幕墙锚栓计算

合集下载

化学锚栓拉拔力计算

化学锚栓拉拔力计算

航天三院三十三所导航楼幕墙及钢结构雨棚工程化学锚栓拉拔力确认北京建磊国际装饰工程股份有限公司2015年8月1一、荷载计算1、风荷载标准值计算Wk : 作用在幕墙上的风荷载标准值(kN/m 2) z : 计算高度25mμz : 25m 高处风压高度变化系数(按B 类区计算): (GB50009-2012 条文说明8.2.1) μz =1×(z 10)0.3=1.31638I10: 10米高名义湍流度,对应A 、B 、C 、D 类地面粗糙度,分别取0.12、0.14、0.23、0.39。

(GB50009-2012 条文说明8.4.6)βgz : 阵风系数 : (GB50009-2012 8.1.1-2) β gz = 1 + 2×g ×I 10×(z 10)(-α) (GB50009-2012 条文说明8.6.1)= 1 + 2×2.5×0.14×(2510)(-0.15)= 1.61011 μ sp1:局部正风压体型系数μ sn1:局部负风压体型系数,通过计算确定μ sz :建筑物表面正压区体型系数,按照(GB50009-2012 8.3.3)取1 μsf :建筑物表面负压区体型系数,按照(GB50009-2012 8.3.3-2)取-1对于封闭式建筑物,考虑内表面压力,按照(GB50009-2012 8.3.5)取-0.2或0.2 Av :立柱构件从属面积取6m 2Ah :横梁构件从属面积取1m 2μ sa :维护构件面板的局部体型系数 μs1z =μsz +0.2 =1.2 μs1f =μsf -0.2 =-1.2维护构件从属面积大于或等于25m 2的体型系数计算μs25z =μsz ×0.8+0.2 (GB50009-2012 8.3.4) =1μs25f =μsf ×0.8-0.2 (GB50009-2012 8.3.4) =-1对于直接承受荷载的面板而言,不需折减有 μ saz =1.2 μ saf =-1.2同样,取立柱面积对数线性插值计算得到 μ savz =μ sz +(μ sz ×0.8-μ sz )×log(Av )1.4+0.2=1+(0.8-1)×0.7781511.4+0.2=1.08884μ savf =μ sf +(μ sf ×0.8-μ sf )×log(A v )1.4-0.2=-1+((-0.8)-(-1))×0.7781511.4-0.2=-1.08884 按照以上计算得到 对于面板有: μsp1=1.2 μ sn1=-1.2 对于立柱有: μ svp1=1.08884 μ svn1=-1.08884 对于横梁有: μ shp1=1.2 μ shn1=-1.2面板正风压风荷载标准值计算如下Wkp =βgz ×μsp1×μz ×W0 (GB50009-2012 8.1.1-2)=1.61011×1.2×1.31638×0.45=1.14454 kN/m 2面板负风压风荷载标准值计算如下W kn =β gz ×μ sn1×μ z ×W0 (GB50009-2012 8.1.1-2) =1.61011×(-1.2)×1.31638×0.45=-1.14454 kN/m 2同样,立柱正风压风荷载标准值计算如下W kvp =β gz ×μ svp1×μ z ×W0 (GB50009-2012 8.1.1-2) =1.61011×1.08884×1.31638×0.45=1.03851 kN/m 2立柱负风压风荷载标准值计算如下W kvn =β gz ×μ svn1×μ z ×W0 (GB50009-2012 8.1.1-2) =-1.03851 kN/m 2同样,横梁正风压风荷载标准值计算如下W khp =β gz ×μ shp1×μ z ×W0 (GB50009-2012 8.1.1-2) =1.14454 kN/m 2横梁负风压风荷载标准值计算如下W khn =β gz ×μ shn1×μ z ×W0 (GB50009-2012 8.1.1-2) =-1.14454 kN/m 22、风荷载设计值计算W: 风荷载设计值: kN/m 2γw : 风荷载作用效应的分项系数:1.4按《玻璃幕墙工程技术规范》JGJ 102-2003 5.4.2条规定采用 面板风荷载作用计算Wp=γw ×Wkp=1.4×1.14454=1.60236kN/m 2Wn=γw ×Wkn=1.4×(-1.14454)=-1.60236kN/m 2立柱风荷载作用计算Wvp=γw ×Wkvp=1.4×1.03851=1.45392kN/m 2Wvn=γw ×Wkvn=1.4×(-1.03851)=-1.45392kN/m 2横梁风荷载作用计算Whp=γw ×Wkhp=1.4×1.14454=1.60236kN/m 2Whn=γw ×Wkhn=1.4×(-1.14454)=-1.60236kN/m 23、水平地震作用计算GAK: 面板平米重量取0.7kN/m 2αmax: 水平地震影响系数最大值:0.16qEk: 分布水平地震作用标准值(kN/m 2)qEk=βE×αmax×GAK (JGJ102-2003 5.3.4)=5×0.16×0.7=0.56kN/m2rE: 地震作用分项系数: 1.3qEA: 分布水平地震作用设计值(kN/m2)qEA=rE×qEk=1.3×0.56=0.728kN/m24、荷载组合计算幕墙承受的荷载作用组合计算,按照规范,考虑正风压、地震荷载组合: Szkp=Wkp=1.14454kN/m2Szp=Wkp×γw+qEk×γE×ψE=1.14454×1.4+0.56×1.3×0.5=1.96636kN/m2考虑负风压、地震荷载组合:Szkn=Wkn=-1.14454kN/m2Szn=Wkn×γw-qEk×γE×ψE=-1.14454×1.4-0.56×1.3×0.5=-1.96636kN/m2综合以上计算,取绝对值最大的荷载进行强度演算采用面板荷载组合标准值为1.14454kN/m2面板荷载组合设计值为1.96636kN/m2立柱承受风荷载标准值为1.03851kN/m2横梁承受风荷载标准值为1.14454kN/m2二、化学锚栓计算1、锚栓计算信息描述V: 剪力设计值:V=4290N水平剪力设计值Vh = 0NN: 法向力设计值:N=732.586Ne2: 锚栓中心与锚板平面距离: 215mmMy: 弯矩设计值(N.mm):My=V×e2=4290×215=922350N.mmT: 扭矩设计值(N.mm): 0N.mm锚栓直径: 12mm锚栓底板孔径: 13mm锚栓处混凝土开孔直径: 14mm 锚栓有效锚固深度: 120mm锚栓底部混凝土级别: 混凝土-C35 底部混凝土为开裂混凝土 底部混凝土基材厚度: 400mm 混凝土开裂及边缘配筋情况: 1锚栓锚固区混凝土配筋描述: 其它情况2、锚栓承受拉力计算锚栓布置示意图如下:1234705010050705505020050550300200化学锚栓布置示意图d :锚栓直径12mm df:锚栓底板孔径13mm在拉力和弯矩共同作用下,锚栓群有两种可能的受力形式。

