⎛⎫== ⎪⎝⎭,由1034r -=,得2r =,∴252()x x+的展开式中4x 的系数为225240C =.【答案】C6.直线分别与轴,轴交于,两点,点在圆上,则△ABP 面积的取值范围是 A .B .C .D .【解析】如图所示,由题意可知)0,2(-A 、)0,2(-B ,∴22||=AB .过点P 作△ABP 的高PH ,由图可以看出,当高PH 所在的直线过圆心)0,2(时,高PH 取最小值或最大值. 此时高PH 所在的直线的方程为02=-+y x .将02=-+y x 代入,得到与圆的两个交点:)1,1(-N 、)1,3(M ,因此22|211|min =+-=|PM|,232|213|max =++=|PM|. 所以222221min =⨯⨯=S ,6232221max =⨯⨯=S . 20x y ++=x y A B P ()2222x y -+=[]26,[]48,⎡⎣22(2)2x y -+=图A6【答案】A7.函数的图像大致为【解析】设2)(24++-==x x y x f ,∵02)0(>=f ,因此排除A 、B ;)12(224)(23--=+-='x x x x x f ,由0)(>'x f 得22-<x 或220<<x ,由此可知函数)(x f 在),(220内为增函数,因此排除C.422y x x =-++【答案】D8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,4.2=DX ,)6()4(=<=x P x P ,则p= A .0.7B .0.6C .0.4D .0.3【解析】某群体中的每位成员使用移动支付的概率都为p ,看做独立重复事件,满足),10(~p B X .∵4.2=DX ,∴4.2)1(10=-p p ,解得6.0=p 或4.0=p .∵)6()4(=<=x P x P ,∴4661064410)1()1(p p C p p C -<-,解得021<-p ,即21>p . ∴6.0=p .【答案】B9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为4222c b a -+,则C =A .B .C .D .【解析】由已知和△ABC 的面积公式有,4sin 21222c b a C ab -+=,解得C ab c b a sin 2222=-+.∴ C abCab ab c b a C sin 2sin 22cos 222==-+=,又∵1cos sin 22=+C C ,∴22sin cos ==C C ,4π=C . 【答案】C10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为39,则三棱锥D -ABC 体积的最大值为 A .312B .318C .324D .354【解析】如图A12所示,球心为O ,△ABC 的外心为O ′,显然三棱锥D -ABC 体积最大时D 在O′O 的延长线与球的交点.△ABC 为为等边三角形且其面积为39,因此有39432=⨯AB ,解得AB =6. △3260sin 32=⋅⨯=' AB C O ,2)32(42222=-='-='O O OC O O , 2π3π4π6π∴642=+='D O .∴ 三棱锥D -ABC 体积的最大值为31863931=⨯⨯=V .图A10【答案】B11.设F 1、F 2是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若,则的离心率为 AB.2CD【解析】双曲线C 的渐近线方程为by x a=±,即0bx ay ±=. ∴ 点F 2到渐近线的距离为b ba bc d =+=22,即b ||PF =2,∴ a b c ||PF ||OF |OP|=-=-=222222,∴ a |OP|||PF 661==,在Rt △OPF 2中,cbOF ||PF O PF ==∠||cos 222,在Rt △F 1PF 2中,bca cb |F |F ||PF ||PF |F |F ||PF O PF 4642cos 22221221221222-+=⋅-+=∠,∴ bca cbc b 464222-+=,化简得222364b a c =-,将222a c b -=代入其中得223a c =,1PF =C∴3222==ac e ,3=e .图A11【答案】C12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C . 0a b ab +<<D .0ab a b <<+【解析】∵0.20.20.2log 1log 0.3log 0.2<<,∴01a <<.∵221log 0.3log 2<,∴1b <-. ∴0ab <,0a b +<. ∵0.30.30.30.311=log 2log 0.2log 0.4log 0.31a b ab a b++=+=<=,0ab <,∴ab a b <+.综上所述 0ab a b <+<.【答案】B二、填空题:本题共4小题,每小题5分,共20分。
2018年全国卷3理科数学试题和参考答案
E1
20
84
同理 E2 74.7 , E2 E1,故第二组生产方式效率更高
eord
完美格式
.
.
