磁场典型例题
高中物理竞赛讲义-磁场典型例题解析精选全文完整版
可编辑修改精选全文完整版磁场典型例题解析一、磁场与安培力的计算【例题1】两根无限长的平行直导线a 、b 相距40cm ,通过电流的大小都是3.0A ,方向相反。
试求位于两根导线之间且在两导线所在平面内的、与a 导线相距10cm 的P 点的磁感强度。
【解说】这是一个关于毕萨定律的简单应用。
解题过程从略。
【答案】大小为×10−6T ,方向在图9-9中垂直纸面向外。
【例题2】半径为R ,通有电流I 的圆形线圈,放在磁感强度大小为B 、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。
【解说】本题有两种解法。
方法一:隔离一小段弧,对应圆心角θ ,则弧长L = θR 。
因为θ → 0(在图9-10中,为了说明问题,θ被夸大了),弧形导体可视为直导体,其受到的安培力F = BIL ,其两端受到的张力设为T ,则T 的合力ΣT = 2Tsin 2θ再根据平衡方程和极限xxsin lim0x →= 0 ,即可求解T 。
方法二:隔离线圈的一半,根据弯曲导体求安培力的定式和平衡方程即可求解…【答案】BIR 。
〖说明〗如果安培力不是背离圆心而是指向圆心,内张力的方向也随之反向,但大小不会变。
〖学员思考〗如果圆环的电流是由于环上的带正电物质顺时针旋转而成(磁场仍然是进去的),且已知单位长度的电量为λ、环的角速度ω、环的总质量为M ,其它条件不变,再求环的内张力。
〖提示〗此时环的张力由两部分引起:①安培力,②离心力。
前者的计算上面已经得出(此处I = ωπλ•π/2R 2 = ωλR ),T 1 = B ωλR 2 ;后者的计算必须..应用图9-10的思想,只是F 变成了离心力,方程 2T 2 sin 2θ =πθ2M ω2R ,即T 2 =πω2R M 2 。
〖答〗B ωλR 2 + πω2R M 2 。
【例题3】如图9-11所示,半径为R 的圆形线圈共N 匝,处在方向竖直的、磁感强度为B 的匀强磁场中,线圈可绕其水平直径(绝缘)轴OO ′转动。
磁场各种典型例题全覆盖(很好)
磁 场【例1】磁场对电流的作用力大小为F =BIL (注意:L 为有效长度,电流与磁场方向应 ).F 的方向可用 定则来判定.试判断下列通电导线的受力方向.× × × × . . . .×× ×. . × ×× . . . .× × × × . . . .试分别判断下列导线的电流方向或磁场方向或受力方向.【例2】如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?解:先画出导线所在处的磁感线,上下两部分导线所受安培力的方向相反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转90°后平移)。
分析的关键是画出相关的磁感线。
【例3】 条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会___(增大、减小还是不变?)。
水平面对磁铁的摩擦力大小为___。
解:本题有多种分析方法。
⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中粗虚线所示),可看出两极受的磁场力的合力竖直向上。
磁铁对水平面的压力减小,但不受摩擦力。
⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中细虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。
⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。
【例4】 如图在条形磁铁N 极附近悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转? B B B B解:用“同向电流互相吸引,反向电流互相排斥”最简单:条形磁铁的等效螺线管的电流在正面是向下的,与线圈中的电流方向相反,互相排斥,而左边的线圈匝数多所以线圈向右偏转。
(本题如果用“同名磁极相斥,异名磁极相吸”将出现判断错误,因为那只适用于线圈位于磁铁外部的情况。
高中物理《磁场》典型题(经典推荐含答案)
高中物理《磁场》典型题(经典推荐含答案)高中物理《磁场》典型题(经典推荐)一、单项选择题1.下列说法中正确的是:A。
在静电场中电场强度为零的位置,电势也一定为零。
B。
放在静电场中某点的检验电荷所带的电荷量 q 发生变化时,该检验电荷所受电场力 F 与其电荷量 q 的比值保持不变。
C。
在空间某位置放入一小段检验电流元,若这一小段检验电流元不受磁场力作用,则该位置的磁感应强度大小一定为零。
D。
磁场中某点磁感应强度的方向,由放在该点的一小段检验电流元所受磁场力方向决定。
2.物理关系式不仅反映了物理量之间的关系,也确定了单位间的关系。
如关系式 U=IR,既反映了电压、电流和电阻之间的关系,也确定了 V(伏)与 A(安)和Ω(欧)的乘积等效。
现有物理量单位:m(米)、s(秒)、N(牛)、J (焦)、W(瓦)、C(库)、F(法)、A(安)、Ω(欧)和 T(特),由他们组合成的单位都与电压单位 V(伏)等效的是:A。
J/C 和 N/CB。
C/F 和 T·m2/sC。
W/A 和 C·T·m/sD。
W·Ω 和 T·A·m3.如图所示,重力均为 G 的两条形磁铁分别用细线 A 和B 悬挂在水平的天花板上,静止时,A 线的张力为 F1,B 线的张力为 F2,则:A。
F1=2G,F2=GB。
F1=2G,F2>GC。
F1GD。
F1>2G,F2>G4.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直,先保持线框的面积不变,将磁感应强度在 1s 时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在 1s时间内,再将线框的面积均匀地减小到原来的一半,先后两个过程中,线框中感应电动势的比值为:A。
1/2B。
1C。
2D。
45.如图所示,矩形 MNPQ 区域内有方向垂直于纸面的匀强磁场,有 5 个带电粒子从图中箭头所示位置垂直于磁场边界进入磁场,在纸面内做匀速圆周运动,运动轨迹为相应的圆弧,这些粒子的质量,电荷量以及速度大小如下表所示,由以上信息可知,从图中 a、b、c 处进入的粒子对应表中的编号分别为:A。
磁场习题(含答案解析)
磁场典型例题(一)磁通量的大小比较与磁通量的变化例题1. 如图所示,a、b为两同心圆线圈,且线圈平面均垂直于条形磁铁,a的半径大于b,两线圈中的磁通量较大的是线圈___________。
解析:b 部分学生由于对所有磁感线均通过磁铁内部形成闭合曲线理解不深,容易出错。
例题2. 磁感应强度为B的匀强磁场方向水平向右,一面积为S的线圈abcd如图所示放置,平面abcd与竖直面成θ角。
将abcd绕ad轴转180º角,则穿过线圈的磁通量的变化量为()A. 0B. 2BSC. 2BSc osθD. 2BSs inθ解析:C部分学生由于不理解关于穿过一个面的磁通量正负的规定而出现错误。
(二)等效分析法在空间问题中的应用例题3. 一个可自由运动的线圈L1和一个固定的线圈L2互相绝缘垂直放置,且两个圆线圈的圆心重合,当两线圈都通过如图所示的电流时,则从左向右看,线圈L1将()A. 不动B. 顺时针转动C. 逆时针转动D. 向纸外平动解析:C 本题可把L1、L2等效成两个条形磁铁,利用同名磁极相斥,异名磁极相吸,即可判断出L1将逆时针转动。
(三)安培力作用下的平衡问题例题4. 一劲度系数为k的轻质弹簧,下端挂有一匝数为n的矩形线框abcd,bc边长为l。
线框的下半部处在匀强磁场中,磁感应强度大小为B,方向与线框平面垂直,在图中垂直于纸面向里。
线框中通以电流I,方向如图所示。
开始时线框处于平衡状态。
令磁场反向,磁感应强度的大小仍为B,线框达到新的平衡。
在此过程中线框位移的大小=__________,方向_____________。
解析:,向下。
本题为静力学与安培力综合,把安培力看成静力学中按性质来命名的一个力进行受力分析,是本题解答的基本思路。
例题5. 如图所示,两平行光滑导轨相距为20cm,金属棒MN质量为10g,电阻R=8Ω,匀强磁场的磁感应强度B的方向竖直向下,大小为0.8T,电源电动势为10V,内阻为1Ω。
磁场典型例题
1、(2010年全国I 卷第26题)如图1所示,在0≤x ≤a 3区域内存在与xy 平面垂直的匀强磁场,磁感应强度的大小为B 。
在0=t 时刻,一位于坐标原点的粒子源在xy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y 轴正方向的夹角分布在0~180°范围内。
已知沿y 轴正方向发射的粒子在0t t =时刻刚好从磁场边界上),3(a a P 点离开磁场。
求:(1)粒子在磁场中做圆周运动的半径R 及粒子的比荷m q /;(2)此时刻仍在磁场中的粒子的初速度方向与y 轴正方向夹角的取值范围;(3)从粒子发射到全部 粒子离开磁场所用的时间。
2、(全国新课标卷第25题)(半径相同)如图6所示,在0≤x ≤a 、0≤y ≤2a 范围内有垂直于xy 平面向外的匀强磁场,磁感应强度大小为B 。
坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在xy 平面内,与y 轴正方向的夹角分布在0~90°范围内。
己知粒子在磁场中做圆周运动的半径介于2a 到a 之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。
求最后离开磁场的粒子从粒子源射出时的(1)速度大小;(2)速度方向与y 轴正方向夹角正弦。
3、如图6甲所示,水平直线MN 下方有竖直向上的匀强电场,现将一重力不计、比荷q m=106 C/kg 的正电荷置于电场中的O 点由静止释放,经过π15×10-5 s 后,电荷以v 0=1.5×104 m/s 的速度通过MN 进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B 按图乙所示规律周期性变化(图乙中磁场以垂直纸面向外为正,以电荷第一次通过MN 时为t =0时刻).求:(1)匀强电场的电场强度E ;(2)图乙中t =4π5×10-5 s 时刻电荷与O 点的水平距离; (3)如果在O 点右方d =68 cm 处有一垂直于MN 的足够大的挡板,求电荷从O 点出发运 动到挡板所需的时间.(sin 37°=0.60,cos 37°=0.80)4、如图11所示,在坐标系xOy中,第一象限内充满着两个匀强磁场a和b,OP为分界线,在区域a中,磁感应强度为2B,方向垂直纸面向里;在区域b中,磁感应强度为B,方向垂直纸面向外,P点坐标为(4l,3l).一质量为m、电荷量为q的带正电的粒子从P点沿y轴负方向射入区域b,经过一段时间后,粒子恰能经过原点O,不计粒子重力.(sin 37°=0.6,cos 37°=0.8).求:(1)粒子从P点运动到O点的时间最少是多少?(2)粒子运动的速度可能是多少?5、如图13所示,在光滑绝缘的水平桌面上建立一xOy坐标系,平面处在周期性变化的电场和磁场中,电场和磁场的变化规律如图14所示(规定沿+y方向为电场强度的正方向,竖直向下为磁感应强度的正方向).在t=0时刻,一质量为10 g、电荷量为0.1 C且不计重力的带电金属小球自坐标原点O处,以v0=2 m/s的速度沿x轴正方向射出.已知E0=0.2 N/C、B0=0.2π T.求:(1)t=1 s末时,小球速度的大小和方向;(2)1 s~2 s内,金属小球在磁场中做圆周运动的半径和周期;(3)(2n-1) s~2n s(n=1,2,3,…)内金属小球运动至离x轴最远点的位置坐标.图146、[2014·江苏卷] 某装置用磁场控制带电粒子的运动,工作原理如图所示.装置的长为L,上下两个相同的矩形区域内存在匀强磁场,磁感应强度大小均为B、方向与纸面垂直且相反,两磁场的间距为d.装置右端有一收集板,M、N、P为板上的三点,M位于轴线OO′上,N、P分别位于下方磁场的上、下边界上.在纸面内,质量为m、电荷量为-q的粒子以某一速度从装置左端的中点射入,方向与轴线成30°角,经过上方的磁场区域一次,恰好到达P点.改变粒子入射速度的大小,可以控制粒子到达收集板上的位置.不计粒子的重力.(1)求磁场区域的宽度h;(2)欲使粒子到达收集板的位置从P点移到N点,求粒子入射速度的最小变化量Δv;(3)欲使粒子到达M点,求粒子入射速度大小的可能值.答案1、【解析】(1)具体思路是做出从P 点离开磁场的带电粒子的运动轨迹,如图2所示,由几何关系求出半径a R 332=,对应的圆心角为︒=120θ,周期03t T =,在由周期Bq m T π2=得032Bt m q π=,也容易得弦OP 与y 轴正方向夹角为60°。
带电粒子在磁场中运动—经典例题