化学锚栓拉拔力

化学锚栓拉拔力

学锚栓,一、基本参数工程所在地:青岛市幕墙计算标高:15.33 m 玻璃设计分格:B×H=1549×2000 mmB:玻璃宽度H:玻璃高度设计地震烈度:7度地面粗糙度类别:A类二、荷载计算1、风荷载标准值W K:作用在幕墙上的风荷载标准值(KN/m2)βgz:瞬时风压的阵风系数,取1.60μs:风荷载体型系数,取1.2μz:风荷载高度变化系数,取1.527青岛市地区风压W0=0.6 KN/m (按50年一遇)W k=βgzμsμz W0=1.60×1.2×1.527×0.60=1.76 KN/m2>1.0 KN/m2取W K=1.76 KN/m22、风荷载设计值W :风荷载设计值 (KN/m 2)r w :风荷载作用效应的分项系数,取1.4W=r w ×W k=1.4×1.76=2.46 KN/m 23、玻璃幕墙构件重量荷载G AK :玻璃幕墙构件自重标准值,取0.50 KN/m 2G A :玻璃幕墙构件自重设计值G A =1.2×G AK =1.2×0.50=0.60 KN/m 24、地震作用q EK :垂直于幕墙平面的分布水平地震作用标准值 (KN/m 2)q E :垂直于幕墙平面的分布水平地震作用设计值 (KN/m 2)βE :动力放大系数,取5.0αmax :水平地震影响系数最大值,取0.08G AK :幕墙构件(包括玻璃和接头)的重量标准值,取0.50 KN/m 2q EK =AK max E G ⨯α⨯β=5.0×0.08×0.50=0.20KN/m 2q E =γE ×q EK=1.3×0.20=0.26 KN/m 25、荷载组合风荷载和地震荷载的水平分布作用标准值q K =ψW ·q WK +ψE ·q EK=1.0×1.76+0.5×0.20=1.86 KN/m 2风荷载和地震荷载的水平分布作用设计值q=ψW ·γW ·q WK +ψE ·γE ·q EK=1.0×1.4×1.76+0.5×1.3×0.20=2.59 KN/m 2 第二章、化学锚栓强度计算一、部位要素该处最大计算标高按15.33 m 计,受到由水平风荷载和地震荷载作用效应的组合荷载设计值为2.59 KN/m ,桁架的分格宽度为1549 mm 。

埋件计算

埋件计算

埋件计算建筑埋件系统设计计算书设计:校对:审核:批准:二〇一四年三月二十二日目录1 计算引用的规范、标准及资料 (1)2 幕墙埋件计算(粘结型化学锚栓) (1)2.1 埋件受力基本参数 (1)2.2 锚栓群中承受拉力最大锚栓的拉力计算 (1)2.3 群锚受剪内力计算 (2)2.4 锚栓或植筋钢材破坏时的受拉承载力计算 (2)2.5 锚栓或植筋钢材受剪破坏承载力计算 (3)2.6 拉剪复合受力承载力计算 (3)3 附录常用材料的力学及其它物理性能 (4)幕墙后锚固计算1 计算引用的规范、标准及资料《玻璃幕墙工程技术规范》 JGJ102-2003《金属与石材幕墙工程技术规范》 JGJ133-2001《混凝土结构后锚固技术规程》 JGJ145-2004《混凝土结构加固设计规范》 GB50367-2006《混凝土结构设计规范》 GB50010-2010《混凝土用膨胀型、扩孔型建筑锚栓》 JG160-20042 幕墙埋件计算(粘结型化学锚栓)2.1埋件受力基本参数V=4000NN=5000NM=200000N·mm选用锚栓:慧鱼-化学锚栓,FHB-A 12×80/100;2.2锚栓群中承受拉力最大锚栓的拉力计算按5.2.2[JGJ145-2004]规定,在轴心拉力和弯矩共同作用下(下图所示),进行弹性分析时,受力最大锚栓的拉力设计值应按下列规定计算:1:当N/n-My1/Σyi2≥0时:N sd h=N/n+My1/Σyi22:当N/n-My1/Σyi2<0时:N sd h=(NL+M)y1//Σyi/2在上面公式中:M:弯矩设计值;Nsdh:群锚中受拉力最大锚栓的拉力设计值;y 1,yi:锚栓1及i至群锚形心轴的垂直距离;y 1/,yi/:锚栓1及i至受压一侧最外排锚栓的垂直距离;L:轴力N作用点至受压一侧最外排锚栓的垂直距离;在本例中:N/n-My1/Σyi2=5000/4-200000×75/22500 =583.333因为:583.333≥0所以:Nsd h=N/n+My1/Σyi2=1916.667N按JGJ102-2003的5.5.7中第七条规定,这里的Nsdh再乘以2就是现场实际拉拔应该达到的值。