(2) 由茎叶图可知,中位数 m 79 81 80,且列联表为: 2
第一种生产方式 第二种生产方式
超过 m 15 5
不超过 m 5 15
(3) 由 (2) 可知 K 2
40 152 52 2
10 6.635 ,
ABC 等边 S ABC 9 3
AB 6 ,
D
O
A
FE
B
C
在等边 ABC 中, BF
2 BE
3 AB
2 3,
3
3
在 Rt OFB 中,易知 OF
2 , DF
6 ,故 VD ABC max
1 9 3 6 18 3
3
【考点】外接球、椎体体积最值
11. 设 F1,
F2 是双曲线
x2 C : a2
的一条渐近线的垂线,垂足为
17. (12 分)
等比数列 an 中, a1 1, a5 4a3 .
(1) 求 an 的通项公式;
(2) 记 Sn 为 an 的前 n项和 . 若 Sm 63,求 m .
【答案】 (1) an 2n 1 或 an
n1
2 ;(2) m 6
【解析】 (1) a5 4a3 a3q 2 , q 2 , an 2n 1 或 an
第一种生产方式
第二种生产方式
8 6556 89
9762 7012 23456 68
98776 54332 8144 5
21100 90
(1) 根据茎叶图判断哪种生产方式的效率更高?并说明理由;
2018 年全国 III 卷数学(理)答案及解析
a1 = 1 ,
an = 2n −1 或 an =
( −2 )
n −1
S = 63 , (2) mn −1 ∴ 当通项公式为 an = 2 时, 1 − 2
(1 − 2 ) = 63
m
,得 m =6
当通项公式为
an =
( −2 )
n −1
1 − ( −2 )m = 63 m −1) 2m = 188 ( + 1 2 时, ,得 ,
− x + x + 2 的图像大致为( 7.函数 y =
4 2
)
A.
B.
C.
D.
【答案】D 【考点】函数图像以及性质 【难易程度】基础题 【解析】当 x=1 时,函数值大于 0,排除 A、B;因为 F(x)=F(-x),函数为偶函数,图像关于 y 轴
−4 x 3 + 2 x =0 ,解得 x=0、 、 对称, 令F '( x) =
,函数在(-∞,
)单调递增, (
,0)
单调递减, (0, )单调递增, ( ,+∞)单调递减,故选 D。
8.某群体中的每位成员使用移动支付的概率都为 体的 10 位成员中使用移动支付的人数, A. 0.7 【答案】B 【考点】二项分布概率与方差 【难易程度】基础题 【解析】使用移动支付符合二项分布, B.0.6
是带卯眼的木构件的俯视图可以是(
)
A.
B.
C. 【答案】A 【考点】三视图 【难易程度】基础题
D.
【解析】卯眼的空间立体图如图,同时需要注意在三视图中,看不见的线用虚线表示, 故答案选 A
4、若
,则
(
)
A. 【答案】B
2018年普通高等学校招生全国统一考试理科数学(全国3卷)
2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则A .B .C .D . 2. A .B .C .D .3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若,则 A .B .C .D . {}|10A x x =-≥{}012B =,,A B ={}0{}1{}12,{}012,,()()1i 2i +-=3i --3i -+3i -3i+1sin 3α=cos2α=897979-89-5.的展开式中的系数为A .10B .20C .40D .806.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是 A .B .C .D .7.函数的图像大致为8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则 A .0.7B .0.6C .0.4D .0.39.的内角的对边分别为,,,若的面积为,则A .B .C .D .10.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为则三棱锥体积的最大值为522x x ⎛⎫+ ⎪⎝⎭4x 20x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,⎡⎣422y x x =-++p X 2.4DX =()()46P X P X =<=p =ABC △A B C ,,a b c ABC △2224a b c +-C =π2π3π4π6A B C D ,,,ABC △D ABC -A .B .C .D .11.设是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为 AB .2CD12.设,,则A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分.13.已知向量,,.若,则________.14.曲线在点处的切线的斜率为,则________. 15.函数在的零点个数为________.16.已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若 ,则________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)等比数列中,. (1)求的通项公式;(2)记为的前项和.若,求. 18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:12F F ,22221x y C a b-=:00a b >>,O 2F C P 1PF =C 0.2log 0.3a =2log 0.3b =0a b ab +<<0ab a b <+<0a b ab +<<0ab a b <<+()=1,2a ()=2,2-b ()=1,λc ()2∥c a +b λ=()1e xy ax =+()01,2-a =()πcos 36f x x ⎛⎫=+ ⎪⎝⎭[]0π,()11M -,24C y x =:C k C A B 90AMB =︒∠k ={}n a 15314a a a ==,{}n a n S {}n a n 63m S =m(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异? 附:,19.(12分)如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.20.