第三章 磁场例1.如图11-3-1所示,真空室内有匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B =0.60T ,磁场内有一块平行感光板ab ,板面与磁场方向平行,在距ab 的距离l =16cm 处,有一个点状的α粒子发射源S ,它向各个方向发射α粒子,α粒子的速度都是v =3.0×106m/s .已知α粒子的电量与质量之比q/m =5.0×107C/kg ,现只考虑在纸平面中运动的α粒子,求ab 上被α粒子打中的区域长度.分析与解:洛伦兹力是α粒子作圆运动的向心力;计算出圆半径后,确定圆心的位置就成为解题的关键,α粒子轨迹与ab 相切,以及α粒子离S 最远的距离为2r 是判定最远点的条件.如图11-3-2.α粒子带正电,用左手定则判定α粒子在磁场中沿逆时针方向做匀速圆周运动,用r 表示轨道半径,有Bqv =mrv 2,解得67310m 0.10m 5.0100.6()v r q B m⨯===⨯⨯,可见2r >l >r .因向不同方向发射的α粒子的圆轨迹都过S ,由此可知,某一圆轨迹在图中N 左侧与ab 相切,则此切点P 1就是α粒子能打中的左侧最远点,为定出P 1的位置,可作平行与ab 的直线cd ,cd 到ab 的距离为r =0.10m .以S 为圆心,r 为半径,作弧交cd 于Q 点,过Q 作ab 的垂线,它与ab 的交点即为P 1.由图b图11-3-1abc d图11-3-2中几何关系得:221)(r l r NP --=.再考虑N 的右侧,任何α粒子在运动中离S 的距离不可能超过2r ,以2r 为半径,S 为圆心作圆,交ab 于N 右侧的P 2点,P 2即为α粒子在右侧能达到的最远点.由几何关系得:2224l r NP -=.所求长度为:P 1P 2=NP 1+NP 2=0.20m .例2.在xOy 平面内有许多电子(质量为m ,电荷量为e )从坐标原点O 不断以相同大小的速度v 0沿不同的方向射入第一象限,如图11-3-3所示.现加上一个垂直于xOy 平面的磁感应强度为B 的匀强磁场,要求这些电子穿过该磁场后都能平行于x 轴向x 轴正方向运动,试求出符合条件的磁场的最小面积.分析与解:所有电子在所求的匀强磁场中均做匀速圆周运动,由200v ev B mr=,得半径为0mv R eB=.设与x 轴成α角入射的电子从坐标为(x ,y )的P 点射出磁场,则有x 2+(R –y )2=R 2①①式即为电子离开磁场的边界b ,当α=90°时,电子的运动轨迹为磁场的上边界a ,其表达式为(R –x )2+y 2=R 2②由①②式所确定的面积就是磁场的最小范围,如图11-3-4所示,其面积为222022)422mv R R S ππ-=-=()(eBAB图11-3-5y【益智演练】1.有一个电子射线管(阴极射线管),放在一通电直导线AB的上方,发现射线的径迹如图11-3-5所示,则()A.直导线电流从A流向B C.直导线电流垂直于纸面,并流向纸内B.直导线电流从B流向A D.直导线电流垂直于纸面,并流向纸外2.赤道附近地磁场方向向北,同时存在方向竖直向下的电场,若在该处发射一电子(重力作用不计),电子沿直线飞行而不发生偏转,则该电子的飞行方向为()A.水平向东B.水平向西C.竖直向上D.竖直向下3.在匀强磁场中一个带电粒子做匀速圆周运动,如果又顺利垂直进入另一个磁感应强度是原来磁感应强度2倍的匀强磁场,则()A.粒子的速率加倍,周期减半B.粒子的速率不变,轨道半径减半C.粒子的速率减半,轨道半径变为原来的1/4D.粒子的速率不变,周期减半4.如图11-3-6所示,ab是一弯管,其中心线是半径为R的一段圆弧,将它置于一给定的匀强磁场中,磁场方向垂直于圆弧所在平面,并且指向纸外.有一束粒子对准a端射入弯管,粒子有不同的质量、不同的速度,但都是一价正离子,则()A.只有速度大小一定的粒子可以沿中心线通过弯管B.只有质量大小一定的粒子可以沿中心线通过弯管C.只有动量大小一定的粒子可以沿中心线通过弯管D.只有能量大小一定的粒子可以沿中心线通过弯管图11-3-65.如图11-3-7所示,一个带电粒子,在磁感应强度B =0.8 T 的匀强磁场中运动,其速度方向与磁场方向垂直,从a 到b 所需时间为2×10-4 s ,从b 到a 所需时间为1×10-3 s ,已知a 、b 两点距离为0.3 m ,粒子带电量为3×10-8 C ,则该粒子的动量大小为( )A .7.2×10-9 kg·m/sB .1.44×10-8 kg·m/sC .3.6×10-9 kg·m/sD .条件不足,无法确定6.如图11-3-8所示,PQ 是匀强磁场中的一片薄金属片,其平面与磁场方向平行,一个带电粒子从某点以与PQ 垂直的速度v 射出,动能是E ,射出后带电粒子的运动轨迹如图15-83所示.今测得它在金属片两边的轨迹半径之比为10∶9,若在穿越板的过程中粒子受到的阻力大小及电量恒定,则( )A .带电粒子一定带正电B .带电粒子每穿过一次金属片,速度减小了mE2101C .带电粒子每穿过一次金属片,动能减少了0.19ED .带电粒子穿过5次后陷在金属片里9.如图11-3-10所示,两电子沿MN 方向从M 点射入两平行平面间的匀强磁场中,它们分别以v 1、v 2的速率射出磁场,则v 1∶v 2=______,通过匀强磁场所用时间之比t 1∶t 2=______.图11-3-10MNPQ图11-3-8a图11-3-710.如图11-3-11所示,在圆心为O 、半径为r 的圆形区域内有方向垂直纸面向里的匀强磁场,一电子以速度v 沿AO 方向射入,后沿OB 方向射出匀强磁场,若已知∠AOB =120°,则电子穿越此匀强磁场所经历的时间是___________.11.如图11-3-12所示,半径为R 的圆形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B .若在圆心处静止的原子核中释放一个质量为m 、电量为q 的粒子,粒子的速度v 0垂直于磁场,则初速度v 0大小必须满足条件 时,粒子才能从磁场中穿出,粒子穿过磁场需要的最长时间为 .12.一质量为m 、带电量为q 的带电粒子以某一初速射入如图11-3-13所示的匀强磁场中(磁感应强度为B ,磁场宽度为L ) ,要使此带电粒子穿过这个磁场,则带电粒子的初速度应为多大?图11-3-11OABv 0图11-3-1313.图11-3-14中虚线AB 右侧是磁感应强度为B 1的匀强磁场,左侧是磁感应强度为B 2的匀强磁场.已知221B B .磁场的方向都直于图中的纸面并指向纸面内.现有一带正电的粒子自图中O 处以初速度开始向右运动,求从开始时刻到第10次通过AB 线向右运动的时间内,该粒子在AB 方向的平均速度.14.初速度为零的离子经电势差为U 的电场加速后,从离子枪T 中水平射出,经过一段路程后进入水平放置的两平行金属板MN 和PQ 之间,离子所经空间存在一磁感强度为B 的匀强磁场.如图11-3-15所示(不考虑重力作用),离子的比荷mq (q 、m 分别是离子的电量和质量)在什么范围内,离子才能打在金属板上?2图11-3-1515.如图11-3-16所示,一足够长的矩形区域abcd 内有磁感应强度为B ,方向垂直纸面向里的匀强磁场,现从ad 边的中点O 处,以垂直磁场且跟ad 边成30º角的速度方向射入一带电粒子.已知粒子质量为m ,带电量为q ,ad 边长为l ,不计粒子重力.(1)若粒子从ab 边上射出,则入射速度v 0的范围是多少? (2)粒子在磁场中运动的最长时间为多少?16.如图11-3-17所示,为显像管电子束偏转示意图,电子质量为m ,电量为e ,进入磁感应强度为B 的匀强磁场中,该磁场束缚在直径为l 的圆形区域,电子初速度v 0的方向过圆形磁场的轴心O ,轴心到光屏距离为L (即P 0O =L ),设某一时刻电子束打到光屏上的P 点,求PP 0之间的距离.O a图11-3-16d17.如图11-3-18所示,在xoy平面内有垂直坐标平面的范围足够大的匀强磁场,磁感强度为B,一带正电荷量q的粒子,质量为m,从O点以某一初速度垂直射入磁场,其轨迹与x、y轴的交点A、B到O点的距离分别为a、b,试求:(2)初速度的大小.18.如图所示,半径为R=10cm的圆形匀强磁场,区域边界跟y轴相切于坐标系原点O,磁感应强度B=0.332T,方向垂直纸面向里,在O处放有一放射源s,可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒子,已知α粒子质量为m=6.64×10-27kg,q=3.2×10-19m/s,求:(1)画出α粒子通过磁场空间做圆周运动的圆心点的连线形状;(2)求出α粒子通过磁场的最大偏向角;(3)再以过O并垂直纸面的直线为轴轴旋转磁场区域,能使穿过磁场区域且偏转角最大的α粒子射出磁场后,沿y轴正方向运动,则圆形磁场直径OA至少应转过多少角度.so图11-3-1919.图11-3-20中,虚线MN 是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B 的匀强磁场,方向垂直纸面向外.O 是MN 上的一点,从O 点可以向磁场区域发射电量为+q 、质量为m 、速率为v 的粒子.粒子射入磁场时的速度可在纸面内向各个方向.已知先后射入的两个粒子恰好在磁场中给定的P 点相遇,P 到O 的距离为L ,不计重力及粒子间的相互作用.(1)求所考查的粒子在磁场中的轨道半径. (2)求这两个粒子从O 点射入磁场的时间间隔.21.边长为100cm 的正三角形光滑且绝缘的刚性框架ABC 固定在光滑的水平面上,如图11-3-22内有垂直于框架平面B =0.5T 的匀强磁场.一质量m =2×10-4kg ,带电量为q =4×10-3C 小球,从BC 的中点小孔P 处以某一大小的速度垂直于BC 边沿水平面射入磁场,设小球与框架相碰后不损失动能,求:(1)为使小球在最短的时间内从P 点出来,小球的入射速度v 1是多少? (2)若小球以v 2=1m/s 的速度入射,则需经过多少时间才能由P 点出来?图11-3-2022.如图11-3-23甲所示,MN 为竖直放置彼此平行的两块平板,板间距离为d ,两板中央有一个小孔OO ′正对,在两板间有垂直于纸面方向的磁场,磁感应强度随时间的变化如图乙所示.有一群正离子在t =0时垂直于M 板从小孔O 射入磁场,已知正离子质量为m 、带电量为q ,正离子在磁场中做匀速圆周运动的周期与磁感应强度的变化周期都为T 0.不考虑由于磁场的变化而产生电场的影响,不计离子所受重力.求:(1)磁感应强度B 0的大小;(2)要使正离子从O ′孔垂直于N 板射出磁场,正离子射入磁场时的速度v 0的可能值.23.如图11-3-24所示,abcd 是一个正方形的盒子,在cd 边的中点有一小孔e .盒子中存在着沿ad 方向的匀强电场,场强大小为E .一粒子源不断地从a 处的小孔沿ad 方向向盒内发射相同的带电粒子,粒子的初速度为v 0,经电场作用后恰好从e 处的小孔射出.现撤去电场,在盒子中加一方向垂直于纸面′-B 甲乙 图11-3-23的匀强磁场,磁感应强度大小为B (图中未画出),粒子仍恰好从e 孔射出.(带电粒子的重力、粒子之间的相互作用力均可忽略). (1)所加的磁场方向如何?(2)电场强度E 与磁感应强度B 的比值为多大?24.如图11-3-25所示,在虚线范围内,用场强为E 的匀强电场可使初速度为v 0的某种正离子偏转θ角.在同样宽度范围内,若改用匀强磁场(方向垂直纸面向外),使该离子通过该区域并使偏转角度也为θ,则磁感应强度为多少?离子穿过电场和磁场的时间之比为多少?图11-3-25图11-3-24【学后反思】洛仑兹力的方向总是既垂直于运动电荷速度方向又垂直于磁场强度方向.因此洛仑兹力不做功.准确画出带电粒子的运动轨迹,找出几何关系,轨道半径、轨迹对应的圆心角等,是解决此类问题的重要步骤.【参考答案】1.B 2.A 3.BD 4.C 5.A 6.ACD 7.CD 8.B 9.1/2 3/2 10.vr 33π11.v 0>m qBR 2,qBm π 12./(1cos )qBL m θ+和/(1cos )qBL m θ- 13.π32V v = 14.2222323228925U q UB d m B d <<15.(1)03qBl qBlv m m <<;(2)53m qB π 16.222202044lB e v m eBLl mv - 17.(1)arctan b a 或π+ arctan b a ;(2)v 0=m b a qB 222+ 18.(1)以原点为圆心,半径r =0.2m 的一个半圆;(2)60o ;(3)转过60o 19.(1)mv R qB =;(2)4arccos()2m LqBqB mv,当粒子的初速沿界面时,24arccos()2m m LqBt nT t n qB qB mv π'∆=+∆=+,n =0,1,2,3… 20.mB qr 2220 21.(1)5m/s ;(2)1.3πs 22.(1)002m B qT π=;(2)00(1,2,3)2d v n nT π==⋅⋅⋅ 23.(1)垂直纸面向外;(2)05Ev B=24.B =0V E cosθ,θθsin 25. 220.98qB R U m = 或220.02qB R U m = 26.(1)能;(2)略;(3)450V 27.(1)3400=B E v ,磁场方向垂直纸面向外;(2)第2个粒子击中C 点的时刻为(2+3π·v d 2) 28.(1) m = 22218qL B n U (n =1、2、3…)或m =2222(31)qL B n U -(n =1、2、3…);(2)t m=UBL 82π 29.(1)0/R mv qB =,02/3T m qB π=;(2)(21)t n T =-由O 至P 的运动过程也可能在磁场变化半周期的奇数倍时完成;(3)分2种情况讨论:01(21) 1.2.3)B K K =-=、1( 1.2.3)3(21)aT K K v==-⋅;02( 1.2.3)2B n n aq=⋅=、2 1.2.3)T n ==.。
磁场典型例题分析
• 2.(2021·高考新课标全国卷Ⅱ)空间有一圆柱形 匀强磁场区域,该区域的横截面的半径为R,磁 场方向垂直于横截面.一质量为m、电荷量为 q(q>0)的粒子以速率v0沿横截面的某直径射入 磁场,离开磁场时速度方向偏离入射方向60°. 不计重力,该磁场的磁感应强度大小为( )
• A.
B.
• C.
度方向相反
磁 ①洛伦兹力f=qvB②方 洛伦兹力不做功,不改
场 向符合左手定则
变带电粒子的动能
3.四种常见运动形式
运动形式
受力实质
规律选用
匀速直线运动
F合=0
平衡条件
匀变速 运动
直线
F合= 恒量 曲线
F合与v 共线
牛顿定律,也 可用动能定理、 动量定理
可分解为直线
F合与v 运动处理,也 不共线 可直接用功能
• 4.(2021·高考安徽卷)
如下图的平面直角坐标系xOy,在第Ⅰ象限内有平行于y轴的匀 强电场,方向沿y轴正方向;在第Ⅳ象限的正三角形abc区域内有匀 强磁场,方向垂直于xOy平面向里,正三角形边长为L,且ab边与y 轴平行.一质量为m、电荷量为q的粒子,从y轴上的P(0,h)点,
以大小为v0的速度沿x轴正方向射入电场,通过电场后从x轴上的 a(2h,0)点进入第Ⅳ象限,又经过磁场从y轴上的某点进入第Ⅲ象限,
6(2021年试题调研)如图3-2-4所示,空间内存在水平向右的匀 强电场,在虚线MN的右侧有垂直纸面向里、磁感应强度为B的匀强 磁场,一质量为m、带电荷量为+q的小颗粒自A点由静止开始运动, 刚好沿直线运动至光滑绝缘水平面的C点,与水平面碰撞的瞬间小 颗粒的竖直分速度立即减为零,而水平分速度不变,小颗粒运动至 D处刚好离开水平面,然后沿图示曲线DP轨迹运动,AC与水平面 的夹角α=30°,重力加速度为g,求:
磁场难题集锦(含答案).