后置化学锚栓拉力值计算

后置化学锚栓拉力值计算

樟木头行政中心办公楼11~12轴玻璃幕墙后置化学锚栓拉力值计算书设计:校对:审核:批准:圣帝国际建筑工程有限公司二〇〇七年十二月二十一日于2007年9月份收到施工单位“正面弧形幕墙设计修改”,该内容详图《DY-04 (修)》。

此次修改将原设计的幕墙分格1.733m宽改为0.890m宽,根据此修改该处的后置预埋化学锚栓设计值计算如下:-------------------------------------------------------------------1 基本参数1.1幕墙所在地区:东莞地区;1.2地面粗糙度分类等级:幕墙属于外围护构件,按《建筑结构荷载规范》(GB50009-2001)A类:指近海海面和海岛、海岸、湖岸及沙漠地区;B类:指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;C类:指有密集建筑群的城市市区;D类:指有密集建筑群且房屋较高的城市市区;依照上面分类标准,本工程按B类地区考虑。

1.3抗震烈度:按照国家规范《建筑抗震设计规范》(GB50011-2001)、《中国地震动参数区划图》(GB18306-2001)规定,东莞地区地震基本烈度为6度,地震动峰值加速度为0.05g,水平地震影响系数最大值为:αmax=0.04。

2 幕墙承受荷载计算2.1风荷载标准值的计算方法:幕墙属于外围护构件,按建筑结构荷载规范(GB50009-2001 2006年版)计算:wk =βgzμzμs1w……7.1.1-2[GB50009-2001 2006年版]上式中:wk:作用在幕墙上的风荷载标准值(MPa); Z:计算点标高:32.4m;βgz:瞬时风压的阵风系数;根据不同场地类型,按以下公式计算:βgz =K(1+2μf)对于B类地区,32.4m高度处瞬时风压的阵风系数:βgz=0.89×(1+2×(0.5(Z/10)-0.16))=1.6274μz:风压高度变化系数;根据不同场地类型,按以下公式计算:B类场地:μz=(Z/10)0.32当Z>350m时,取Z=350m,当Z<10m时,取Z=10m;对于B类地区,32.4m高度处风压高度变化系数:μz=1.000×(Z/10)0.32=1.4567μs1:局部风压体型系数;按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护构件及其连接的强度时,可按下列规定采用局部风压体型系数μs1:一、外表面1. 正压区按表7.3.1采用;2. 负压区—对墙面,取-1.0—对墙角边,取-1.8二、内表面对封闭式建筑物,按表面风压的正负情况取-0.2或0.2。

锚栓计算

锚栓计算

本设计采用化学植筋作为后锚固连接件。

本计算主要依据《混凝土结构后锚固技术规程》JGJ 145-2004。

后锚固连接设计,应根据被连接结构类型、锚固连接受力性质及锚栓类型的不同,对其破坏型态加以控制。

本设计只考虑锚栓钢材抗剪复合破坏类型和混凝土破坏类型。

并认为锚栓是群锚锚栓。

1 后锚固载荷信息本工程锚栓受拉力和剪力V gsd : 总剪力设计值:V g sd =8.723KNN g sd : 总拉力设计值:N g sd =34.000KNM: 弯矩设计值:M=1.240000KN ·m本设计的锚栓是在拉剪复合力的作用之下工作,所以拉剪复合受力下锚栓或植筋钢材破坏和混凝土破坏时的承载力,应按照下列公式计算: 1)()(2,2,≤+sRd h Sd s Rd h Sd V V N N N Rs s Rk s Rd N N ,,,γ=V Rs s Rk s Rd V V ,,,γ=1)()(5.1,5.1,≤+cRd g Sd c Rd g Sd V V N N N Rc cRk c Rd N N ,,,γ=V Rc c Rk c Rd V V ,,,γ=式中h SdN ---- 群锚中受力最大锚栓的拉力设计值; g Sd N ---- 群锚受拉区总拉力设计值;h Sd V ---- 群锚中受力最大锚栓的剪力设计值; g Sd V ---- 群锚总剪力设计值;s Rd N , ---- 锚栓受拉承载力设计值;s Rk N , ---- 锚栓受拉承载力标准值;s Rd V , ---- 锚栓受剪承载力设计值;s Rk V , ---- 锚栓受剪承载力标准值;c Rd N , ---- 混凝土锥体受拉破坏承载力设计值; c Rk N , ---- 混凝土锥体受拉破坏承载力标准值; cRd V , ---- 混凝土楔形体受剪破坏承载力设计值; c Rk V , ---- 混凝土楔形体受剪破坏承载力标准值; γRs,N ----锚栓钢材受拉破坏,锚固承载力分项系数=1.50; γRs,V ----锚栓钢材受剪破坏,锚固承载力分项系数=1.50; γRc,N ----混凝土锥体受拉破坏,锚固承载力分项系数=2.15; γRc,V ----混凝土楔形体受剪破坏,锚固承载力分项系数=1.80; γRcp ----混凝土剪撬受剪破坏,锚固承载力分项系数=1.80; γRsp ----混凝土劈裂受拉破坏,锚固承载力分项系数=2.15; 锚栓的分布如下图所示:。