(12分)已知斜率为的直线与椭圆交于,两点,线段的中点为. (1)证明:; m m m()()()()()22n ad bc K a b c d a c b d -=++++ABCD CD M CD C D AMD ⊥BMC M ABC -MAB MCD k l 22143x y C +=:A B AB ()()10M m m >,12k <-(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差. 21.(12分)已知函数.(1)若,证明:当时,;当时,; (2)若是的极大值点,求.(二)选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点. (1)求的取值范围;学.(2)求中点的轨迹的参数方程. 23.[选修4—5:不等式选讲](10分)设函数. (1)画出的图像;(2)当,,求的最小值.F C P C FP FA FB ++=0FA FP FB ()()()22ln 12f x x ax x x =+++-0a =10x -<<()0f x <0x >()0f x >0x =()f x a xOy O ⊙cos sin x y θθ=⎧⎨=⎩,θ(0,αl O ⊙A B ,αAB P ()211f x x x =++-()y f x =[)0x +∞∈,()f x ax b +≤a b +参考答案:13.14. 15. 16.2 17.(12分)解:(1)设的公比为,由题设得.由已知得,解得(舍去),或.故或.(2)若,则.由得,此方程没有正整数解.若,则.由得,解得.综上,. 18.(12分)解:(1)第二种生产方式的效率更高. 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii )由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高. (iv )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,123-3{}n a q 1n n a q -=424q q =0q =2q =-2q =1(2)n n a -=-12n n a -=1(2)n n a -=-1(2)3n n S --=63m S =(2)188m-=-12n n a -=21n n S =-63m S =264m=6m =6m =故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.*网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知. 列联表如下:(3)由于,所以有99%的把握认为两种生产方式的效率有差异. 19.(12分)解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM . 又 BCCM =C ,所以DM ⊥平面BMC .而DM 平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz .当三棱锥M −ABC 体积最大时,M 为的中点.由题设得,7981802m +==2240(151555)10 6.63520202020K ⨯-⨯==>⨯⨯⨯⊂CD ⊂DA CD (0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M (2,1,1),(0,2,0),(2,0,0)AM AB DA =-==设是平面MAB 的法向量,则即 可取.是平面MCD 的法向量,因此,, 所以面MAB 与面MCD 所成二面角的正弦值是. 20.(12分)解:(1)设,则. 两式相减,并由得. 由题设知,于是 .① 由题设得,故. (2)由题意得,设,则.由(1)及题设得.(,,)x y z =n 0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 20,20.x y z y -++=⎧⎨=⎩(1,0,2)=n DA 5cos ,5||||DA DA DA ⋅==n nn 2sin ,5DA =n 51221(,),(,)A y x y x B 222212121,14343y x y x +=+=1221y x y k x -=-1122043y x y k x +++⋅=12121,22x y x ym ++==34k m=-302m <<12k <-(1,0)F 33(,)P x y 331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=3321213()1,()20y y x x y x m =-+==-+=-<又点P 在C 上,所以,从而,. 于是.同理. 所以. 故,即成等差数列. 设该数列的公差为d ,则.② 将代入①得. 所以l 的方程为,代入C 的方程,并整理得. 故,代入②解得.或21.(12分)解:(1)当时,,. 设函数,则. 当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.34m =3(1,)2P -3||2FP =1||(22xFA x ===-2||22x FB =-121||||4()32FA FB x x +=-+=2||||||FP FA FB =+||,||,||FA FP FB 1212||||||||||2FB FA x x d =-=-=34m =1k =-74y x =-+2171404x x -+=121212,28x x x x +==||28d =0a =()(2)ln(1)2f x x x x =++-()ln(1)1xf x x x'=+-+()()ln(1)1x g x f x x x '==+-+2()(1)x g x x '=+10x -<<()0g x '<0x >()0g x '>1x >-()(0)0g x g ≥=0x =()0g x =()0f x '≥0x =()0f x '=所以在单调递增.学#又,故当时,;当时,.(2)(i )若,由(1)知,当时,,这与是的极大值点矛盾. (ii )若,设函数.由于当时,,故与符号相同. 又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不是的极大值点. 如果,则.则当时,;当时,.所以是的极大值点,从而是的极大值点 综上,. 22.