磁场难题集锦一.解答题(共9小题)1.(2009?浙江)如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)在这束带电磁微粒初速度变为2V,那么它们与x轴相交的区域又在哪里?并说明理由.2.(2011?江苏)某种加速器的理想模型如图1所示:两块相距很近的平行小极板中间各开有一小孔a、b,两极板间电压u ab的变化图象如图2所示,电压的最大值为U0、周期为T0,在两极板外有垂直纸面向里的匀强磁场.若将一质量为m0、电荷量为q的带正电的粒子从板内a孔处静止释放,经电场加速后进入磁场,在磁场中运动时间T0后恰能再次从 a 孔进入电场加速.现该粒子的质量增加了.(粒子在两极板间的运动时间不计,两极板外无电场,不考虑粒子所受的重力)(1)若在t=0时刻将该粒子从板内a孔处静止释放,求其第二次加速后从b孔射出时的动能;(2)现在利用一根长为L的磁屏蔽管(磁屏蔽管置于磁场中时管内无磁场,忽略其对管外磁场的影响),使图1中实线轨迹(圆心为O)上运动的粒子从a孔正下方相距L处的c孔水平射出,请在答题卡图上的相应位置处画出磁屏蔽管;(3)若将电压u ab的频率提高为原来的2倍,该粒子应何时由板内a孔处静止开始加速,才能经多次加速后获得最大动能?最大动能是多少?3.如图,在区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0~180°范围内.已知沿y轴正方向发射的粒子在t=t0时刻刚好从磁场边界上点离开磁场.求:(1)粒子在磁场中做圆周运动的半径R及粒子的比荷;(2)此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;(3)从粒子发射到全部粒子离开磁场所用的时间.4.图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁感应强度大小为B0,方向平行于板面并垂直于纸面朝里.图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里.假设一系列电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域.不计重力.(1)已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量.(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为.求离子乙的质量.(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达.5.(2006?甘肃)如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向均垂直于纸面向里,且B1>B2.一个带负电荷的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件.6.如图,空间存在匀强电场和匀强磁场,电场方向为y轴正方向,磁场方向垂直于xy平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P(x=0,y=h)点以一定的速度平行于x轴正方向入射.这时若只有磁场,粒子将做半径为R0的圆周运动:若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P点运动到x=R0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x轴交于M点,不计重力.已知h=6cm,R0=10cm,求:(1)粒子到达x=R0平面时速度方向与x轴的夹角以及粒子到x轴的距离;(2)M点的横坐标x M.7.(2007?江苏)磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源S发出质量为m、电量为q的α粒子沿垂直磁场方向进入磁感应强度为B的匀强磁场,被限束光栏Q限制在2φ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P上.(重力影响不计)(1)若能量在E~E+△E(△E>0,且△E?E)范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围△x1.(2)实际上,限束光栏有一定的宽度,α粒子将在2φ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围△x2.8.如图,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于x y平面向外.P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点.A是一块平行于x轴的挡板,与x轴的距离为,A的中点在y轴上,长度略小于.带点粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大小不变.质量为m,电荷量为q(q >0)的粒子从P点瞄准N0点入射,最后又通过P点.不计重力.求粒子入射速度的所有可能值.9.(2007?浙江)两屏幕荧光屏互相垂直放置,在两屏内分别去垂直于两屏交线的直线为x和y轴,交点O为原点,如图所示.在y>0,0<x<a的区域有垂直于纸面向内的匀强磁场,在y>0,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B.在O点出有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x 周经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮.入射粒子的速度可取从零到某一最大值之间的各种数值.已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为2:5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中做圆周运动的周期.试求两个荧光屏上亮线的范围(不计重力的影响).磁场难题集锦参考答案与试题解析一.解答题(共9小题)1.(2009?浙江)如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)在这束带电磁微粒初速度变为2V,那么它们与x轴相交的区域又在哪里?并说明理由.考点:带电粒子在匀强磁场中的运动.专题:压轴题.分析:带电粒子沿半径方向射入匀强磁场中,做匀速圆周运动后,沿半径的方向射出.当没有沿半径方向射入时仍做匀速圆周运动,则圆心必经过入射点与出射点连线的中垂线.解答:解:本题考查带电粒子在复合场中的运动.带电粒子平行于x轴从C点进入磁场,说明带电微粒所受重力和电场力平衡.设电场强度大小为E,由mg=qE可得方向沿y轴正方向.带电微粒进入磁场后,将做圆周运动.且r=R如图(a)所示,设磁感应强度大小为B.由得方向垂直于纸面向外(2)一:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动,其圆心位于其正下方的Q点,如图b所示,这束带电微粒进入磁场后的圆心轨迹是如图b的虚线半圆,此圆的圆心是坐标原点.二:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动.如图b示,高P点与O′点的连线与y轴的夹角为θ,其圆心Q的坐标为(﹣Rsinθ,Rcosθ),圆周运动轨迹方程为(x+Rsinθ)2+(y﹣Rcosθ)2=R2得x=0 或x=﹣Rsinθ,y=0 或y=R(1+cosθ)可得带电微粒做圆周运动的轨迹与磁场边界的交点为,求,坐标为后者的点就是P点,须舍去,可见,这束带电微粒都是通过坐标原点离开磁场的.(3)带电微粒初速度大小变为2v,则从任一点P水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r′为带电微粒在磁场中经过一段半径为r′的圆弧运动后,将在y轴的右方(x>0)的区域离开磁场并做匀速直线运动,如图c所示.靠近圆磁场上边发射出来的带电微粒在恰好没有磁场力,则会射向x轴正方向的无穷远处,靠近圆磁场下边发射出来的带电微粒会在靠近原点之处穿出磁场.所以,这束带电微粒与x轴相交的区域范围是x>0.答案:(1);方向垂直于纸面向外;(2)通过坐标原点离开磁场的;(3)与x同相交的区域范围是x>0.点评:带电粒子以相同的速度方向,沿不同位置进入匀强磁场时,轨迹的圆弧长度不同,则运动的时间不同,但半径仍相同.2.(2011?江苏)某种加速器的理想模型如图1所示:两块相距很近的平行小极板中间各开有一小孔a、b,两极板间电压u ab的变化图象如图2所示,电压的最大值为U0、周期为T0,在两极板外有垂直纸面向里的匀强磁场.若将一质量为m0、电荷量为q的带正电的粒子从板内a孔处静止释放,经电场加速后进入磁场,在磁场中运动时间T0后恰能再次从 a 孔进入电场加速.现该粒子的质量增加了.(粒子在两极板间的运动时间不计,两极板外无电场,不考虑粒子所受的重力)(1)若在t=0时刻将该粒子从板内a孔处静止释放,求其第二次加速后从b孔射出时的动能;(2)现在利用一根长为L的磁屏蔽管(磁屏蔽管置于磁场中时管内无磁场,忽略其对管外磁场的影响),使图1中实线轨迹(圆心为O)上运动的粒子从a孔正下方相距L处的c孔水平射出,请在答题卡图上的相应位置处画出磁屏蔽管;(3)若将电压u ab的频率提高为原来的2倍,该粒子应何时由板内a孔处静止开始加速,才能经多次加速后获得最大动能?最大动能是多少?分析:(1)求第二次加速后从b孔射出时的动能只需知道加速时所对应的电压,故图2求电压即可.(2)加入屏蔽管后粒子在屏蔽管中做匀速直线运动,离开屏蔽管后运动轨迹与原来的运动轨迹相似,只是向下平移了l.(3)从图象可以看出,时间每改变(图象中为1),电压改变为(图象中为4),所以图象中电压分别为50,46,42,38,…10,6,2,共13个,设某时刻t,u=U0时被加速,此时刻可表示为,静止开始加速的时刻t1为,其中n=12,将n=12代入得,因为,在u>0时,粒子被加速,则最多连续被加速的次数:N=,所以只能取N=25,解得,由于电压的周期为,所以(n=0,1,2,3…)故粒子由静止开始被加速的时刻(n=0,1,2,…)故加速时的电压分别,,…,,,加速电压做的总功,即动能的最大值,故粒子的最大动能解得.解答:解:(1)质量为m0的粒子在磁场中作匀速圆周运动Bqv=,则当粒子的质量增加了m0,其周期增加△T=T0根据题图2可知,粒子第一次的加速电压u1=U0经过第二次加速,第2次加速电压u2,如图 2在三角形中,,所以粒子第二次的加速电压粒子射出时的动能E k2=qu1+qu2解得(2)因为磁屏蔽管使粒子匀速运动至以下L处,出管后仍然做圆周运动,可到C点水平射出.磁屏蔽管的位置如图1所示.粒子运动的轨迹如图3.(3)如图4(用Excel作图)设T0=100,U0=50,得到在四分之一周期内的电压随时间变化的图象从图象可以看出,时间每改变(图象中为1),电压改变为(图象中为4),所以图象中电压分别为50,46,42,38,…10,6,2,共13个,设某时刻t,u=U0时被加速,此时刻可表示为,静止开始加速的时刻t1为,其中n=12,将n=12代入得,因为,在u>0时,粒子被加速,则最多连续被加速的次数:N=,得N=25.所以只能取N=25,解得,由于电压的周期为,所以(n=0,1,2,3…)故粒子由静止开始被加速的时刻(n=0,1,2,…)故加速时的电压分别,,…,,,加速电压做的总功,即动能的最大值,故粒子的最大动能解得.3.如图,在区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0~180°范围内.已知沿y轴正方向发射的粒子在t=t0时刻刚好从磁场边界上点离开磁场.求:(1)粒子在磁场中做圆周运动的半径R及粒子的比荷;(2)此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;(3)从粒子发射到全部粒子离开磁场所用的时间.解答:解:(1)初速度与y轴方向平行的粒子在磁场中的运动轨迹如图1中的弧OP所示,其圆心为C.由几何关系可知,∠POC=30°;△OCP为等腰三角形故∠OCP=①此粒子飞出磁场所用的时间为t0=②式中T为粒子做圆周运动的周期.设粒子运动速度的大小为v,半径为R,由几何关系可得R= a ③由洛仑兹力公式和牛顿第二定律有qvB=m④T=⑤联立②③④⑤解得⑥(2)仍在磁场中的粒子其圆心角一定大于120°,这样粒子角度最小时从磁场右边界穿出;角度最大时从磁场左边界穿出.依题意,同一时刻仍在磁场内的粒子到O点距离相同.在t0时刻仍在磁场中的粒子应位于以O点为圆心、OP为半径的弧上.如图所示.设此时位于P、M、N三点的粒子的初速度分别为v P、v M、v N.由对称性可知v P与OP、v M与OM、v N与ON的夹角均为.设v M、v N与y轴正向的夹角分别为θM、θN,由几何关系有⑦⑧对于所有此时仍在磁场中的粒子,其初速度与y轴正方向所成的夹角θ应满足≤θ≤(3)在磁场中飞行时间最长的粒子的运动轨迹应与磁场右边界相切,其轨迹如图2所示.由几何关系可知:OM=OP由对称性可知ME=OP由图可知,圆的圆心角为240°,从粒子发射到全部粒子飞出磁场所用的时间2t0;4.图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁感应强度大小为B0,方向平行于板面并垂直于纸面朝里.图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里.假设一系列电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域.不计重力.(1)已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量.(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为.求离子乙的质量.(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达.解答:解:(1)粒子进入正交的电磁场做匀速直线运动,设粒子的速度为v,电场的场强为E0,根据平衡条件得E0q=B0qv①②由①②化简得③粒子甲垂直边界EF进入磁场,又垂直边界EF穿出磁场,则轨迹圆心在EF上.粒子运动中经过EG,说明圆轨迹与EG相切,在如图的三角形中半径为R=acos30°tan15°④⑤连立④⑤化简得⑥在磁场中粒子所需向心力由洛仑兹力提供,根据牛顿第二定律得⑦连立③⑦化简得⑧(2)由于I点将EG边按1比3等分,根据三角形的性质说明此轨迹的弦与EG垂直,在如图的三角形中,有⑨同理⑩(3)最轻离子的质量是甲的一半,根据半径公式离子的轨迹半径与离子质量成正比,所以质量在甲和最轻离子之间的所有离子都垂直边界EF穿出磁场,甲最远离H的距离为,最轻离子最近离H的距离为,所以在离H的距离为到之间的 E F边界上有离子穿出磁场.