后埋件设计中化学螺栓与膨胀螺栓混用问题目前幕墙后埋件的设计中 (1)

后埋件设计中化学螺栓与膨胀螺栓混用问题目前幕墙后埋件的设计中 (1)

后埋件设计中化学螺栓与膨胀螺栓混用问题目前幕墙后埋件的设计中,很多采用化学螺栓与膨胀螺栓混用的个案(如立柱预埋件分别为一对角线两枚化学螺栓,另一对角线两枚膨胀螺栓),例如我们本论坛中的一份贴中上传的图幕墙防雷节点也是混用了两种螺栓,但此类埋件计算如何取参数、公式?请大家讨论,化学螺栓与膨螺栓混用合理吗?两种螺栓混用幕墙的安全度有没有保证?应该如何精确计算?1、膨胀锚栓和化学锚栓的特点及混用的合理性。

膨胀锚栓通过端部的扩张部分压入钻孔壁内,通过摩擦力承受荷载;膨胀锚栓的优点是抗剪能力好,价格便宜,施工方便。

有些人说膨胀锚栓不好,主要认为膨胀锚栓会由于风载的循环反复拉压而产生松动,抗拉能力较差,但膨胀锚栓用于幕墙也快20来年了,并未有工程事故及相关资料来支持这种说法,我认为只要我们选用正规厂家的合格产品,留有合适的安全储备,膨胀锚栓用于一般的幕墙是没有问题的。

化学锚栓通过砂浆或合成树脂将锚栓与锚固基础结合成一个整体;化学锚栓的力学性能比同等规格的膨胀锚栓好很多;缺点是价格高,对施工要求高,如果现场钻孔,清孔达不到要求,还不如直接用膨胀锚栓。

现在有个说法是化学锚栓不宜焊接,这个说法也不全对,国内一般的化学锚栓药剂采用的环氧树脂,这种材料优点是收缩率低、粘结力高,它能产生很高的强度,对清孔方法和效果敏感性小,但它主要的缺点是耐高温稳定性差,所以不宜焊接。

还有一种化学药剂是乙烯基酯树脂,其粘结剂采用乙烯基酯/水泥,反应剂采用甲基丙烯酸脂和水,这种化学药剂除了环氧树脂的优点外,还有耐高温、化学稳定性高、耐久性高等优点;像慧鱼的化学锚栓就有采用的这种树脂,喜利得销售人员上次来我们公司讲课,也有谈到他们的化学锚栓采用的化学药剂并非环氧树脂,能耐高温,还出示了他们在建设部做的焊接后拉拔试验报告。

对于能够提供试验报告或耐高温说明的化学锚栓,是可以焊接的。

对于承受很大的弯矩及轴力的支座,比如拉索支座,钢柱支座等,没有预埋件时,应该采用慧鱼、喜利得等公司的化学锚栓。

石材幕墙计算书讲解

石材幕墙计算书讲解

石材幕墙设计计算书基本参数: 南昌地区地面粗糙度 C 类基本风压W0=0.450KN/m2计算单元:标高16m跨度 4.8m分格尺寸0.8x8m石材规格25mm石材抗震设防烈度6度设计基本地震加速度0.05g一、风荷载计算标高为16m处风荷载计算W0:基本风压W0=0.450 kN/m2βgz:16m高处阵风系数(按C类区计算)βgz=0.85×[1+350.108×(Z/10)-0.22]=2.303μz: 16m高处风压高度变化系数(按C类区计算):(GB50009-2001)(2006年版) μz=0.616×(Z/10)0.44(C类区,16米计算)=0.616×(16/10)0.44=0.740μsl:局部风压体型系数该处局部风压体型系数μsl=1.800其中:取W0=0.3 kN/m2(GB50009-2001)(2006年版)风荷载标准值:W k=βgz×μz×μsl×W0(GB50009-2001)(2006年版)=2.303×0.740×1.800×0.300=0.920 kN/m2因为W k≤1.0kN/m2,取W k=1.0 kN/m2,按JGJ102-2003第5.3.2条采用。