[选修4—4:坐标系与参数方程](10分)【解析】(1)的直角坐标方程为.当时,与交于两点. ()f x (1,)-+∞(0)0f =10x -<<()0f x <0x >()0f x >0a ≥0x >()(2)ln(1)20(0)f x x x x f ≥++->=0x =()f x 0a <22()2()ln(1)22f x xh x x x ax x ax ==+-++++||min{x <220x ax ++>()h x ()f x (0)(0)0h f ==0x =()f x 0x =()h x 2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++610a +>6104a x a +<<-||min{x <()0h x '>0x =()h x 610a +<224610a x ax a +++=10x <1(,0)x x∈||min{x <()0h x '<0x =()h x 610a +=322(24)()(1)(612)x x h x x x x -'=+--(1,0)x ∈-()0h x '>(0,1)x ∈()0h x '<0x =()h x 0x =()f x 16a =-O 221x y +=2απ=l O当时,记,则的方程为.与交于两点当且仅当,解得或,即或. 综上,的取值范围是. (2)的参数方程为为参数,. 设,,对应的参数分别为,,,则,且,满足. 于是,.又点的坐标满足 所以点的轨迹的参数方程是为参数,. 23.[选修4—5:不等式选讲](10分)【解析】(1)的图像如图所示. 2απ≠tan k α=l y kx =lO ||1<1k <-1k >(,)42αππ∈(,)24απ3π∈α(,)44π3πl cos ,(sin x t t y t αα=⎧⎪⎨=⎪⎩44απ3π<<)A B P A t B t P t 2A B P t t t +=A t Bt 2sin 10t α-+=A B t t α+=P t α=P (,)xy cos ,sin .P P x t y t αα=⎧⎪⎨=⎪⎩P 2,2cos 222x y αα⎧=⎪⎪⎨⎪=--⎪⎩(α44απ3π<<)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =(2)由(1)知,的图像与轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当且时,在成立,因此的最小值为.()y f x =y 233a ≥2b ≥()f x ax b ≤+[0,)+∞a b +5。
2018全国卷3高考试题及答案-理科数学.doc
绝密★启封并使用完毕前试题类型:2018年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量1(,22BA =uu v ,1),2BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =(A (B (C )- (D )-(9)如图,格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18+(B )54+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个(B )16个(C )14个(D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)若x,y满足约束条件{x−y+1≥0 x−2y≪0x+2y−2≪0则z=x+y的最大值为_____________.(14)函数y=sin x−√3cos x的图像可由函数 y=sin x+√3cos x的图像至少向右平移_____________个单位长度得到。
2018年普通高等学校招生全国统一考试理科数学高考第三套(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos 2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p = A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为 A .123B .183C .243D .54311.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为 A .5B .2C .3D .212.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题:本题共4小题,每小题5分,共20分。
2018年全国卷III物理双向细目表
综合
速度图像,牛顿运动定律、功和功率
20
电磁
感应
交变电流图象、法拉第电磁感应定律、楞次定律
21
电场
电容器、带电微粒在电场中的运动、牛顿运动定律、电势能、动量定理
实验题
22
力学
实验
测量人的反应时间
无图
演示
实验
23
电学
实验
电阻测量、欧姆定律、电路连接
电阻的测量
计算题
24
电场与磁场
带电粒子在电场中的加速、在匀强磁场中的匀速圆周运动
2018年全国卷 双向细目表
(全卷字数约2494)
题
型
题
号
考查
章节
知识点
题图
备注
单项选择题
14
原子
物理
核反应方程遵循的规律
无图
15
天体
运动
卫星的运动、开普勒定律
无图
16
交变
电流
交变电流的图线、正弦交变电流的有效值、焦耳定律
17
曲线
运动
斜面上的平抛运动
无图
18
直线
运动
对位移图像的理解
多项选择题
19
力学
25Biblioteka 动量与能量小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动、等效重力场问题
选考题
33
热学
对一定质量的理想气体的p——V图线的理解、理想气体状态方程、热力学第一定律、理想气体内能
选择
热学
玻意耳定律、液柱模型、关联气体
计算
34
振动
和波
波的图像、波速的计算、波的传播规律
选择
几何
光学
折射定律、光在三棱镜中传播
2018全国卷3高考试题及答案理科数学.doc
一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)设集合S= ,则S T=
(A) [2,3] (B)(- ,2] [3,+ )
(C)[3,+ )(D)(0,2] [3,+ )
(2)若z=1+2i,则
(A)1 (B) -1 (C) i (D)-i
, , , ,
, , .