比甲质量大的离子都从EG穿出磁场,其中甲运动中经过EG上的点最近,质量最大的乙穿出磁场的1位置是最远点,所以在EG上穿出磁场的离子都在这两点之间.5.(2006?甘肃)如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向均垂直于纸面向里,且B1>B2.一个带负电荷的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件.解答:解:根据牛顿第二定律得化简得①②如右图是粒子在一个周期的运动,则粒子在一个周期内经过y负半轴的点在y负半轴下移2(R2﹣R1),在第n次经过y负半轴时应下移2R1,则有2n(R2﹣R1)=2R1③连立①②③化简得,n=1,2,3,…6.如图,空间存在匀强电场和匀强磁场,电场方向为y轴正方向,磁场方向垂直于xy平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P(x=0,y=h)点以一定的速度平行于x轴正方向入射.这时若只有磁场,粒子将做半径为R0的圆周运动:若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P点运动到x=R0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x轴交于M点,不计重力.已知h=6cm,R0=10cm,求:(1)粒子到达x=R0平面时速度方向与x轴的夹角以及粒子到x轴的距离;(2)M点的横坐标x M.解答:解:(1)做直线运动有:qE=qBv0①做圆周运动有:qBv0=m②只有电场时,粒子做类平抛运动,有:qE=ma ③R0=v0t ④v y=at ⑤从③④⑤解得⑥,从①得E=Bv0⑦,从②式得⑧,将⑦、⑧代入⑥得:v y=v0粒子速度大小为:v==v0速度方向与x轴夹角为:θ=粒子与x轴的距离为:H=h+at2=h+代入数据得H=11cm.(2)撤电场加上磁场后,有:qBv=m解得:R=R0,代入数据得R=14cm.粒子运动轨迹如图所示,圆心C位于与速度v方向垂直的直线上,该直线与x轴和y轴的夹角均为,由几何关系得C点坐标为:x c=2R0,代入数据得x C=20cmy c=H﹣R0=h﹣,代入数据得y C=1cm过C作x轴的垂线,在△CDM中:=R=R0=y c=h﹣解得:==M点横坐标为:x M=2R0+代入数据得x M=34cm答:(1)粒子到达x=R0平面时速度方向与x轴的夹角为,粒子到x轴的距离为11cm;(2)M点的横坐标x M为34cm.7.(2007?江苏)磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源S发出质量为m、电量为q的α粒子沿垂直磁场方向进入磁感应强度为B的匀强磁场,被限束光栏Q限制在2φ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P上.(重力影响不计)(1)若能量在E~E+△E(△E>0,且△E?E)范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围△x1.(2)实际上,限束光栏有一定的宽度,α粒子将在2φ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围△x2.解答:解析:设α粒子以速度v进入磁场,打在胶片上的位置距S的距离为x圆周运动α粒子的动能且x=2R解得:.△x1=﹣当x<<1时,(1+x)n≈1+x n由上式可得:.(2)动能为E的α粒子沿±φ角入射,轨道半径相同,设为R圆周运动α粒子的动能由几何关系得答:(1)(2)8.如图,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于x y平面向外.P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点.A是一块平行于x轴的挡板,与x轴的距离为,A的中点在y轴上,长度略小于.带点粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大小不变.质量为m,电荷量为q(q >0)的粒子从P点瞄准N0点入射,最后又通过P点.不计重力.求粒子入射速度的所有可能值.解答:解:设粒子的入射速度为v,第一次射出磁场的点为N′0,与板碰撞后再次进入磁场的位置为N1,子在磁场中运动的轨道半径为R,有 (1)粒子速率不变,每次进入磁场与射出磁场位置间距离x1保持不变有x1=N0′N0=2Rsinθ (2)粒子射出磁场与下一次进入磁场位置间的距离x2始终不变,与N0′N0相等.由图可以看出x2=a (3)设粒子最终离开磁场时,与档板相碰n次(n=0、1、2、3…).若粒子能回到P点,由对称性,出射点的x坐标应为﹣a,即(n+1)x1﹣nx2=2a (4)由(3)(4)两式得 (5)若粒子与挡板发生碰撞,有 (6)联立(3)(4)(6)得:n<3 (7)联立(1)(2)(5)得: (8)把代入(8)中得;;;答:粒子入射速度的所有可能值为;;.9.(2007?浙江)两屏幕荧光屏互相垂直放置,在两屏内分别去垂直于两屏交线的直线为x和y轴,交点O为原点,如图所示.在y>0,0<x<a的区域有垂直于纸面向内的匀强磁场,在y>0,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B.在O点出有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x 周经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮.入射粒子的速度可取从零到某一最大值之间的各种数值.已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为2:5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中做圆周运动的周期.试求两个荧光屏上亮线的范围(不计重力的影响).解答:解:对于y轴上的光屏亮线范围的临界条件如图1所示:带电粒子的轨迹和x=a相切,此时r=a,y轴上的最高点为y=2r=2a;对于x轴上光屏亮线范围的临界条件如图2所示:左边界的极限情况还是和x=a相切,此刻,带电粒子在右边的轨迹是个圆,由几何知识得到在x轴上的坐标为x=2a;速度最大的粒子是如图2中的实线,又两段圆弧组成,圆心分别是c和c′由对称性得到c′在x轴上,设在左右两部分磁场中运动时间分别为t1和t2,满足解得由数学关系得到:OP=2a+R代入数据得到:所以在x 轴上的范围是.。
高中物理磁场习题200题(带答案解析)
WORD格式整理一、选择题1.如图所示,一电荷量为q的负电荷以速度v射入匀强磁场中.其中电荷不受洛仑兹力的是( )A. B. C. D.【答案】C【解析】由图可知,ABD图中带电粒子运动的方向都与粗糙度方向垂直,所以受到的洛伦兹力都等于qvB,而图C中,带电粒子运动的方向与磁场的方向平行,所以带电粒子不受洛伦兹力的作用.故C正确,ABD错误.故选C.2.如图所示为电流产生磁场的分布图,其中正确的是( )A. B. C. D.【答案】D【解析】A中电流方向向上,由右手螺旋定则可得磁场为逆时针(从上向下看),故A错误;B图电流方向向下,由右手螺旋定则可得磁场为顺时针(从上向下看),故B错误;C图中电流为环形电流,由由右手螺旋定则可知,内部磁场应向右,故C错误;D图根据图示电流方向,由右手螺旋定则可知,内部磁感线方向向右,故D正确;故选D.点睛:因磁场一般为立体分布,故在判断时要注意区分是立体图还是平面图,并且要能根据立体图画出平面图,由平面图还原到立体图.3.下列图中分别标出了一根放置在匀强磁场中的通电直导线的电流I、磁场的磁感应强度B和所受磁场力F的方向,其中图示正确的是( )A. B. C. D.【答案】C【解析】根据左手定则的内容:伸开左手,使大拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向,可得:A、电流与磁场方向平行,没有安培力,故A错误;B、安培力的方向是垂直导体棒向下的,故B错误;C、安培力的方向是垂直导体棒向上的,故C正确;D、电流方向与磁场方向在同一直线上,不受安培力作用,故D错误.故选C.点睛:根据左手定则直接判断即可,凡是判断力的方向都是用左手,要熟练掌握,是一道考查基础的好题目.4.如图所示,水平地面上固定着光滑平行导轨,导轨与电阻R连接,放在竖直向上的匀强磁场中,杆的初速度为v0,不计导轨及杆的电阻,则下列关于杆的速度与其运动位移之间的关系图像正确的是()A. B. C. D.【答案】C【解析】导体棒受重力、支持力和向后的安培力;感应电动势为:E=BLv感应电流为:I=II安培力为:I=III=I 2I2II=II=I△I△I故:I 2I2II△I=I△I求和,有:I 2I2I∑I△I=I∑△I故:I 2I2II=I(I0−I)故v与x是线性关系;故C正确,ABD错误;故选:C.5.如图所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,粒子仅受磁场力作用,分别从AC边上的P、Q两点射出,则( )A. 从P射出的粒子速度大B. 从Q射出的粒子速度大C. 从P射出的粒子,在磁场中运动的时间长D. 两粒子在磁场中运动的时间一样长【答案】BD【解析】试题分析:粒子在磁场中做圆周运动,根据题设条件作出粒子在磁场中运动的轨迹,根据轨迹分析粒子运动半径和周期的关系,从而分析得出结论.WORD 格式整理粒子在磁场中做匀速圆周运动,根据几何关系(图示弦切角相等),粒子在磁场中偏转的圆心角相等,根据粒子在磁场中运动的时间:I =I 2II ,又因为粒子在磁场中圆周运动的周期I =2II II ,可知粒子在磁场中运动的时间相等,故D 正确,C 错误;如图,粒子在磁场中做圆周运动,分别从P 点和Q 点射出,由图知,粒子运动的半径I I <I I ,又粒子在磁场中做圆周运动的半径I =II II知粒子运动速度I I <I I ,故A 错误B 正确;【点睛】带电粒子在匀强磁场中运动时,洛伦兹力充当向心力,从而得出半径公式I =II II ,周期公式I =2II II ,运动时间公式I =I 2I I ,知道粒子在磁场中运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题,6.在等边三角形的三个顶点a 、b 、c 处,各有一条长直导线垂直纸面放置,导线中通有大小相等的恒定电流,方向如图所示.过c 点的导线所受安培力的方向( )A. 与ab 边平行,竖直向上B. 与ab 边垂直,指向右边C. 与ab 边平行,竖直向下D. 与ab 边垂直,指向左边【答案】D【解析】试题分析:先根据右手定则判断各个导线在c 点的磁场方向,然后根据平行四边形定则,判断和磁场方向,最后根据左手定则判断安培力方向导线a 在c 处的磁场方向垂直ac 斜向下,b 在c 处的磁场方向垂直bc 斜向上,两者的和磁场方向为竖直向下,根据左手定则可得c 点所受安培力方向为与ab 边垂直,指向左边,D 正确;7.下列说法中正确的是( )A. 电场线和磁感线都是一系列闭合曲线B. 在医疗手术中,为防止麻醉剂乙醚爆炸,医生和护士要穿由导电材料制成的鞋子和外套,这样做是为了消除静电C. 奥斯特提出了分子电流假说D. 首先发现通电导线周围存在磁场的科学家是安培【答案】B【解析】电场线是从正电荷开始,终止于负电荷,不是封闭曲线,A 错误;麻醉剂为易挥发性物品,遇到火花或热源便会爆炸,良好接地,目的是为了消除静电,这些要求与消毒无关,B 正确;安培发现了分子电流假说,奥斯特发现了电流的磁效应,CD 错误;8.在如图所示的平行板电容器中,电场强度E 和磁感应强度B 相互垂直,一带正电的粒子q 以速度v 沿着图中所示的虚线穿过两板间的空间而不偏转(忽略重力影响)。
高中物理电磁场经典高考例题
1.(20分)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B 的匀强磁场,在此区域内,沿水平面固定一半径为r 的圆环形光滑细玻璃管,环心0在区域中心。
一质量为m 、带电量为q (q>0)的小球,在管内沿逆时针方向(从上向下看)做圆周运动。
已知磁感应强度大小B 随时间t 的变化关系如图乙所示,其中002m T qB π=。
设小球在运动过程中电量保持不变,对原磁场的影响可忽略。
(1)在t=0到t=T 0 这段时间内,小球不受细管侧壁的作用力,求小球的速度大小V 0;(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等。
试求t=T 0 到t=1.5T 0 这段时间内:①细管内涡旋电场的场强大小E ;②电场力对小球做的功W 。
2.如图所示,一只用绝缘材料制成的半径为R 的半球形碗倒扣在水平面上,其内壁上有一质量为m 的带正电小球,在竖直向上的电场力F =2mg 的作用下静止在距碗口R 54高处。
已知小球与碗之间的动摩擦因数为μ,则碗对小球的弹力与摩擦力的大小分别为-----------------3.(22分)如图所示,在xOy 平面的第一象限内,分布有沿x 轴负方向的场强E =34×104N/C 的匀强电场,第四象限内分布有垂直纸面向里的磁感应强度B 1=0.2 T的匀强磁场,第二、三象限内分布有垂直纸面向里的磁感应强度B 2的匀强磁场。
在x 轴上有一个垂直于y 轴的平板OM ,平板上开有一个小孔P ,P 处连接有一段长度d =lcm 内径不计的准直管,管内由于静电屏蔽没有电场。
y 轴负方向上距O的粒子源S 可以向第四象限平面内各个方向发射a 粒子,假设发射的a 粒子速度大小v 均为2×105m /s ,打到平板和准直管管壁上的a 粒子均被吸收。
已知a 粒子带正电,比荷为5q m=×l07C /kg ,重力不计,求:(1)a 粒子在第四象限的磁场中运动时的轨道半径和粒子从S 到达P 孔的时间;(2) 除了通过准直管的a 粒子外,为使其余a 粒子都不能进入电场,平板OM 的长度至少是多长?(3) 经过准直管进入电场中运动的a 粒子,第一次到达y 轴的位置与O 点的距离;(4) 要使离开电场的a 粒子能回到粒子源S 处,磁感应强度B 2应为多大?4.(多选题)如图所示,在垂直纸面向里的水平匀强磁场中,水平放置一根粗糙绝缘细直杆,有一重力不可忽略,中间带有小孔的正电小球套在细杆上。
磁场对电流的作用力典型例题