风荷载设计值:W: 风荷载设计值(kN/m2)γw: 风荷载作用效应的分项系数:1.4按《建筑结构荷载规范》GB50009-2001 3.2.5 规定采用W=γw×W k=1.4×1.000=1.400kN/m2二、板强度校核:1.石材强度校核用MU110级石材,其抗弯强度标准值为:8.0N/mm2石材抗弯强度设计值:3.70N/mm2石材抗剪强度设计值:1.90N/mm2校核依据:σ≤[σ]=3.700N/mm2A o: 石板短边长:0.8mB o: 石板长边长:0.8ma: 计算石板抗弯所用短边长度: 0.8mb: 计算石板抗弯所用长边长度:0.8mt: 石材厚度: 25.0mmG AK:石板自重=700.00N/m2m1: 四角支承板弯矩系数, 按短边与长边的边长比(a/b=1) 查表得: 0.1435W k: 风荷载标准值: 1.000kN/m2垂直于平面的分布水平地震作用:q EAk: 垂直于幕墙平面的分布水平地震作用(kN/m2)q EAk=5×αmax×G AK=5×0.040×700/1000=0.14kN/m2荷载组合设计值为:S z=1.4×W k+1.3×0.5×q EAk=1.509kN/m2应力设计值为:σ=6×m1×S z×b2×103/t2=6×0.1435×1.509×0.9502×103/30.02=1.303N/mm21.303N/mm2≤3.700N/mm2强度可以满足要求2.石材剪应力校核校核依据: τmax≤[τ]τ:石板中产生的剪应力设计值(N/mm2)n:一个连接边上的挂钩数量: 2t:石板厚度: 25.0mmd:槽宽: 7.0mms:槽底总长度: 60.0mmβ:系数,取1.25对边开槽τ=S z×A o×B o×β×1000/[n×(t-d)×s]=0.590N/mm20.590N/mm2≤1.900N/mm2石材抗剪强度可以满足3.挂钩剪应力校核校核依据: τmax≤[τ]τ:挂钩剪应力设计值(N/mm2)A p:挂钩截面面积: 19.600mm2n:一个连接边上的挂钩数量: 2对边开槽τ=S z×A o×B o×β×1000/(2×n×A p)=20.754N/mm220.754N/mm2≤125.000N/mm2挂钩抗剪强度可以满足三、幕墙立柱计算:幕墙立柱按简支梁力学模型进行设计计算:1. 荷载计算:(1)风荷载均布线荷载设计值(矩形分布)计算q w: 风荷载均布线荷载设计值(kN/m)W: 风荷载设计值: 1.400kN/m2B: 幕墙分格宽: 1.150mq w=W×B=1.400×1.150=1.610 kN/m(2)地震荷载计算q EA: 地震作用设计值(KN/m2):G Ak: 幕墙构件(包括面板和框)的平均自重: 1000N/m2垂直于幕墙平面的均布水平地震作用标准值:q EAk: 垂直于幕墙平面的均布水平地震作用标准值(kN/m2)q EAk=5×αmax×G Ak=5×0.040×1000.000/1000=0.200 kN/m2γE: 幕墙地震作用分项系数: 1.3q EA=1.3×q EAk=1.3×0.200=0.260 kN/m2q E:水平地震作用均布线作用设计值(矩形分布) q E=q EA×B=0.260×1.150=0.299 kN/m(3)立柱弯矩:M w: 风荷载作用下立柱弯矩(kN.m)q w: 风荷载均布线荷载设计值: 1.610(kN/m)H sjcg: 立柱计算跨度: 3.600mM w=q w×H sjcg2/8=1.610×3.6002/8=2.608 kN·mM E: 地震作用下立柱弯矩(kN·m):M E=q E×H sjcg2/8=0.299×3.6002/8=0.484kN·mM: 幕墙立柱在风荷载和地震作用下产生弯矩(kN·m)采用S W+0.5S E组合M=M w+0.5×M E=2.608+0.5×0.484=2.850kN·m2. 选用立柱型材的截面特性:立柱型材号:槽钢[8#选用的立柱材料牌号:Q235 d<=16型材强度设计值: 抗拉、抗压215.000N/mm2抗剪125.0N/mm2型材弹性模量: E=2.10×105N/mm2X轴惯性矩: I x=194.395cm4Y轴惯性矩: I y=30.355cm4立柱型材在弯矩作用方向净截面抵抗矩: W n=38.828cm3立柱型材净截面积: A n=12.163cm2立柱型材截面垂直于X轴腹板的截面总宽度: LT_x=6.000mm立柱型材计算剪应力处以上(或下)截面对中和轴的面积矩: S s=22.823cm3塑性发展系数: γ=1.053. 幕墙立柱的强度计算:校核依据: N/A n+M/(γ×W n)≤fa=215.0N/mm2(拉弯构件)B: 幕墙分格宽: 1.150mG Ak: 幕墙自重: 1000N/m2幕墙自重线荷载:G k=1000×B/1000=1000×1.150/1000=1.150kN/mN k: 立柱受力:N k=G k×L=1.150×3.600=4.140kNN: 立柱受力设计值:r G: 结构自重分项系数: 1.2N=1.2×N k=1.2×4.140=4.968kNσ: 立柱计算强度(N/mm2)(立柱为拉弯构件)N: 立柱受力设计值: 4.968kNA n: 立柱型材净截面面积: 12.163cm2M: 立柱弯矩: 2.850kN·mW n: 立柱在弯矩作用方向净截面抵抗矩: 38.828cm3γ: 塑性发展系数: 1.05σ=N×10/A n+M×103/(1.05×W n)=4.968×10/12.163+2.850×103/(1.05×38.828)=73.999N/mm273.999N/mm2 < fa=215.0N/mm2立柱强度可以满足4. 幕墙立柱的刚度计算:校核依据: d f≤L/250d f: 立柱最大挠度D u: 立柱最大挠度与其所在支承跨度(支点间的距离)比值:L: 立柱计算跨度: 3.600md f=5×q Wk×H sjcg4×1000/(384×2.1×I x)=6.161mmD u=U/(L×1000)=6.161/(3.600×1000)=1/5841/584 < 1/250挠度可以满足要求!5. 立柱抗剪计算:校核依据: τmax≤[τ]=125.0N/mm2(1)Q wk: 风荷载作用下剪力标准值(kN)Q wk=W k×H sjcg×B/2=1.000×3.600×1.150/2=2.070kN(2)Q w: 风荷载作用下剪力设计值(kN)Q w=1.4×Q wk=1.4×2.070=2.898kN(3)Q Ek: 地震作用下剪力标准值(kN)Q Ek=q EAk×H sjcg×B/2=0.200×3.600×1.150/2=0.414kN(4)Q E: 地震作用下剪力设计值(kN)Q E=1.3×Q Ek=1.3×0.414=0.538kN(5)Q: 立柱所受剪力:采用Q w+0.5Q E组合Q=Q w+0.5×Q E=2.898+0.5×0.538=3.167kN(6)立柱剪应力:τ: 立柱剪应力:S s: 立柱型材计算剪应力处以上(或下)截面对中和轴的面积矩: 22.823cm3立柱型材截面垂直于X轴腹板的截面总宽度: LT_x=6.000mmI x: 立柱型材截面惯性矩: 194.395cm4τ=Q×S s×100/(I x×LT_x)=3.167×22.823×100/(194.395×6.000)=6.197N/mm2τ=6.197N/mm2 < 125.0N/mm2立柱抗剪强度可以满足四、立柱与主结构连接L ct2: 连接处热轧钢角码壁厚: 6.0mmJ y: 连接处热轧钢角码承压强度: 305.0N/mm2D2: 连接螺栓公称直径: 12.0mmD0: 连接螺栓有效直径: 10.4mm选择的立柱与主体结构连接螺栓为:不锈钢螺栓C1组50级L_L:连接螺栓抗拉强度:230N/mm2L_J:连接螺栓抗剪强度:175N/mm2采用S G+S W+0.5S E组合N1wk: 连接处风荷载总值(N):N1wk=W k×B×H sjcg×1000=1.000×1.150×3.600×1000=4140.0N连接处风荷载设计值(N) :N1w=1.4×N1wk=1.4×4140.0=5796.0NN1Ek: 连接处地震作用(N):N1Ek=q EAk×B×H sjcg×1000=0.200×1.150×3.600×1000=828.0NN1E: 连接处地震作用设计值(N): N1E=1.3×N1Ek=1.3×828.0=1076.4NN1: 连接处水平总力(N):N1=N1w+0.5×N1E=5796.0+0.5×1076.4=6334.2NN2: 连接处自重总值设计值(N): N2k=1000×B×H sjcg=1000×1.150×3.600=4140.0NN2: 连接处自重总值设计值(N): N2=1.2×N2k=1.2×4140.0=4968.0NN: 连接处总合力(N):N=(N12+N22)0.5=(6334.2002+4968.0002)0.5=8050.0NN vb: 螺栓的受剪承载能力:N v: 螺栓受剪面数目: 2N vb=2×π×D02×L_J/4=2×3.14×10.3602×175/4=29488.8N立柱型材种类: Q235 d<=16N cbl: 用一颗螺栓时,立柱型材壁抗承压能力(N):D2: 连接螺栓直径: 12.000mmN v: 连接处立柱承压面数目: 2t: 立柱壁厚: 4.8mmXC_y: 立柱局部承压强度: 305.0N/mm2N cbl=D2×t×2×XC_y=12.000×4.8×2×305.0=35136.0NN um1: 立柱与建筑物主结构连接的螺栓个数:计算时应取螺栓受剪承载力和立柱型材承压承载力设计值中的较小者计算螺栓个数。