设 为平面 的法向量,则 ,即 ,可取 ,
于是 .
(20)解:由题设 .设 ,则 ,且
.
记过 两点的直线为 ,则 的方程为 . .....3分
(Ⅰ)由于 在线段 上,故 .
记 的斜率为 , 的斜率为 ,则
.
所以 . ......5分
(Ⅱ)设 与 轴的交点为 ,
则 .
由题设可得 ,所以 (舍去), .
解:(Ⅰ) 的普通方程为 , 的直角坐标方程为 . ……5分
(Ⅱ)由题意,可设点 的直角坐标为 ,因为 是直线,所以 的最小值,
即为 到 的距离 的最小值, .
………………8分
当且仅当 时, 取得最小值,最小值为 ,此时 的直角坐标为 . ………………10分
24.(本小题满分10分)选修4-5:不等式选讲
(II)建立y关于t的回归方程(系数精确到0.01),预测2018年我国生活垃圾无害化处理量。
(19)(本小题满分12分)
如图,四棱锥P-ABCD中,PA⊥地面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(I)证明MN∥平面PAB;
(II)求直线AN与平面PMN所成角的正弦值.
(II)设点P在 上,点Q在 上,求|PQ|的最小值及此时P的直角坐标.
(完整word版)2018年高考理科数学试题及答案-全国卷3,推荐文档
2018年普通高等学校招生全国统一考试 (全国卷3 )理科数学2018年普通高等学校招生全国统一考试(全国卷3)理科数学C • 1, 23 .中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体, 可以是1 门f 4.若 sin 口 ,贝U cos 23上,贝y △ABP 面积的取彳范、选惚本题共12小题,每小题 5分,共60分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1 .已知集合 A x | x 1> 0., B 0,1,2.,贝U A B1)边的小长则咬合时带卯眼的木构件的俯 10的展开式中4x 的系数为20C . 40D . 806 .直线 y 20分别与 x 轴,y 轴交于,B 两点, 点P 在圆2018年普通高等学校招生全国统一考试(全国卷3 )理科数学2018年普通高等学校招生全国统一考试(全国卷3 )理科数学p ,各成员的支付方式相互独立,设 X 为该群体的 10位成员A . 12 3B . 18 3C . 24 3 2 27 .函数422y x x 的图像大致为中使用移动支付的人数, DX 2.4, P X 4 P X 6,贝U p A . 0.7B . 0.6C . 0.4D . 0.39 . △ ABC 的内角 A , B , C 的对边分别为a ,b ,c ,若△ ABC2 2 2占 —的面积为 a b c ,贝y CAn… n亠n4… n A .B .C .D .234610 .设 A , B , C ,D 是同一个半径为 4 的球的球面上四点,△ ABC 为等边三角形且其面积为8 .某群体中的每位成员使用移动支付的概率都为D . 54 311 .设F 1 , F 2是双曲线 x yC : 2 2 1 ( a 0, b 0 )的左,右焦点, 的垂线,垂足为 a =b< P .若 PF 1 6 OP,贝U C 的离心率为A .5 B . 2C . 3、填空题:本题共 4小题,每小题 5分,共20分。
2018年全国(三卷)高考数学(理)试题及答案
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .232⎡⎣D .2232⎡⎣ 7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93D ABC -体积的最大值为A .123B .183C .243D .54311.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为A B .2 C D12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题:本题共4小题,每小题5分,共20分。
(完整)2018年高考理科数学全国3卷(附答案)
(2)求 中点 的轨迹的参数方程.
23.[选修4—5:不等式选讲](10分)
设函数 .
(1)画出 的图像;
(2)当 , ,求 的最小值.
绝密★启用前
2018年普通高等学校招生全国统一考试
理科数学试题参考答案
一、选择题
1
2
3
4
5
6
7
8
9
10
11
12
C
D
A
B
C
A
D
B
C
B
C
B
二、填空题
三、解答题:共70分。解答题应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)
等比数列 中, .