磁场对电流的作用力典型例题〔例1〕磁体的磁极周围的磁场跟电流周围的磁场,本质上是否相同?为什么?〔答〕磁体的磁极周围的磁场跟电流周围的磁场本质上是相同的.因为它们都是由于电荷的运动而产生的.前者由电荷的微观运动(即分子、原子中的电子运动形成的分子电流)所产生的;后者是由电荷的宏观定向运动所产生的.〔例2〕一束带电粒子沿水平方向飞过小磁针上方,如图所示.若带电粒子飞过小磁针上方向的瞬间,小磁针N极向纸面内偏转,这带电粒子可能是[ ]A.向右飞行的正离子束B.向左飞行的正离子束C.向右飞行的负离子束D.向左飞行的负离子束〔分析〕带电粒子的运动相当于有一股电流:带正电的粒子运动时,电流方向即粒子运动方向;带负电的粒子运动时,电流方向与其运动方向相反.因此,在运动的带电粒子周围空间也会形成磁场.小磁针N极向纸面内偏转,表示粒子飞行轨迹的下方区域,其磁场方向垂直纸面向内.根据安培定则,由运动粒子形成的等效电流方向应从左向右,所以可能是向右运动的正离子束或向左运动的负离子束.〔答〕A、D.〔例3〕如图所示,在水平桌面上放一条形磁铁,在磁铁的右上方固定一根通电直导线,则磁铁对桌面的作用力的情况是[ ]A.磁铁对桌面有向右的摩擦力和大于重力的压力B.磁铁对桌面有向左的摩擦力和小于重力的压力C.磁铁对桌面只有大于重力的压力D.磁铁对桌面只有小于重力的压力〔分析〕按常规思路直接分析磁铁的受力情况,问题甚至陷入困境.若以通电导线为研究对象,由安培定则可知,导线受到右向上的安培力,再根据牛顿第三定律可知磁铁将受到左向下的安培力.〔答〕A〔例4〕一个小磁针挂在大线圈内部、磁针静止时与线圈在同一平面内(图1).当大线圈中通以图示方向电流时,则[ ]A.小磁针的N极向纸面里转B.小磁针的N极向纸面外转C.小磁针在纸面内向左摆动D.小磁针在纸面内向右摆动〔分析〕通电后,在大线圈周围产生磁场.用安培定则判定磁场方向时,可采用两种方法:(1)把大线圈分割成许多小段,每一小段圆弧导线都可以看作一小段直导线,然后用通电直导线磁场方向的判断方法.由图2可知,环绕每一小段导线的磁感线在线圈内部都垂直纸面向里,因此小磁针N极也受到指向纸面向里的力,将向里转动.(2)把这个大线圈看成单匝的螺线管,用右手握住这个线圈,即可由电流方向判知线圈内部的磁场方向垂直纸面向里(图3),因此小磁针N极也将受到指向纸面向里的力,向纸面里转动.〔答〕A.〔例5〕在图1所示通电螺线管的管口、外部中央、管内中央的a、b、c三处放置三枚可自由转动的小磁针时,画出小磁针静止时N极的指向.〔分析〕先用安培定则确定这个通电螺线管的磁感线环绕方向,然后根据通过a、b、c三处磁感线的切线方向确定磁场方向,这就是小磁针静止时N极的指向.〔答〕a、b、c三处小磁针静止时N极的指向如剖面图2中所示.〔说明〕用安培定则确定通电螺线管磁场方向,大拇指的指向表示管内磁感线的方向.定出管内磁感线的方向后,再根据磁感线是闭合曲线的特征,就可画出整个通电螺线管周围磁感线的环绕方向.〔例6〕在同一平面内有两根平行的通电导线a与b(图1),关于它们相互作用力方向的判断.正确的是[ ]A.通以同向电流时,互相吸引B.通以同向电流时,互相排斥C.通以反向电流时,互相吸引D.通以反向电流时,互相排斥〔分析〕设两导线中都通以向上的同向电流.根据安培定则,导线a中的电流产生的磁场,在其右侧都垂直纸面向内.这个磁场对通电导线b的作用力F ab的方向,由左手定则可判知,在纸面内向左.同理,导线b中的电流产生的磁场在其左侧都垂直纸面向外,它对导线a的作用力F ba的方向在纸面内向右.结果,两导线互相吸引(图2).若其中b导线的电流反向(即两导线中通以反向电流),则a导线的右边垂直纸面向内的磁场对b导线的作用力F′ab的方向在纸面内向右;同理b导线的左边垂直纸面向内的磁场对a导线的作用力F′ba的方向在纸面内向左.结果,两导线互相排斥.(图3)〔答〕AD〔说明〕由上述分析可知,电流间的相互作用是通过磁场实现的.即〔例7〕把一根柔软的螺旋形弹簧竖直悬挂起来,使它的下端刚好跟杯里的水银面接触,并使它组成如图1所示的电路,当电键S接通后,将看到的现象是[ ] A.弹簧向上收缩B.弹簧被拉长C.弹簧上下跳动D.弹簧仍静止不动〔分析〕通电后,弹簧的每一个圈都相当一个环形电流,且各圈的电流绕向相同.任取其中两圈(图2),其相邻两侧一定形成异极性,因此互相吸引(或者,也可把任意两圈的相邻各段,看作两个同向电流而相互吸引).弹簧的各圈互相吸引后,弹簧收缩,下端脱离水银面,使电路断开.电路断开后,弹簧中的电流消失,磁场作用失去,弹簧在自身重力作用下下落.于是,电路又接通,弹簧又收缩,…….如此周而复始,形成弹簧作上下跳动.〔答〕C.〔例8〕在同一平面有四根彼此绝缘的通电直导线,如图所示,四导线中电流i l=i3>i2>i4,要使O点磁场增强,则应切断哪一根导线中的电流?[ ]A.切断i1 B.切断i2C.切断i3 D.切断i4〔分析〕根据场的叠加原理,O点的磁场由四根导线中的电流共同产生.由安培定则可知,直线电流i1、i2、i3在O点产生的磁感强度的方向都是垂直纸面向里,电流i4.在O点产生的磁感强度方向恰是垂直纸面向外.因此,为了使O点的磁场增强,应切断i4中的电流.〔答〕D.〔例9〕如图1所示,在光滑水平桌面上,有两根弯成直角的相同金属棒,它们一端均可绕固定转动轴O自由转动,另一端b相互接触,组成一个正方形线框,正方形每边长度均为l,匀强磁场的方向垂直桌面向下.当线框中通以图示方向的电流I时,两金属棒在b点的相互作用力为f,则此时磁感强度的大小为____.(不计电流产生的磁场)〔分析〕通电后,直角棒的每一段都受到方向垂直棒指向框内,大小相等的安培力(图2),其值为F B=IlB.取左边的一根棒oab为研究对象.其oa、ab两段所受安培力的水平分力必被右边一根ocb棒在o、b两处的水平作用力所平衡.由对称性知,a、b两处的相互作用力相等.令f0=f b=f,则〔说明〕熟悉力矩平衡的同学,可以解得更为简捷:取左边的一根棒oab为研究对象.其oa、ab两段所受安培力对转轴o的力矩应等于b点所受水平作用力对转轴的力矩.由〔例10]如图1所示,把轻质线圈用细线挂在一个固定的磁铁的N极附近,磁铁的轴线穿过线圈的圆心且垂直于线圈的平面.当线圈内通电时,下列结论中正确的是[ ]A.电流方向如图中所示时,线圈将向左偏移B.电流方向如图中所示时,线圈将向右偏移C.电流方向与图中相反时,线圈将向左偏移D.电流方向与图中相反时,线圈将向右偏移〔分析〕线圈通电后,线圈会受到磁铁磁场的作用.根据磁铁周围磁感线的分布(图2),用左手定则可知,当线圈中通以图示方向电流时,线圈受到的力向左,被吸向磁铁;当线圈中通以与图中方向相反的电流时,线圈受到的力向右,被磁铁推斥.〔答〕A、D〔说明〕由于磁铁N极附近的磁感线是立体分布的,直接从图2用左手定则时,会感到不便确定它们的方向.为此,可改用等效方法考虑:(1)由于通电小线圈两侧呈现一定的极性,相当一根小磁铁.通以图示方向电流时,其左侧呈现S极.右侧呈现N极,如图3(a)所示.由磁极间相互作用,易知小线圈会被吸向磁铁.当电流方向相反时,则被磁铁推斥.(2)也可以把原来的磁铁看成由一个通电线圈,磁铁与小线圈的作用等效成两个通电线圈的作用.当小线圈中通以图示方向电流时,两线圈中电流同向,互相吸引,如图3(b)所示.当小线圈中电流方向相反时,两线圈中电流反向,相互排斥.〔例11〕如图1所示,在蹄形磁铁上水平放置一根直导线ab,当通以从a流向b的电流时.直导线将[ ]A.在水平面内顺时针向转动B.在水平面内逆时针向转动C.在水平面内顺时针向转动并向下运动D.在水平面内逆时针向转动并向下运动〔分析〕画出蹄形磁铁的一根磁感线如图2中曲线所示.设蹄形磁铁在a、b两处的磁感强度分别为B a、B b.由于它们与电流方向不垂直,可以把它们分别沿着电流方向和垂直电流方向分解成两个分量B ax、B ay、B bx、B by.其中,水平分量B ax、B bx对通电导线不产生作用力.竖直分量B ay对直导线的作用力方向指向纸外,B by的作用力则指向纸内.它们共同作用的结果使导线在水平面内逆时针向转动(即a端转向纸外.b端转向纸内).转动后,原来在水平面oxy内的两个水平分量B ax、B bx不再与导线平行.它们在水平面内垂直于导线的分量B′ax、B′bx对直导线的作用力方向都向下,即沿着Z 轴方向(图3).结果.使导线下落.〔答〕D.〔说明〕当磁场方向与电流方向不垂直时,必须对磁场进行分解,并考虑每一个分量的作用.本题空间概念强,自学中可用细铅丝、铅笔做成立体模型,比较容易得出正确判断.〔例12〕在倾角θ=30°的斜面上,固定一金属框,宽l=0.25m,接入电动势ε=12V、内阻不计的电池.垂直框面放有一根质量m=0.2kg的金属框面向上的匀强磁场中(图1).当调节滑动变阻器R的阻值在什么范围内时,可使金属棒静止在框架上?框架与棒的电阻不计,g=10m/s2.〔分析〕金属棒受到四个力作用:重力mg,垂直框面向上的支持力N,沿框面向上的安培力F,沿框面的摩擦力f.金属棒静止在框架上时,摩擦力f的方向可能沿框面向上,也可能向下,需分两种情况考虑.〔解〕当变阻器R取值较大时,I较小,安培力F较小,在金属棒重力分力mgsinθ作用下使棒有沿框架下滑趋势,框架对棒的摩擦力沿框面向上(图2).金属棒刚好不下滑时满足平衡条件当变阻器R取值较小时,I较大,安培力F较大,会使金属棒产生沿框面上滑趋势.因此,框架对棒的摩擦力沿框面向下(图3).金属棒刚好不上滑时满足平衡条件所以滑动变滑器R的取值范围应为1.5Ω≤R≤4.8Ω.〔例13〕在原子反应堆中抽动液态金属等导电液时,由于不允许传动机械部分与这些流体相接触,常使用一种电磁泵.图1表示这种电磁泵的结构.将导管置于磁场中,当电流I穿过导电液体时,这种导电液体即被驱动.若导管的内截面积为a×h,磁场区域的宽度为L,磁感强度为B,液态金属穿过磁场区域的电流为I,求驱动所产生的压强差是多大?〔分析〕本题的物理情景是:当电流I通过金属液体沿图示竖直向上流动时,电流将受到磁场的作用力,磁场力的方向可以由左手定则判断(如图2所示),这个磁场力即为驱动液态金属流动的动力.〔解〕由这个驱动力而使金属液体沿流动方向两侧产生压强差△p.故有F=BIh,①联立解得△p=BI/a[ ]A.随通电导线中电流I的减小而增大B.随通电导线长度l的减小而增大C.随着I1乘积的减小而增大D.随通电导线受力F的增大而增大E.跟F、I.l的变化无关〔分析〕磁感强度是反映磁场本身特性的物理量,与磁场中是否放置通电导线以及所放置通电导线的长度l、通入的电流I、受到的磁场力F的大小、磁场中某一确定的位置上,垂直磁场放置的通电导线所受磁场力F与其I1的比值恒定,跟F、l.I的变化无关.〔答〕E.〔例15〕关于磁感强度的下列说法中,正确的是[ ]A.放在磁场中的通电导线,电流越大,受到的磁场力也越大,表示该处的磁感强度越大B.磁感线的指向就是磁感强度的方向C.垂直磁场放置的通电导线的受力方向就是磁感强度方向D.磁感强度的大小、方向与放入磁场的通电导线的电流大小、导线长度、导线取向等均无关〔分析〕磁感强度是反映磁场特性的量,由磁场本身决定,与放入磁场中的通电导线的电流强度、导线长度、取向、受力大小等均无关.A错,D正确.磁感强度的方向应是磁感线的切线方向,而不是磁感线的指向.B错.根据左手定则,磁感强度的方向与导线中电流方向,导线的受力方向所组成的平面垂直,受力方向不是磁感强度的方向.C错.〔答〕D.〔例16〕用一根长l的导线组成一个怎样的线圈,如何放置,在磁感强度一定的磁场中可使穿过该线圈的磁通量最大?〔分析〕可根据磁通量的计算公式和几何图形中周长与面积的关系得出.根据磁通公式φ=BS.当B一定时,S越大,磁通φ也越大.因为在一定周长的几何图形中,圆的面积最大,所以应把这根导线绕成单匝的圆线圈.由这个圆线圈应垂直磁场放置,得到的最大磁通量为〔例17〕一个单匝矩形线圈abcd,边长ab=30cm,bc=20cm,如图所示放在oxyz 直角坐标内,线圈平面垂直oxy平面,与ox轴,oy轴的夹角分别为α=30°,β=60°.匀强磁场的磁感强度B=10-2T.试计算当磁场方向分别沿ox、oy、oz 方向时,穿过线圈的磁通量各为多少?〔分析〕匀强磁场中穿过垂直于磁场方向、面积为S的磁通量为φ=BS.题中磁场沿ox、oy、oz方向时,需先找出矩形线圈在垂直于磁场方向上的投影面积,就可直接用上述公式计算.〔解答〕矩形线圈的面积S=ab×bc=0.30×0.20m2=6×10-2m2.它在垂直于三根坐标轴上的投影面积的大小分别为当磁感强度B沿ox方向时穿过线圈的磁通量φ=BS x=10-2×3×10-2Wb=3×10-4Wb.当磁感强度B沿oy方向时穿过线圈的磁通量当磁感强度B沿oz方向时穿过线圈的磁通量φz=BS z=0.。
高中物理电磁学磁场典型例题
(每日一练)高中物理电磁学磁场典型例题单选题1、关于磁感线的描述,下列哪些是正确的()A.磁感线从磁体的N极出发到磁体的S极终止B.自由转动的小磁针放在通电螺线管内部,其N极指向螺线管的南极C.磁感线上每一点的切线方向就是该点的磁场方向D.通电直导线的磁感线分布是以导线上任意点为圆心垂直于导线的多组等间距同心圆答案:C解析:A.磁感线在磁铁的外部,由N到S,在内部,由S到N,形成闭合曲线,故A错误;B.螺线管内部磁感线由S极指向N极,小磁针N极所指的方向即为磁场的方向,故小磁针放在通电螺线管内部,其N极指向螺线管的N极即北极,故B错误;C.磁感线的疏密表示磁场的强弱,磁感线切线的方向表示磁场的方向,故C正确;D.通电直导线的磁场距离通电直导线越远则磁场越弱,故以导线上任意点为圆心垂直于导线的多组同心圆越往外越稀疏,不是等间距,故D错误。
故选C。
2、如图所示,在MNQP中有一垂直纸面向里匀强磁场,质量和电荷量都相等的带电粒子a、b、c以不同的速率从O点沿垂直于PQ的方向射入磁场,图中实线是它们的轨迹。
已知O是PQ的中点,不计粒子重力,下列说法中正确的是()A.粒子a带负电,粒子b、c带正电B.粒子c在磁场中运动的时间最长C.粒子a在磁场中运动的周期最小D.射入磁场时粒子a的速率最小答案:B解析:A.根据左手定则可知α粒子带正电,b、c粒子带负电,故A错误;BC.根据Bvq=m4π2r T2T=2πr v可知T=2πm Bq即各粒子的周期一样,粒子c的轨迹对应的圆心角最大,所以粒子c在磁场中运动的时间最长,故B正确,C 错误;D.由洛伦兹力提供向心力Bvq=mv2 r可知v=Bqr m可知b的速率最大,c的速率最小,故D错误。
故选B。
3、如图所示,边长为L的正六边形abcd e f区域内存在垂直纸面向里的匀强磁场,磁感应强度大小为B,正六边形中心O处有一粒子源,可在纸面内向各个方向发射不同速率带正电的粒子,已知粒子质量均为m、电荷量均为q,不计粒子重力和粒子间的相互作用,下列说法正确的是()A.可能有粒子从ab边中点处垂直ab边射出B.从a点垂直af离开正六边形区域的粒子在磁场中的运动时间为πm6qBC.垂直cf向上发射的粒子要想离开正六边形区域,速率至少为(2√3−3)qBLmD.要想离开正六边形区域,粒子的速率至少为√3qBL2m答案:C解析:A.若粒子从ab边中点处垂直ab边射出,则圆心一定在在ab边上,设与ab边交点为g,则圆心在Og的中垂线上,而中垂线与ab边平行,不可能相交,故A错误;B.同理做aO垂线出射速度垂线交于f点,即f为圆心,则对于圆心角为60°,所以粒子在磁场中的运动时间为t=1 6 T且T=2πm qB解得t=πm 3qB故B错误;C.垂直cf向上发射的粒子刚好与能离开磁场时,轨迹与边af相切,则由几何关系得L=r+r sin60°由qvB=mv 2r得r=mv qB联立解得v=(2√3−3)qBLm故C正确;D.因为O点距六边形的最近距离为d=Lcos30°=√3 2L即此时对应刚好离开磁场的最小直径,所以最小半径为r=d 2又r=mv qB所以最小速度为v min=√3qBL 4m故D错误。
高中物理磁场经典习题(题型分类)含答案