锚栓规程

锚栓规程

目次编辑本段简介化学锚栓是一种新型的紧固材料,由化学药剂与金属杆体组成的。

可用于各种幕墙、大理石干挂施工中的后加埋件安装,也可用于设备安装,公路、桥梁护栏安装;建筑物加固改造等场合。

由于其玻璃管内装着的化学试剂易燃易爆,所以厂家必须经过国家有关部门的批准才能生产,整个生产过程需要有严密的安全措施,并使用和工作人员完全隔离的流水线生产。

如果通过手工作业不但违反了国家的有关规定,而且非常危险。

化学锚栓是继膨胀锚栓之后出现的一种新型锚栓,是通过特制的化学粘接剂,将螺杆胶结固定于砼基材钻孔中,以实现对固定件锚固的复合件。

编辑本段分类膨胀型锚栓 expansion anchors:利用膨胀件挤压锚孔孔壁形成锚固作用的锚栓安卡锚栓:这种是国外引进的一种地脚螺栓,一般进口设备的地脚螺栓都是这种安卡锚栓,尤其是欧洲设备,在锚栓的后部有一个开口式金属套,打入地基后、扳紧罗纹,开口涨大固定.后切底锚栓:就是我们市场上很常见的带套的膨胀螺栓,不能单独固定,需要与固定物相挤压后固定,主要是它的开口套的结构限制.击芯锚栓:锚栓后部开口,中心有一根钢钉,当锚栓植入地基后,只需要敲击钢钉,钢钉下沉后将开口涨大固定.编辑本段特点产品名称:建筑锚栓产品特点:该产品经本公司设计室在原有基础上改进细节,增加了钉管与墙体之间的相克制性,而且改变了原来尼龙灯芯的外观力学性能,整体上使变的更加合理,更加成熟。