(1)求 的通项公式;
(2)记 为 的前 项和.若 ,求 .
18.(12分)
某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.
(2)由茎叶图知 .
列联表如下:
超过
不超过
第一种生产方式
15
5
第二种生产方式
5
15
(3)由于 ,所以有99%的把握认为两种生产方式的效率有差异.
19.解:
(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC 平面ABCD,所以BC⊥平面CMD,故BC⊥DM.
2018年全国普通高等学校招生统一考试理科数学(新课标III卷)
…装…………○…………____姓名:___________班级:________…装…………○…………2018年全国普通高等学校招生统一考试理科数学(新课标III 卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知集合A ={x|x −1≥0},B ={0 , 1 , 2},则A ∩B =A. {0}B. {1}C. {1 , 2}D. {0 , 1 , 2} 2.(1+i )(2−i )=A. −3−iB. −3+iC. 3−iD. 3+i3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. AB. BC. CD. D 4.若sinα=13,则cos2α=A. 89 B. 79 C. −79D. −895.(x 2+2x )5的展开式中x 4的系数为A. 10B. 20C. 40D. 80 6.直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x −2)2+y 2=2上,则△ABP 面积的取值范围是A. [2 , 6]B. [4 , 8]C. [√2 , 3√2]D. [2√2 , 3√2] 7.函数y=−x 4+x 2+2的图像大致为答案第2页,总12页………订…………○…………线…………○※※线※※内※※答※※题※※………订…………○…………线…………○A. AB. BC. CD. D8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,DX =2.4,P (X =4)<P (X =6),则p = A. 0.7 B. 0.6 C. 0.4 D. 0.39.△ABC 的内角A , B , C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2−c 24,则C =A. π2 B. π3 C. π4 D. π610.设A , B , C , D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为9√3,则三棱锥D−ABC 体积的最大值为A. 12√3B. 18√3C. 24√3D. 54√3 11.设F 1 , F 2是双曲线C : x 2a 2−y 2b 2=1(a >0 , b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=√6|OP |,则C 的离心率为A. √5B. 2C. √3D. √212.设a =log 0.20.3,b =log 20.3,则A. a +b <ab <0B. ab <a +b <0C. a +b <0<abD. ab <0<a +b第II 卷(非选择题)请点击修改第II 卷的文字说明…○…………__班级:_________…○…………二、填空题(题型注释)13.曲线y=(ax +1)e x 在点(0 , 1)处的切线的斜率为−2,则a =________.14.函数f (x )=cos (3x +π6)在[0 , π]的零点个数为________.15.已知点M(−1 , 1)和抛物线C : y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.三、解答题(题型注释)16.等比数列{a n }中,a 1=1 , a 5=4a 3..1)求{a n }的通项公式;.2)记S n 为{a n }的前n 项和.若S m =63,求m .17.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:.1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的.3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异? 附:K2=n (ad−bc)2(a+b )(c+d )(a+c )(b+d ).18.已知函数.(1)若a =0,证明:当−1<x <0时,f (x )<0;当x >0时,f (x )>0..2)若x =0是f (x )的极大值点,求a . 19.[选修4—4:坐标系与参数方程]答案第4页,总12页………○…………订…………※※在※※装※※订※※线※※内※※答※※题※※………○…………订…………在平面直角坐标系xOy 中,⊙O 的参数方程为{x =cosθ,y =sinθ(θ为参数),过点(0 , −√2)且倾斜角为α的直线l 与⊙O 交于A , B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. 20.[选修4—5:不等式选讲] 设函数f (x )=|2x +1|+|x −1|.(1)画出y =f (x )的图像; (2)当x∈[0 , +∞),f (x )≤ax +b ,求a +b 的最小值.………订___________考号………订参数答案1.C【解析】1.分析:由题意先解出集合A,进而得到结果。
2018年全国(三卷)高考数学(理)试题及答案(同名17548)