磁场补充练习题题组一1.如图所示,在xOy 平面内,y ≥ 0的区域有垂直于xOy 平面向里的匀强磁场,磁感应强度为B ,一质量为m 、带电量大小为q 的粒子从原点O 沿与x 轴正方向成60°角方向以v 0射入,粒子的重力不计,求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。
2.如图所示,abcd 是一个正方形的盒子,在cd 边的中点有一小孔e ,盒子中存在着沿ad 方向的匀强电场,场强大小为E ,一粒子源不断地从a 处的小孔沿ab 方向向盒内发射相同的带电粒子,粒子的初速度为v 0,经电场作用后恰好从e 处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B (图中未画出),粒子仍恰好从e 孔射出。
(带电粒子的重力和粒子之间的相互作用均可忽略不计) (1)所加的磁场的方向如何?(2)电场强度E 与磁感应强度B 的比值为多大?题组二3.长为L 的水平极板间,有垂直纸面向里的匀强磁场,磁感应强度为B ,板间距离也为L ,极板不带电。
现有质量为m ,电荷量为q 的带正电粒子(重力不计),从左边极板间中点处垂直磁场以速度v 水平射入,如图所示。
为了使粒子不能飞出磁场,求粒子的速度应满足的条件。
4.如图所示的坐标平面内,在y 轴的左侧存在垂直纸面向外、磁感应强度大小B 1 = 0.20 T 的匀强磁场,在y 轴的右侧存在垂直纸面向里、宽度d = 0.125 m 的匀强磁场B 2。
某时刻一质量m = 2.0×10-8 kg 、电量q = +4.0×10-4 C 的带电微粒(重力可忽略不计),从x 轴上坐标为(-0.25 m ,0)的P 点以速度v = 2.0×103 m/s 沿y 轴正方向运动。
试求: (1)微粒在y 轴的左侧磁场中运动的轨道半径;(2)微粒第一次经过y 轴时速度方向与y 轴正方向的夹角; (3)要使微粒不能从右侧磁场边界飞出,B 2应满足的条件。
磁场经典例题(汇编)
练习题三1、如图所示,两平行光滑导轨相距为L=20 cm,金属棒MN的质量为m=10 g,电阻R=8 Ω,匀强磁场磁感应强度B方向竖直向下,大小为B=0.8 T,电源电动势E=10 V,内阻r=1 Ω.当开关S闭合的阻值为多少?(设θ时,MN处于平衡,求此时变阻器R1=45°,g=10 m/s2)2、如图所示,两平行金属导轨间的距离L=0.4 m,金属导轨所在的平面与水平面夹角θ=37°,在导轨所在平面内分布着磁感应强度B=0.5 T、方向垂直于导轨所在平面的匀强磁场.金属导轨的一端接有电动势E=4.5 V、内阻r=0.5 Ω的直流电源.现把一个质量m=0.04 kg的导体棒ab放在金属导轨上,导体棒恰好静止.导体棒与金属导轨垂直且接触良好,导体棒与金属导轨接触的两点间的电阻R=2.5 Ω,金属导轨电阻不计,g取10 m/s2.已知sin 37°=0.6,cos 37°=0.8,求:(1)通过导体棒的电流;(2)导体棒受到的安培力大小;(3)导体棒受到的摩擦力大小.3、如图所示,水平放置的两导轨P,Q间的距离L=0.5 m,垂直于导轨平面的竖直向上的匀强磁场的磁感应强度B=2 T,垂直于导轨放置的ab棒的质量m=1 kg,系在ab棒中点的水平绳跨过定滑轮与重量G=3 N的物块相连.已知ab棒与导轨间的动摩擦因数μ=0.2,电源的电动势E=10 V、内阻r=0.1 Ω,导轨的电阻及ab 棒的电阻均不计.要想ab棒处于静止状态,R应在哪个范围内取值?(g取10 m/s2)4、如图所示,在倾角为37°的光滑斜面上有一根长为0.4 m、质量为6×10-2 kg的通电直导线,电流I=1 A,方向垂直纸面向外,导线用平行于斜面的轻绳拴住不动,整个装置放在磁感应强度每秒增加0.4 T、方向竖直向上的磁场中,设t=0时,B=0,则需要多长时间斜面对导线的支持力为零?(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)5、如图所示,光滑的金属轨道分为水平段和圆弧段两部分,O点为圆弧的圆心,N 为轨道交点.两轨道之间宽度为0.5 m,匀强磁场方向竖直向上,大小为0.5 T.质量为0.05 kg的金属细杆置于轨道上的M点.当在金属细杆内通以电流强度为2 A 的恒定电流时,其可以沿轨道由静止开始向右运动.已知MN=OP=1.0 m,金属杆始终垂直轨道,OP沿水平方向,求(1)金属杆到达P点的速度大小;(2)金属杆到达P点时对一个导轨的压力6、如图所示,在x轴上方有磁感应强度大小为B,方向垂直纸面向里的匀强磁场.x 轴下方有磁感应强度大小为 ,方向垂直纸面向外的匀强磁场.一质量为m、电荷量为-q的带电粒子(不计重力),从x轴上O点以速度v0垂直x轴向上射出.求:(1)射出之后经多长时间粒子第二次到达x轴?(2)粒子第二次到达x轴时离O点的距离.7、.一个质量m=0.1 g的小滑块,带有q=5×10-4 C的电荷量,放置在倾角α=30°的光滑斜面上(绝缘),斜面固定且置于B=0.5 T的匀强磁场中,磁场方向垂直纸面向里,如图所示,小滑块由静止开始沿斜面滑下,斜面足够长,小滑块滑至某一位置时,要离开斜面(g取10 m/s2).求:(计算结果保留两位有效数字)(1)小滑块带何种电荷?(2)小滑块离开斜面时的瞬时速度为多大?(3)该斜面长度至少为多长?8、如图所示,一束电荷量为e的电子以垂直于磁场方向(磁感应强度为B)并垂直于磁场边界的速度v射入宽度为d的磁场中,穿出磁场时速度方向和原来射入方向的夹角为θ=60°.求电子的质量和穿越磁场的时间.9、如图所示,两个板间存在垂直纸面向里的匀强磁场,一带正电的质子以速度v0从O点垂直射入.已知两板之间距离为d.板长为d,O点是NP板的正中点,为使粒子能从两板之间射出,试求磁感应强度B应满足的条件(已知质子带电荷量为q,质量为m).10、回旋加速器是用来加速一群带电粒子使它们获得很大动能的仪器,其核心部分是两个D形金属扁盒,两盒分别和一高频交流电源两极相接,以便在盒内的窄缝中形成匀强电场,使粒子每次穿过狭缝时都得到加速,两盒放在磁感应强度为B的匀强磁场中,磁场方向垂直于盒底面,粒子源置于盒的圆心附近,若粒子源射出的粒子电荷量为q,质量为m,粒子最大回旋半径为Rmax.求:(1)粒子在盒内做何种运动;(2)所加交变电流频率及粒子角速度;(3)粒子离开加速器时的最大速度及最大动能.11、如图所示,质量为m、长为L、通有电流为I的导体棒ab静止在水平导轨上,匀强磁场磁感应强度为B,其方向与导轨平面成α角斜向上且和棒ab垂直,ab处于静止状态,求ab受到的摩擦力和支持力.12、13、空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R,磁场方向垂直于横截面.一质量为m、电荷量为q(q>0)的粒子以速率v沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°.不计重力,该磁场的磁感应强度大小是多少?13、如图所示,一带正电小球质量为m,用丝线悬挂于O点,并在竖直平面内摆动,摆动过程中无机械能损失,最大摆角为60°,水平磁场垂直于小球摆动的平面,当小球自左方通过最低点时,悬线上的张力为0.5mg,则小球自右方通过最低点时悬线上的张力为多少?。
磁场典型例题
磁场典型例题
1.如图所示,边长为L的等边三角形ABC为两个有界匀强磁场的理想边界,三角形内的磁场方向垂直纸面向外,磁感应强度大小为B,三角形外的磁场(足够大)方向垂直纸面向里,磁感应强度大小也为B.把粒子源放在顶点A处,它将沿∠A的角
平分线发射质量为m、电荷量为q、初速度为v=的负电粒子(粒子重力不计).求:
(1)从A射出的粒子第一次到达C点所用时间为多少?
(2)带电粒子在题设的两个有界磁场中运动的周期.
解析 (1)带电粒子垂直进入磁场,做匀速圆周运动
已知可得到r =L
从A点到达C点的运动轨
迹如图所示,可得
tAC=T/ 6 =πm /3Bq ;
(2)带电粒子在一个周期内的运动如图;
带电粒子从C到B的时间:
tCB=5T/ 6 =5πm/ 3Bq ;
根据对称性可知,带电粒子运动的周期为:
T=3(tAC+tCB)
解得:T′=6πm /qB ;。
高中物理磁场大题(超全)
高中物理磁场大题一.解答题(共30小题)1.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t时刻经极板边缘射入磁场.上述m、q、l、t、B为已知量.(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小.(2)求t时进入两板间的带电粒子在磁场中做圆周运动的半径.(3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.2.如图所示,在xOy平面内,0<x<2L的区域内有一方向竖直向上的匀强电场,2L<x<3L的区域内有一方向竖直向下的匀强电场,两电场强度大小相等.x>3L的区域内有一方向垂直于xOy平面向外的匀强磁场.某时刻,一带正电的粒子从坐标原点以沿x轴正方向的初速度v进入电场;之后的另一时刻,一带负电粒子以同样的初速度从坐标原点进入电场.正、负粒子从电场进入磁场时速度方向与电场和磁场边界的夹角分别为60°和30°,两粒子在磁场中分别运动半周后在某点相遇.已经两粒子的重力以及两粒子之间的相互作用都可忽略不计,两粒子带电量大小相等.求:(1)正、负粒子的质量之比m1:m2;(2)两粒子相遇的位置P点的坐标;(3)两粒子先后进入电场的时间差.3.如图所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R.以O为圆心、R为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D 为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场.粒子在s1处的速度和粒子所受的重力均不计.(1)当M、N间的电压为U时,求粒子进入磁场时速度的大小υ;(2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U;(3)当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t 的最小值.4.如图所示,直角坐标系xoy位于竖直平面内,在‑m≤x≤0的区域内有磁感应强度大小B=4.0×10﹣4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E=4N/C、方向沿y轴正方向的条形匀强电场,其宽度d=2m.一质量m=6.4×10﹣27kg、电荷量q=﹣3.2×10‑19C 的带电粒子从P点以速度v=4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力.求:(1)带电粒子在磁场中运动时间;(2)当电场左边界与y轴重合时Q点的横坐标;(3)若只改变上述电场强度的大小,要求带电粒子仍能通过Q点,讨论此电场左边界的横坐标x′与电场强度的大小E′的函数关系.5.如图所示,两平行金属板AB中间有互相垂直的匀强电场和匀强磁场.A板带正电荷,B板带等量负电荷,电场强度为E;磁场方向垂直纸面向里,磁感应强.平行金属板右侧有一挡板M,中间有小孔O′,OO′是平行于两金属板度为B1.CD为磁场的中心线.挡板右侧有垂直纸面向外的匀强磁场,磁场应强度为B2边界上的一绝缘板,它与M板的夹角θ=45°,O′C=a,现有大量质量均为m,B2含有各种不同电荷量、不同速度的带电粒子(不计重力),自O点沿OO′方向进入电磁场区域,其中有些粒子沿直线OO′方向运动,并进入匀强磁场B中,求:2的带电粒子的速度;(1)进入匀强磁场B2(2)能击中绝缘板CD的粒子中,所带电荷量的最大值;(3)绝缘板CD上被带电粒子击中区域的长度.6.在平面直角坐标系xoy中,第I象限存在沿y轴负方向的匀强电场,第IV 象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m,电荷垂直于y轴射入电场,量为q的带正电的粒子从y轴正半轴上的M点以速度v经x轴上的N点与x轴正方向成45°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求:(1)M、N两点间的电势差U;MN(2)粒子在磁场中运动的轨道半径r;(3)粒子从M点运动到P点的总时间t.7.如图所示的平行板器件中,存在相互垂直的匀强磁场和匀强电场,磁场的磁=0.40T,方向垂直纸面向里,电场强度E=2.0×105V/m,PQ为板间中感应强度B1线.紧靠平行板右侧边缘xOy坐标系的第一象限内,有垂直纸面向外的匀强磁场,磁感应强度B=0.25T,磁场边界AO和y轴的夹角∠AOy=45°.一束带电量q=8.02×10﹣19C的正离子从P点射入平行板间,沿中线PQ做直线运动,穿出平行板后从y轴上坐标为(0,0.2m)的Q点垂直y轴射入磁场区,离子通过x轴时的速度方向与x轴正方向夹角在45°~90°之间.则:(1)离子运动的速度为多大?(2)离子的质量应在什么范围内?(3)现只改变AOy区域内磁场的磁感应强度大小,使离子都不能打到x轴上,磁感应强度大小B应满足什么条件?28.如图所示,在空间中存在垂直纸面向里的匀强磁场,其竖直边界AB、CD的宽度为d,在边界AB左侧是竖直向下、场强为E的匀强电场.现有质量为m、带电的水平初速度射入电场,随后与量为+q的粒子(不计重力)从P点以大小为v边界AB成45°射入磁场.若粒子能垂直CD边界飞出磁场,穿过小孔进入如图所示两竖直平行金属板间的匀强电场中减速至零且不碰到正极板.(1)请画出粒子上述过程中的运动轨迹,并求出粒子进入磁场时的速度大小v;(2)求匀强磁场的磁感应强度B;(3)求金属板间的电压U的最小值.9.如图甲,真空中竖直放置两块相距为d的平行金属板P、Q,两板间加上如图的周期性变化的电压,在Q板右侧某个区域内存在磁感应强度大乙最大值为U小为B、方向垂直于纸面向里的有界匀强磁场.在紧靠P板处有一粒子源A,自t=0开始连续释放初速不计的粒子,经一段时间从Q板小孔O射入磁场,然后射出磁场,射出时所有粒子的速度方向均竖直向上.已知电场变化周期T=,粒子质量为m,电荷量为+q,不计粒子重力及相互间的作用力.求:(1)t=0时刻释放的粒子在P、Q间运动的时间;(2)粒子射入磁场时的最大速率和最小速率;(3)有界磁场区域的最小面积.10.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的半径为L,电势为φ1,内圆弧面CD的半径为,电势为φ2.足够长的收集板MN平行边界ACDB,O到MN板的距离OP=L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子引力的影响.(1)求粒子到达O点时速度的大小;(2)如图2所示,在边界ACDB和收集板MN之间加一个半圆形匀强磁场,圆心为O,半径为L,方向垂直纸面向内,则发现从AB圆弧面收集到的粒子经O点进入磁场后有能打到MN板上(不考虑过边界ACDB的粒子再次返回),求所加磁感应强度的大小;(3)同上问,从AB圆弧面收集到的粒子经O点进入磁场后均不能到达收集板MN,求磁感应强度所满足的条件.