1、采用优质尼龙6,复合塑料精制而成。

2、耐侯性能和抗老化性能好,在-40℃至+70℃温度环境中长期稳定。

3、抗震动,抗风化,抗断裂,牢固持久。

4、可锤击敲入,施工方便,快捷,经济,安全。

适用范围:施工步骤:1、定位:保温板粘贴在墙体之后,确定锚固点位置。

2、钻孔:穿过已就位的保温板,按规定尺寸钻孔(注意:入墙实际孔深应在6cm以上)。

3、置入:将套管直接插于打好的钉孔至管盘与保温板靠紧。

4、敲入:将钢钉用手锤敲于钉管中(钢钉应与保温板平行为准)。

玻璃幕墙基本荷载和后置化学锚栓计算书

玻璃幕墙基本荷载和后置化学锚栓计算书

玻璃幕墙基本荷载和后置化学锚栓设计计算书计算:校核:审核:XXX装饰工程公司XXXX年XX月XX日目录一、计算依据及说明 (1)1.工程概况说明 (1)2.设计依据 (1)3.基本计算公式 (3)二、荷载计算 (5)1.风荷载标准值计算 (5)2.风荷载设计值计算 (8)3.水平地震作用计算 (8)4.荷载组合计算 (8)三、化学植筋计算 (9)1.化学植筋计算信息描述 (9)2.化学植筋承受拉力计算 (9)3.化学植筋承受剪力计算 (10)4.化学植筋受拉承载力校核 (10)5.化学植筋受剪承载力校核 (11)6.化学植筋复合承载力校核 (15)7.化学植筋构造要求校核 (16)四、化学锚拴计算 (17)1.锚栓计算信息描述 (17)2.锚栓承受拉力计算 (17)3.锚栓承受剪力计算 (18)4.锚栓受拉承载力校核 (19)5.锚栓混凝土锥体受拉破坏承载力校核 (20)6.锚栓钢材受剪破坏校核 (23)7.构件边缘受剪混凝土楔形体破坏校核 (24)8.混凝土剪撬破坏承载能力计算 (27)9.拉剪复合受力承载力计算 (27)10.锚栓构造要求校核 (28)[强度计算信息][产品结构]设计计算书一、计算依据及说明1.工程概况说明工程名称:[工程名称]工程所在城市:北京市工程所属建筑物地区类别:C类工程所在地区抗震设防烈度:八度(0.2g)工程基本风压:0.45kN/m2工程强度校核处标高:10m2.设计依据3.基本计算公式(1).场地类别划分:根据地面粗糙度,场地可划分为以下类别:A类近海面,海岛,海岸,湖岸及沙漠地区;B类指田野,乡村,丛林,丘陵以及房屋比较稀疏的乡镇和城市郊区;C类指有密集建筑群的城市市区;D类指有密集建筑群且房屋较高的城市市区;[工程名称]按C类地区计算风压(2).风荷载计算:幕墙属于薄壁外围护构件,根据《建筑结构荷载规范》GB50009-2012 8.1.1-2 采用风荷载计算公式: wk =βgz×μsl×μz×w其中: wk---作用在幕墙上的风荷载标准值(kN/m2)βgz---瞬时风压的阵风系数,按《建筑结构荷载规范》GB50009-2012 条文说明8.6.1取定根据不同场地类型,按以下公式计算:βgz =1+2gI10(z10)(-α)其中g为峰值因子取为2.5,I10为10米高名义湍流度,α为地面粗糙度指数 A类场地: I10=0.12 ,α=0.12B类场地: I10=0.14 ,α=0.15C类场地: I10=0.23 ,α=0.22D 类场地: I10=0.39 ,α=0.30μz ---风压高度变化系数,按《建筑结构荷载规范》GB50009-2012取定, 根据不同场地类型,按以下公式计算: A 类场地: μz =1.284×(Z 10)0.24B 类场地: μz =1.000×(Z 10)0.30C 类场地: μz =0.544×(Z 10)0.44D 类场地: μz =0.262×(Z 10)0.60本工程属于C 类地区μsl ---风荷载体型系数,按《建筑结构荷载规范》GB50009-2012取定 w0---基本风压,按全国基本风压图,北京市地区取为0.45kN/m 2(3).地震作用计算: q EAk =β E ×α max ×GAk其中: qEAk ---水平地震作用标准值 β E ---动力放大系数,按 5.0 取定αmax ---水平地震影响系数最大值,按相应设防烈度取定: 6度(0.05g): αmax =0.04 7度(0.1g): αmax =0.08 7度(0.15g): αmax =0.12 8度(0.2g): α max =0.16 8度(0.3g): α max =0.24 9度(0.4g): αmax =0.32北京市地区设防烈度为八度(0.2g),根据本地区的情况,故取αmax =0.16 GAk ---幕墙构件的自重(N/m 2) (4).荷载组合:结构设计时,根据构件受力特点,荷载或作用的情况和产生的应力(内力)作用方向,选用最不利的组合,荷载和效应组合设计值按下式采用: γ G SG +γw ψ w Sw +γE ψ E SE +γT ψ T ST各项分别为永久荷载:重力;可变荷载:风荷载、温度变化;偶然荷载:地震 水平荷载标准值: qk =Wk +0.5×qEAk ,维护结构荷载标准值不考虑地震组合 水平荷载设计值: q=1.4×Wk +0.5×1.3×qEAk荷载和作用效应组合的分项系数,按以下规定采用:①对永久荷载采用标准值作为代表值,其分项系数满足:a.当其效应对结构不利时:对由可变荷载效应控制的组合,取1.2;对有永久荷载效应控制的组合,取1.35b.当其效应对结构有利时:一般情况取1.0;②可变荷载根据设计要求选代表值,其分项系数一般情况取1.4二、 荷载计算1. 风荷载标准值计算Wk : 作用在幕墙上的风荷载标准值(kN/m 2) z : 计算高度10mμ z : 10m 高处风压高度变化系数(按C 类区计算): (GB50009-2012 条文说明8.2.1) μ z =0.544×(z 10)0.44=0.544 由于0.544<0.65,取μz =0.65I 10: 10米高名义湍流度,对应A 、B 、C 、D 类地面粗糙度,分别取0.12、0.14、0.23、0.39。

化学螺栓抗拉力设计值计算

化学螺栓抗拉力设计值计算

小北路商务办公楼幕墙工程后置支座化学锚栓抗拔力设计值中山盛兴股份有限公司2010年8月1 基本参数 1.1 幕墙所在地区广州地区;1.2 地面粗糙度分类等级本工程按C 类地形考虑。

1.3 抗震设防根据国家规范《建筑抗震设计规范》(GB50011-2001 2008版),广州地区地震基本烈度为:7度,地震动峰值加速度为0.1g ,由于本工程是标准设防类,因此实际抗震计算中的水平地震影响系数最大值应按本地区抗震设防烈度选取,也就是取:αmax =0.08;2 幕墙承受荷载计算本工程绝大部分幕墙支座均使用预埋件,裙楼部分位置幕墙采用后置支座,后置支座受力最大部位为观光电梯外肋式玻璃。