2018年全国(三卷)高考数学(理)试题及答案(同名17548)2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则A .B .C .D . 2.{}|10A x x =-≥{}012B =,,AB ={}0{}1{}12,{}012,,()()1i 2i +-=A .B .C .D .3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若,则 A . B . C . D . 5.的展开式中的系数为A .10B .20C .40D .803i --3i -+3i -3i+1sin 3α=cos2α=897979-89-522x x ⎛⎫+ ⎪⎝⎭4xA .0.7B .0.6C .0.4D .0.39.的内角的对边分别为,,,若的面积为,则A .B .C .D .10.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A .B .C .D . 11.设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A B .2 C D 12.设,,则A .B .ABC △A B C ,,a b c ABC△2224a b c +-C =π2π3π4π6A B C D ,,,ABC △93D ABC -12318324354312F F ,22221x y C a b-=:00a b >>,O 2F C P 16PF OP=C 5320.2log0.3a =2log 0.3b =0a b ab +<<0ab a b <+<C .D . 二、填空题:本题共4小题,每小题5分,共20分。
2018年全国Ⅲ高考试卷(理科)—含答案
2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则A .B .C .D . 2. A .B .C .D .3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若,则 A .B .C .D . {}|10A x x =-≥{}012B =,,A B ={}0{}1{}12,{}012,,()()1i 2i +-=3i --3i -+3i -3i+1sin 3α=cos2α=897979-89-5.的展开式中的系数为A .10B .20C .40D .806.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是 A .B .C .D .7.函数的图像大致为8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则 A .0.7B .0.6C .0.4D .0.39.的内角的对边分别为,,,若的面积为,则A .B .C .D .10.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为522x x ⎛⎫+ ⎪⎝⎭4x 20x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,⎡⎣422y x x =-++p X 2.4DX =()()46P X P X =<=p =ABC △A B C ,,a b c ABC △2224a b c +-C =π2π3π4π6A B C D ,,,ABC △,则三棱锥体积的最大值为A .B .C .D .11.设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为AB .2CD12.设,,则A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
了解
选修2-1 第二 章 必修1 第二章
∨
∨
∨
掌握
∨
∨
∨
掌握
必修4 第二章 选修2-2 第一 章 必修1 第三章 选修2-1 第二 章 必修5 第二章
∨
∨
掌握
∨
理解
∨
∨
∨
了解
∨
∨
掌握
∨
∨
理解
必修3 第三章 选修2-1 第三 章 选修2-1 第二 章 选修2-2 第一 章 选修4-4
∨
∨
∨
∨
掌握
∨
∨
∨
掌握
必修2 第一章
∨
∨
∨
∨
11
12
13
14
15
16
17
18
19
20
21
22
23
选 择 双曲线 题 选 择 对数函数 题 填 空 向量 题 填 空 导数 题 填 空 零点 题 填 空 抛物线 题 解 答 等差数列 题 解 答 统计概率 题 解 答 立体几何 题 解 答 圆锥曲线 题 解 答 导函数 题 解 极坐标与参 答 数方程 题 解 答 不等式选讲 题
集合的运算
理解
必修1 第一章 选修2-1 第三 章 必修2 第一章
∨
∨
复数的运算
理解
∨
∨
三视图
掌握
∨
∨
三角函数
理解
必修4 第一章 选修2-3 第一 章 必修2 第二章
∨
∨
二项式定理
掌握
∨
∨
圆的方程
理解
∨
∨
∨
函数的图像
掌握
必修1 第一章
∨
∨
概率
理解
必修3 第三章
∨
∨
∨
∨
解三角形
掌握
必修5 第一章
∨
∨
立体几何
2018年普通高等学校招生全国统一考试数学(理)(全国3卷) 双向细目表
教
学科核心素养 试 题 题 号 类 型
考点
考纲要 求教材依据来自数学运 算数学抽 象逻辑推 理
直观想 象
数据分 析
1
2
3
4
5
6
7
8
9
10
选 择 题 选 择 题 选 择 题 选 择 题 选 择 题 选 择 题 选 择 题 选 择 题 选 择 题 选 择 题
∨
掌握
∨
∨
∨
掌握
∨
∨
∨
掌握
∨
∨
∨
掌握
选修4-5
∨
∨
∨
目表
教师:卫国强 本 预计 实际 题
预计难度
数学建 总 易 中 难 得分 得分 模 分
∨
5
∨
5
∨
5
∨
5
∨
5
∨
5
∨
5
∨
∨
5
∨ 5
∨ 5
∨ 5
∨
∨ 5
∨
5
∨
5
∨
5
∨ 5
∨
12
∨
∨
12
∨
12
∨ 12
∨ 12
∨
10
∨
10