试写出定量反映收集板MN上的收集效率η与磁感应强度B的关系的相关式子.11.如图,静止于A处的离子,经电压为U的加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左.静电分析器通道内有均匀辐向分布的电场,已知圆弧所在处场强为E,方向如图所示;离子质量为m、电荷量为q;=2d、=3d,离子重力不计.(1)求圆弧虚线对应的半径R的大小;(2)若离子恰好能打在NQ的中点上,求矩形区域QNCD内匀强电场场强E的值;(3)若撤去矩形区域QNCD内的匀强电场,换为垂直纸面向里的匀强磁场,要求离子能最终打在QN 上,求磁场磁感应强度B 的取值范围.12.如图甲所示,一对平行金属板M 、N 长为L ,相距为d ,O 1O 为中轴线.当两板间加电压U MN =U 0时,两板间为匀强电场,忽略两极板外的电场.某种带负电的粒子从O 1点以速度v 0沿O 1O 方向射入电场,粒子恰好打在上极板M 的中点,粒子重力忽略不计.(1)求带电粒子的比荷;(2)若MN 间加如图乙所示的交变电压,其周期,从t=0开始,前内U MN =2U ,后内U MN =﹣U ,大量的上述粒子仍然以速度v 0沿O 1O 方向持续射入电场,最终所有粒子刚好能全部离开电场而不打在极板上,求U 的值;(3)紧贴板右侧建立xOy 坐标系,在xOy 坐标第I 、IV 象限某区域内存在一个圆形的匀强磁场区域,磁场方向垂直于xOy 坐标平面,要使在(2)问情景下所有粒子经过磁场偏转后都会聚于坐标为(2d ,2d )的P 点,求磁感应强度B 的大小范围.13.如图所示,在第一、二象限存在场强均为E 的匀强电场,其中第一象限的匀强电场的方向沿x 轴正方向,第二象限的电场方向沿x 轴负方向.在第三、四象限矩形区域ABCD 内存在垂直于纸面向外的匀强磁场,矩形区域的AB 边与x 轴重合.M点是第一象限中无限靠近y轴的一点,在M点有一质量为m、电荷量为e沿y轴负方向开始运动,恰好从N点进入磁场,若OM=2ON,的质子,以初速度v不计质子的重力,试求:(1)N点横坐标d;(2)若质子经过磁场最后能无限靠近M点,则矩形区域的最小面积是多少;(3)在(2)的前提下,该质子由M点出发返回到无限靠近M点所需的时间.14.如图所示,在xOy平面直角坐标系中,直线MN与y轴成30°角,P点的坐标为(,0),在y轴与直线MN之间的区域内,存在垂直于xOy平面向外、磁感应强度为B的匀强磁场.在直角坐标系xOy的第Ⅳ象限区域内存在沿y轴,正方向、大小为的匀强电场,在x=3a处垂直于x轴放置一平面荧光屏,从y轴上0≤y≤2a的区间垂直于y轴与x轴交点为Q,电子束以相同的速度v和磁场方向射入磁场.已知从y=2a点射入的电子在磁场中轨迹恰好经过O点,忽略电子间的相互作用,不计电子的重力.求:(1)电子的比荷;(2)电子离开磁场垂直y轴进入电场的位置的范围;(3)从y轴哪个位置进入电场的电子打到荧光屏上距Q点的距离最远?最远距离为多少?15.如图(a)所示,水平放置的平行金属板A、B间加直流电压U,A板正上方有“V”字型足够长的绝缘弹性挡板.在挡板间加垂直纸面的交变磁场,磁感应强度随时间变化如图(b),垂直纸面向里为磁场正方向,其中B1=B,B2未知.现有一比荷为、不计重力的带正电粒子从C点静止释放,t=0时刻,粒子刚好从小孔O进入上方磁场中,在 t1时刻粒子第一次撞到左挡板,紧接着在t1+t2时刻粒子撞到右挡板,然后粒子又从O点竖直向下返回平行金属板间.粒子与挡板碰撞前后电量不变,沿板的分速度不变,垂直板的分速度大小不变、方向相反,不计碰撞的时间及磁场变化产生的感应影响.求:(1)粒子第一次到达O点时的速率;(2)图中B2的大小;(3)金属板A和B间的距离d.16.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t时,刻经极板边缘射入磁场.上述m、q、l、t、B为已知量.(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小.(2)求t时刻进入两板间的带电粒子在磁场中做圆周运动的半径.(3)带电粒子在磁场中的运动时间.17.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场由加了电压的相距为d的两块水平平行放置的导体板形成,如图甲所示.大量电子(其重力不计)由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t,当在两板间加如图乙所示的周期为2t0、幅值恒为U的电压时,所有电子均从两板间通过,然后进入水平宽度为l,竖直宽度足够大的匀强磁场中,最后通过匀强磁场打在竖直放置的荧光屏上.问:(1)电子在刚穿出两板之间时的最大侧向位移与最小侧向位移之比为多少?(2)要使侧向位移最大的电子能垂直打在荧光屏上,匀强磁场的磁感应强度为多少?(3)在满足第(2)问的情况下,打在荧光屏上的电子束的宽度为多少?(已知电子的质量为m、电荷量为e)18.如图所示xOy平面内,在x轴上从电离室产生的带正电的粒子,以几乎为零的初速度飘入电势差为U=200V的加速电场中,然后经过右侧极板上的小孔沿x 轴进入到另一匀强电场区域,该电场区域范围为﹣l≤x≤0(l=4cm),电场强度大小为E=×104V/m,方向沿y轴正方向.带电粒子经过y轴后,将进入一与y 轴相切的圆形边界匀强磁场区域,磁场区域圆半径为r=2cm,圆心C到x轴的距离为d=4cm,磁场磁感应强度为B=8×10﹣2T,方向垂直xoy平面向外.带电粒子最终垂直打在与y轴平行、到y轴距离为L=6cm的接收屏上.求:(1)带电粒子通过y轴时离x轴的距离;(2)带电粒子的比荷;(3)若另一种带电粒子从电离室产生后,最终打在接收屏上y=cm处,则该粒子的比荷又是多少?19.如图所示,在竖直平面内,虚线MO与水平线PQ相交于O,二者夹角θ=30°,在MOP范围内存在竖直向下的匀强电场,电场强度为E,MOQ上方的某个区域有垂直纸面向里的匀强磁场,磁感应强度为B,O点处在磁场的边界上,现有一群质量为m、电量为+q的带电粒子在纸面内以速度v(0≤v≤)垂直于MO从O 点射入磁场,所有粒子通过直线MO时,速度方向均平行于PQ向左,不计粒子的重力和粒子间的相互作用力.求:(1)速度最大的粒子在磁场中的运动时间;(2)速度最大的粒子打在水平线POQ上的位置离O点的距离;(3)磁场区域的最小面积.20.如图所示为某一仪器的部分原理示意图,虚线OA、OB关于y轴对称,∠AOB=90°,OA、OB将xOy平面分为Ⅰ、Ⅱ、Ⅲ三个区域,区域Ⅰ、Ⅲ内存在水平方向的匀强电场,电场强度大小相等、方向相反.质量为m电荷量为q的带电粒子自x轴上的粒子源P处以速度v0沿y轴正方向射出,经时间t到达OA上的M点,且此时速度与OA垂直.已知M到原点O的距离OM=L,不计粒子的重力.求:(1)匀强电场的电场强度E的大小;(2)为使粒子能从M点经Ⅱ区域通过OB上的N点,M、N点关于y轴对称,可在区域Ⅱ内加一垂直xOy平面的匀强磁场,求该磁场的磁感应强度的最小值和粒子经过区域Ⅲ到达x轴上Q点的横坐标;(3)当匀强磁场的磁感应强度取(2)问中的最小值时,且该磁场仅分布在一个圆形区域内.由于某种原因的影响,粒子经过M点时的速度并不严格与OA垂直,成散射状,散射角为θ,但速度大小均相同,如图所示,求所有粒子经过OB时的区域长度.21.在xoy平面直角坐标系的第Ⅰ象限有射线OA,OA与x轴正方向夹角为30°,如图所示,OA与y轴所夹区域存在y轴负方向的匀强电场,其它区域存在垂直坐标平面向外的匀强磁场;有一带正电粒子质量m,电量q,从y轴上的P点沿着x轴正方向以大小为v的初速度射入电场,运动一段时间沿垂直于OA方向经过Q点进入磁场,经磁场偏转,过y轴正半轴上的M点再次垂直进入匀强电场.已知OP=h,不计粒子的重力.(1)求粒子垂直射线OA经过Q点的速度v;Q(2)求匀强电场的电场强度E与匀强磁场的磁感应强度B的比值;(3)粒子从M点垂直进入电场后,如果适当改变电场强度,可以使粒子再次垂直OA进入磁场,再适当改变磁场的强弱,可以使粒子再次从y轴正方向上某点垂直进入电场;如此不断改变电场和磁场,会使粒子每次都能从y轴正方向上某点垂直进入电场,再垂直OA方向进入磁场…,求粒子从P点开始经多长时间能够运动到O点?22.如图所示,图面内有竖直线DD′,过DD′且垂直于图面的平面将空间分成Ⅰ、Ⅱ两区域.区域I有方向竖直向上的匀强电场和方向垂直图面的匀强磁场B (图中未画出);区域Ⅱ有固定在水平面上高h=2l、倾角α=的光滑绝缘斜面,斜面顶端与直线DD′距离s=4l,区域Ⅱ可加竖直方向的大小不同的匀强电场(图中未画出);C点在DD′上,距地面高H=3l.零时刻,质量为m、带电荷量为q=、方向与水平面夹角θ=的速度,在区域I 的小球P在K点具有大小v内做半径r=的匀速圆周运动,经CD水平进入区域Ⅱ.某时刻,不带电的绝缘小球A由斜面顶端静止释放,在某处与刚运动到斜面的小球P相遇.小球视为质点,不计空气阻力及小球P所带电量对空间电磁场的影响.l已知,g为重力加速度.(1)求匀强磁场的磁感应强度B的大小;(2)若小球A、P在斜面底端相遇,求释放小球A的时刻t;A(3)若小球A、P在时刻t=β(β为常数)相遇于斜面某处,求此情况下区域Ⅱ的匀强电场的场强E,并讨论场强E的极大值和极小值及相应的方向.23.如图,在x轴上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外;在x轴下方存在匀强电场,电场方向与xOy平面平行,且与x轴成45°夹从y轴上P点沿y轴正方角.一质量为m、电荷量为q(q>0)的粒子以速度v向射出,一段时间后进入电场,进入电场时的速度方向与电场方向相反;又经过,磁场方向变为垂直纸面向里,大小不变,不计重力.一段时间T(1)求粒子从P点出发至第一次到达x轴时所需的时间;(2)若要使粒子能够回到P点,求电场强度的最大值.24.一半径为R的薄圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的中心轴线平行,筒的横截面如图所示.图中直径MN的两端分别开有小孔,筒可绕其中心轴线转动,圆筒的转动方向和角速度大小可以通过控制装置改变.一的角速度不计重力的负电粒子从小孔M沿着MN方向射入磁场,当筒以大小为ω转过90°时,该粒子恰好从某一小孔飞出圆筒.(1)若粒子在筒内未与筒壁发生碰撞,求该粒子的荷质比和速率分别是多大?(2)若粒子速率不变,入射方向在该截面内且与MN方向成30°角,则要让粒子与圆筒无碰撞地离开圆筒,圆筒角速度应为多大?25.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=0.3,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求:(1)物块a与b碰后的速度大小;(2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.26.如图所示,在光滑的水平面上有一长为L的木板B,上表面粗糙,在其左端有一光滑的圆弧槽C,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B、C静止在水平面上.现有滑块A以初速V0从右端滑上B,并以V滑离B,恰好能到达C的最高点.A、B、C的质量均为m,试求:(1)木板B上表面的动摩擦因素μ;(2)圆弧槽C的半径R;(3)当A滑离C时,C的速度.27.如图所示,一质量M=0.4kg的小物块B在足够长的光滑水平台面上静止不动,其右侧固定有一轻质水平弹簧(处于原长).台面的右边平滑对接有一等高的水平传送带,传送带始终以υ=1m/s的速率逆时针转动.另一质量m=0.1kg的小物块A以速度υ=4m/s水平滑上传送带的右端.已知物块A与传送带之间的动摩擦因数μ=0.1,传送带左右两端的距离l=3.5m,滑块A、B均视为质点,忽略空气阻力,取g=10m/s2.(1)求物块A第一次到达传送带左端时速度大小;;(2)求物块A第一次压缩弹簧过程中弹簧的最大弹性势能Epm(3)物块A会不会第二次压缩弹簧?28.历史上美国宇航局曾经完成了用“深度撞击”号探测器释放的撞击器“击中”坦普尔1号彗星的实验.探测器上所携带的重达370kg的彗星“撞击器”将以1.0×104m/s的速度径直撞向彗星的彗核部分,撞击彗星后“撞击器”融化消失,这次撞击使该彗星自身的运行速度出现1.0×10﹣7m/s的改变.已知普朗克常量h=6.6×10﹣34J•s.(计算结果保留两位有效数字).求:①撞击前彗星“撞击器”对应物质波波长;②根据题中相关信息数据估算出彗星的质量.29.如图,ABD为竖直平面内的轨道,其中AB段是水平粗糙的、BD段为半径R=0.4m 的半圆光滑轨道,两段轨道相切于B点.小球甲从C点以速度υ沿水平轨道向右运动,与静止在B点的小球乙发生弹性碰撞.已知甲、乙两球的质量均为m,小球甲与AB段的动摩擦因数为μ=0.5,C、B距离L=1.6m,g取10m/s2.(水平轨道足够长,甲、乙两球可视为质点)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D,求乙在轨道上的首次落点到B点的距离;(2)在满足(1)的条件下,求的甲的速度υ;(3)若甲仍以速度υ向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B点的距离范围.30.动量定理可以表示为△p=F△t,其中动量p和力F都是矢量.在运用动量定理处理二维问题时,可以在相互垂直的x、y两个方向上分别研究.例如,质量为m的小球斜射到木板上,入射的角度是θ,碰撞后弹出的角度也是θ,碰撞前后的速度大小都是υ,如图所示.碰撞过程中忽略小球所受重力.a.分别求出碰撞前后x、y方向小球的动量变化△px 、△py;b.分析说明小球对木板的作用力的方向.参考答案与试题解析一.解答题(共30小题)1.(2017•吉林模拟)如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的时电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t、B为已知量.(不考虑粒子间相互影刻经极板边缘射入磁场.上述m、q、l、t响及返回板间的情况)的大小.(1)求电压U时进入两板间的带电粒子在磁场中做圆周运动的半径.(2)求t(3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.【解答】解:(1)t=0时刻进入两极板的带电粒子在电场中做匀变速曲线运动,时刻刚好从极板边缘射出,t则有 y=l,x=l,电场强度:E=…①,由牛顿第二定律得:Eq=ma…②,2…③偏移量:y=at由①②③解得:U=…④.(2)t0时刻进入两极板的带电粒子,前t时间在电场中偏转,后t时间两极板没有电场,带电粒子做匀速直线运动.带电粒子沿x轴方向的分速度大小为:vx =v=…⑤带电粒子离开电场时沿y轴负方向的分速度大小为:vy =a•t…⑥带电粒子离开电场时的速度大小为:v=…⑦设带电粒子离开电场进入磁场做匀速圆周运动的半径为R,由牛顿第二定律得:qvB=m…⑧,由③⑤⑥⑦⑧解得:R=…⑨;(3)在t=2t时刻进入两极板的带电粒子,在电场中做类平抛运动的时间最长,飞出极板时速度方向与磁场边界的夹角最小,而根据轨迹几何知识可知,轨迹的圆心角等于粒子射入磁场时速度方向与边界夹角的2倍,所以在t=2t时刻进入两极板的带电粒子在磁场中运动时间最短.带电粒子离开磁场时沿y轴正方向的分速度为:vy ′=at…⑩,设带电粒子离开电场时速度方向与y轴正方向的夹角为α,则:tanα=,由③⑤⑩解得:α=,带电粒子在磁场运动的轨迹图如图所示,圆弧所对的圆心角为:2α=,所求最短时间为:tmin=T,带电粒子在磁场中运动的周期为:T=,联立以上两式解得:tmin=;答:(1)电压U的大小为;。
高二物理磁场经典例题
高二物理磁场经典例题1.一个导线在均匀磁场中受力,磁场方向垂直于导线方向。
如果磁场强度增加,则导线上的安培力的变化情况如何?答案:导线上的安培力将增大。
2.在电流为I的长直导线附近,距离导线d处的磁感应强度为B。
如果将导线的电流加倍,则距离导线d处的磁感应强度如何变化?答案:距离导线d处的磁感应强度也将加倍。
3.一个半径为r的圆形线圈通以电流I,位于均匀磁场中。
求线圈上任意一点的磁感应强度。
答案:线圈上任意一点的磁感应强度为B=μ₀*I/(2*r),其中μ₀为真空中的磁导率。
4.两根平行长直导线,电流分别为I₁和I₂,它们的间距为d。
求两导线之间的相互作用力。
答案:两导线之间的相互作用力为F=μ₀*I₁*I₂/(2*π*d),其中μ₀为真空中的磁导率。
5.一根长直导线通以电流I,与之平行的一段长度为L的导线距离它为d。
求这一段导线受到的安培力。
答案:这一段导线受到的安培力为F=μ₀*I²*L/(2*π*d),其中μ₀为真空中的磁导率。
6.一个充满铜棒的长直螺线管通以电流I,螺线管的半径为R,匝数为N。
求铜棒两端的电势差。
答案:铜棒两端的电势差为ΔV=B*L*v,其中B为磁感应强度,L为铜棒的长度,v 为铜棒在磁场中的速度。
7.一个充满铜棒的长直螺线管通以电流I,螺线管的半径为R,匝数为N。
求铜棒受到的洛伦兹力。
答案:铜棒受到的洛伦兹力为F=B*I*L,其中B为磁感应强度,L为铜棒的长度。
8.一台电动机的转子中有N个线圈,每个线圈的面积为A,总电阻为R。
转子在磁场中以角速度ω旋转。
求电动机输出的电功率。
答案:电动机输出的电功率为P=N*B²*A*ω²*R,其中B为磁感应强度。
9.一个半径为r的螺线管通以电流I,磁场方向与螺线管轴线平行。
求螺线管内部的磁感应强度。
答案:螺线管内部的磁感应强度为B=μ₀*I*N/L,其中μ₀为真空中的磁导率,N为螺线管的匝数,L为螺线管的长度。
磁场 磁感线·典型例题解析
磁场磁感线·典型例题解析【例1】在地球赤道上空有一小磁针处于水平静止状态,突然发现小磁针N极向东偏转,由此可知[ ] A.一定是小磁针正东方向有一条形磁铁的N极靠近小磁针B.一定是小磁针正东方向有一条形磁铁的S极靠近小磁针C.可能是小磁针正上方有电子流自南向北通过D.可能是小磁针正上方有电子流自北向南水平通过解答:正确的应选C.点拨:掌握小磁针的N极受力方向与磁场方向相同,S极受力方向与磁场方向相反是解决此类问题的关键.【例2】下列关于磁感线的说法正确的是[ ] A.磁感线上各点的切线方向就是该点的磁场方向B.磁场中任意两条磁感线均不可相交C.铁屑在磁场中的分布所形成的曲线就是磁感线D.磁感线总是从磁体的N极出发指向磁体的S极解答:正确的应选AB.点拨:对磁感线概念的理解和磁感线特点的掌握是关键.【例3】如图16-2所示为通电螺线管的纵剖面图,试画出a、b、c、d四个位置上小磁针静止时N极的指向.点拨:通电螺线管周围的磁感线分布是小磁针静止时N极指向的根据.【例4】如图16-3所示,当铁心AB上绕有一定阻值的线圈后,在AB间的小磁针静止时N极水平向左,试在图中铁心上的A、B两侧绕上线圈,并与电源连接成正确的电路.点拨:根据小磁针静止时N极指向确定铁心的N极、S极,再定绕线方向.跟踪反馈1.下列说法正确的是[ ] A.磁感线从磁体的N极出发,终止于磁体的S极B.磁感线可以表示磁场的方向和强弱C.磁铁能产生磁场,电流也能产生磁场D.放入通电螺线管内的小磁针,根据异名磁极相吸的原则,小磁针的N 极一定指向通电螺线管的S极2.首先发现电流磁效应的科学家是[ ]A.安培B.奥斯特C.库仑D.麦克斯韦3.如图16-4所示,若一束电子沿y轴正方向运动,则在z轴上某点A的磁场方向应是[ ]A.沿x轴的正向B.沿x轴的负向C.沿z轴的正向D.沿z轴的负向4.如图16-5所示,a、b是直线电流的磁场,c、d是环形电流的磁场,e、f是通电螺线管的磁场,试在图中补画出电流方向或磁感线方向.参考答案1.BC 2.B 3.B 4.a.垂直纸面向里,b.向上c.逆时针d.向下,e.向左f.向右。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁场典型例题【内容和方法】本单元内容包括磁感应强度、磁感线、磁通量、电流的磁场、安培力、洛仑兹力等基本概念,以及磁现象的电本质、安培定则、左手定则等规律。
本单元涉及到的基本方法有,运用空间想象力和磁感线将磁场的空间分布形象化是解决磁场问题的关键。
运用安培定则、左手定则判断磁场方向和载流导线、运动的带电粒子受力情况是将力学知识与磁场问题相结合的切入点。
【例题分析】在本单元知识应用的过程中,初学者常犯的错误主要表现在:不能准确地再现题目中所叙述的磁场的空间分布和带电粒子的运动轨迹:运用安培定则、左手定则判断磁场方向和载流导线、运动的带电粒子受力情况时出错;运用几何知识时出现错误;不善于分析多过程的物理问题。
例1 如图10-1,条形磁铁平放于水平桌面上,在它的正中央上方固定一根直导线,导线与磁场垂直,现给导线中通以垂直于纸面向外的电流,则下列说法正确的是:[ ]A.磁铁对桌面的压力减小B.磁铁对桌面的压力增大C.磁铁对桌面的压力不变D.以上说法都不可能【错解分析】错解:磁铁吸引导线而使磁铁导线对桌面有压力,选B。
错解在选择研究对象做受力分析上出现问题,也没有用牛顿第三定律来分析导线对磁铁的反作用力作用到哪里。
【正确解答】通电导线置于条形磁铁上方使通电导线置于磁场中如图10-2所示,由左手定则判断通电导线受到向下的安培力作用,同时由牛顿第三定律可知,力的作用是相互的,磁铁对通电导线有向下作用的同时,通电导线对磁铁有反作用力,作用在磁铁上,方向向上,如图10-3。
对磁铁做受力分析,由于磁铁始终静止,无通电导线时,N = mg,有通电导线后N+F′=mg,N=mg-F′,磁铁对桌面压力减小,选A。
例2 如图10-4所示,水平放置的扁平条形磁铁,在磁铁的左端正上方有一线框,线框平面与磁铁垂直,当线框从左端正上方沿水平方向平移到右端正上方的过程中,穿过它的磁通量的变化是:[ ] A.先减小后增大B.始终减小C.始终增大D.先增大后减小【错解分析】错解:条形磁铁的磁性两极强,故线框从磁极的一端移到另一端的过程中磁性由强到弱再到强,由磁通量计算公式可知Φ=B·S,线框面积不变,Φ与B成正比例变化,所以选A。
做题时没有真正搞清磁通量的概念,脑子里未正确形成条形磁铁的磁力线空间分布的模型。
因此,盲目地生搬硬套磁通量的计算公式Φ=B·S,由条形磁铁两极的磁感应强度B大于中间部分的磁感应强度,得出线框在两极正上方所穿过的磁通量Φ大于中间正上方所穿过的磁通量。
【正确解答】规范画出条形磁铁的磁感线空间分布的剖面图,如图10-5所示。
利用Φ=B·S定性判断出穿过闭合线圈的磁通量先增大后减小,选D。
【小结】Φ=B·S计算公式使用时是有条件的,B是匀强磁场且要求B垂直S,所以磁感应强度大的位置磁通量不一定大,而本题的两极上方的磁场不是匀强磁场,磁场与正上方线框平面所成的角度又未知,难以定量加以计算,编写此题的目的就是想提醒同学们对磁场的形象化给予足够的重视。
例3如图10-6所示,螺线管两端加上交流电压,沿着螺线管轴线方向有一电子射入,则该电子在螺线管内将做[ ]A.加速直线运动B.匀速直线运动C.匀速圆周运动D.简谐运动【错解分析】错解一:螺线管两端加上交流电压,螺线管内有磁场,电子在磁场中要受到磁场力的作用,故选A。
错解二:螺线管两端加上了交流电压,螺线管内部有磁场,磁场方向周期性发生变化,电子在周期性变化的磁场中受到的力也发生周期性变化,而做往复运动。
故选D。
错解一、二的根本原因有二:一是对螺线管两端加上交流电压后,螺线管内部磁场大小和方向发生周期性变化的具体情况分析不清;二是没有搞清洛仑兹力f=Bqv的适用条件,而乱套公式。
洛仑兹力的大小为f=Bqv的条件是运动电荷垂直射入磁场,当运动方向与B有夹角时,洛仑兹力f=Bqv sinθ,;当θ=0°或θ=180°时,运动电荷不受洛仑兹力作用。
【正确解答】螺线管两端加上交流电压后,螺线管内部磁场大小和方向发生周期性变化,但始终与螺线管平行,沿着螺线管轴线方向射入的电子其运动方向与磁感线平行。
沿轴线飞入的电子始终不受洛仑兹力而做匀速直线运动。
例4 有一自由的矩形导体线圈,通以电流I′。
将其移入通以恒定电流I的长直导线的右侧。
其ab与cd边3跟长直导体AB在同一平面内且互相平行,如图10-7所示。
试判断将该线圈从静止开始释放后的受力和运动情况。
(不计重力)【错解分析】错解:借助磁极的相互作用来判断。
由于长直导线电流产生的磁场在矩形线圈所在处的磁感线方向为垂直纸面向里,它等效于条形磁铁的N极正对矩形线圈向里。
因为通电线圈相当于环形电流,其磁极由右手螺旋定则判定为S极向外,它将受到等效N极的吸引,于是通电矩形线圈将垂直纸面向外加速。
错误的根源就在于将直线电流的磁场与条形磁铁的磁极磁场等效看待。
我们知道直线电流磁场的磁感线是一簇以直导线上各点为圆心的同心圆,它并不存在N极和S极,可称为无极场,不能与条形磁铁的有极场等效。
【正确解答】利用左手定则判断。
先画出直线电流的磁场在矩形线圈所在处的磁感线分布,由右手螺旋定则确定其磁感线的方向垂直纸面向里,如图10-8所示。
线圈的四条边所受安培力的方向由左手定则判定。
其中F1与F3相互平衡,因ab边所在处的磁场比cd边所在处的强,故F4>F2。
由此可知矩形线圈abcd所受安培力的合力的方向向左,它将加速向左运动而与导体AB靠拢。
【小结】用等效的思想处理问题是有条件的,磁场的等效,应该是磁场的分布有相似之处。
例如条形磁铁与通电直螺线管的磁场大致相同,可以等效。
所以应该老老实实地将两个磁场画出来,经过比较看是否满足等效的条件。
本题中直线电流的磁场就不能等效为匀强磁场。
例5如图10-9所示,用绝缘丝线悬挂着的环形导体,位于与其所在平面垂直且向右的匀强磁场中,若环形导体通有如图所示方向的电流I,试判断环形导体的运动情况。
【错解分析】错解:已知匀强磁场的磁感线与导体环面垂直向右,它等效于条形磁铁N极正对环形导体圆面的左侧,而通电环形导体,即环形电流的磁场N极向左(根据右手定则来判定),它将受到等效N极的排斥作用,环形导体开始向右加速运动。
误将匀强磁场等效于条形磁铁的磁场。
【正确解答】利用左手定则判断。
可将环形导体等分为若干段,每小段通电导体所受安培力均指向圆心。
由对称性可知,4这些安培力均为成对的平衡力。
故该环形导体将保持原来的静止状态。
【小结】对于直线电流的磁场和匀强磁场都应将其看作无极场。
在这种磁场中分析通电线圈受力的问题时,不能用等效磁极的办法,因为它不符合实际情况。
而必须运用左手定则分析出安培力合力的方向后,再行确定其运动状态变化情况。
例6质量为m的通电导体棒ab置于倾角为θ的导轨上,如图10-10所示。
已知导体与导轨间的动摩擦因数为μ,在图10-11所加各种磁场中,导体均静止,则导体与导轨间摩擦力为零的可能情况是:【错解分析】错解:根据f=μN,题目中μ≠0,要使f=0必有N=0。
为此需要安培力F B与导体重力G平衡,由左手定则可判定图10-11中B项有此可能,故选B。
上述分析受到题目中“动摩擦因数为μ”的干扰,误用滑动摩擦力的计算式f=μN来讨论静摩擦力的问题。
从而导致错选、漏选。
【正确解答】要使静摩擦力为零,如果N=0,必有f=0。
图10-11B选项中安培力的方向竖直向上与重力的方向相反可能使N=0,B是正确的;如果N≠0,则导体除受静摩擦力f以外的其他力的合力只要为零,那么f=0。
在图10-11A 选项中,导体所受到的重力G、支持力N及安培力F安三力合力可能为零,则导体所受静摩擦力可能为零。
图10-11的C.D选项中,从导体所受到的重力G、支持力N及安培力F安三力的方向分析,合力不可能为零,所以导体所受静摩擦力不可能为零。
故正确的选项应为A.B。
【小结】本题是一道概念性极强的题,又是一道力学与电学知识交叉的综合试题。
摩擦力有静摩擦力与滑动摩擦力两种。
判断它们区别的前提是两个相互接触的物体有没有相对运动。
力学中的概念的准确与否影响电学的学习成绩。
例7 如图10-12所示,带负电的粒子垂直磁场方向进入圆形匀强磁场区域,出磁场时速度偏离原方向60°角,已知带电粒子质量m=3×10-20kg,电量q=10-13C,速度v0=105m/s,磁场区域的半径R=3×10-1m,不计重力,求磁场的磁感应强度。
【错解分析】错解:带电粒子在磁场中做匀速圆周运动5 没有依据题意画出带电粒子的运动轨迹图,误将圆形磁场的半径当作粒子运动的半径,说明对公式中有关物理量的物理意义不明白。
【正确解答】画进、出磁场速度的垂线得交点O′,O′点即为粒子作圆周运动的圆心,据此作出运动轨迹AB,如图10-13所示。
此圆半径记为r。
带电粒子在磁场中做匀速圆周运动【小结】由于洛伦兹力总是垂直于速度方向,若已知带电粒子的任意两个速度方向,就可以通过作出两速度的垂线,找出两垂线的交点即为带电粒子做圆周运动的圆心。
例8 如图10-14所示,带电粒子在真空环境中的匀强磁场里按图示径迹运动。
径迹为互相衔接的两段半径不等的半圆弧,中间是一块薄金属片,粒子穿过时有动能损失。
试判断粒子在上、下两段半圆径迹中哪段所需时间较长?(粒子重力不计)【错解分析】错解:的回旋周期与回旋半径成正比,因为上半部分径迹的半径较大,所以所需时间较长。
错误地认为带电粒子在磁场中做圆周运动的速度不变,由周期公式【正确解答】首先根据洛仑兹力方向,(指向圆心),磁场方向以及动能损耗情况,判定粒子带正电,沿abcde方向运动。
再求通过上、下两段圆弧所需时间:带电粒子在磁场中做匀速圆周运动子速度v,回旋半径R无关。
因此上、下两半圆弧粒子通过所需时间相等。
动能的损耗导致粒子的速度的减小,结果使得回旋半径按比例减小,周期并不改变。
【小结】回旋加速器的过程恰好与本题所述过程相反。
回旋加速器中粒子不断地被加速,但是粒子在磁场中的圆周运动周期不变。
例9一个负离子的质量为m,电量大小为q,以速度v0垂直于屏S经过小孔O射入存在着匀强磁场的真空室中,如图10-15所示。
磁感应强度B方向与离子的初速度方向垂直,并垂直于纸面向里。
如果离子进入磁场后经过时间t到这位置P,证明:直线OP与离子入射方向之间的夹角θ跟t【错解分析】错解:根据牛顿第二定律和向心加速度公式高中阶段,我们在应用牛顿第二定律解题时,F应为恒力或平均力,本题中洛仑兹力是方向不断变化的力。
不能直接代入公式求解。
【正确解答】如图10-16,当离子到达位置P时圆心角为【小结】时时要注意公式的适用条件范围,稍不注意就会出现张冠李戴的错误。
如果想用平均力的牛顿第二定律求解,则要先求平均加速度例10 如图10-17所示。