2.1 风荷载标准值的计算方法幕墙属于外围护构件,按建筑结构荷载规范(GB50009-2001 2006年版)计算: w k =βgz μz μs1w 0 ……7.1.1-2[GB50009-2001 2006年版] 上式中:w k :作用在幕墙上的风荷载标准值(MPa); Z :计算点标高:38.55m ; βgz :瞬时风压的阵风系数;根据不同场地类型,按以下公式计算(高度不足5m 按5m 计算): βgz =K(1+2μf )其中K 为地面粗糙度调整系数,μf 为脉动系数C 类场地: βgz =0.85×(1+2μf ) 其中:μf =0.734(Z/10)-0.22 对于C 类地形,38.55m 高度处瞬时风压的阵风系数: βgz =0.85×(1+2×(0.734(Z/10)-0.22))=1.7773 μz :风压高度变化系数;根据不同场地类型,按以下公式计算:C 类场地: μz =0.616×(Z/10)0.44当Z>400m 时,取Z=400m ,当Z<15m 时,取Z=15m ; 对于C 类地形,38.55m 高度处风压高度变化系数: μz =0.616×(Z/10)0.44=1.1154 μs1:局部风压体型系数;按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护构件及其连接的强度时,可按下列规定采用局部风压体型系数μs1: 一、外表面1.正压区 按表7.3.1采用;2.负压区- 对墙面, 取-1.0 - 对墙角边, 取-1.8 二、内表面对封闭式建筑物,按表面风压的正负情况取-0.2或0.2。

后置锚栓拉拔计算书

后置锚栓拉拔计算书

靖江行政办公中心一期幕墙工程后置锚栓拉拔计算因工地土建漏埋预埋件,故需对后置埋件进行验算。

后置埋件由于属于补救措施的一种埋件,所以单纯的计算是不能完全作为施工依据的,需要在现场做拉拔实验后方可。

埋件固定主体结构上,承受立柱传递来的荷载。

埋件形式如下图:一、风荷载计算1、84m处水平风荷载标准值计算计算标高:84m幕墙分格:B×H=1600×840㎜B:玻璃宽度H:玻璃高度设计地震烈度:7度地面粗糙类别:B类βgz:阵风系数,取βgz=1.52按《建筑结构荷载规范》GB50009—2001表7.51 SμS1:风荷载体型系数按《建筑结构荷载规范》GB50009—2001(2006版)取值,局部体型系数μS1(1)是适用于围护构件的从属面积A小于或等于1m2的情况,当围护构件的从属面积A大于或等于10m2时,局部风压体型系数μS1(10)可乘以折减系数0.8,当构件的从属面积小于10m2 而大于1m2时,局部风压体型系数μS1(A)可按面积的对数线性插值,即μS1(A)=μS1(1)+[ μS1(10)- μS1(1)]10gA从属面积1.600×0.84=1.344㎡ 10g.344=0.128μZ1(A)=)-{1.0+[0.8×1.0—1.0]×0.128}=-.9744μZ1=-0.974+(0.2)=-1.174UZ:风压高度变化系数,取μZ=1.97按《建筑结构荷载规范》GB50009—2001表7.2.1WO:作用在幕墙上的风荷载基本值0.45KN/m2按《建筑结构荷载规范》GB50009—2001附表D.4(按50年一遇)WK: 作用在幕墙上的风荷载标准值WK= βgz.μS1.μZ.WO=1.52×(-1.174)×1.97×0.45=-1.852KN/m2(表示负风压)┃WK┃=1.582KN/㎡>1.0KN/m2按《玻璃幕墙工程技术规范》JGJ102-2003第5.3.2条取WK=1.582㎏/㎡2、84m处水平风荷载设计值计算rW:风荷载分项系数,取rW=1.4按《玻璃幕墙工程技术规范》JG102-2003第5.3.2条W: 作用在幕墙上的风荷载标准值W=rW·WK=1.4×1.582=2.215KN/m2二、立柱与主结构连接LCT 2:l连接处热轧钢角码壁厚:6.0㎜JY:连接处热轧钢角码承压强度:305.0N/m㎡D2:连接螺栓公称直径:10.0㎜选择的立柱与主体结构连接螺栓为:不锈钢螺栓A1,A2组态50级L_L:连接螺栓抗拉强度:230N/m㎡L_J: 连接螺栓抗剪强度:N/m㎡采用SG+SW+0.5SEN1WK:连接处风荷载总值(N)N1WK: =WK×HSjCg×1000=1.582×1.600×3.400×1000=8606.1N连接处风荷载设计值(N)N1W: =1.4×N1WK=1.4×8606.1=12048.5NN1EK:连接处地震作用(N)N1WK: =QEAK×B×HSjCg×1000=0.100×1.600×4.200×1000=672NN1E:连接处地震作用设计值(N)N1E: =1.3×N1EK=1.3×672=873.6NN1:连接处水平总力(N)N1: = N1W×0.5×N1E=12048.5+0.5×873.6=12485.3NN2:连接处自重总值设计值(N)N2K: = 500×B×HSjCg=500×1.600×4.200=3360.0NN2:连接处自重总值设计值(N)N2: = 1.2×N2K=1.2×3360.0=4032.0N三、锚栓拉拔力计算假设该模型最不利状态下,一半锚筋受拉力,一半锚筋不受力本工程预埋件受拉力和剪力V:剪力设计值:V= N2=4032.000NN2:水平方向作用下单排锚筋的拉力N= N1=12485.300NM:弯矩设计值(N·㎜)e:偏心距:85.000㎜M=V×e=4032.000×85.00=342720 N·㎜F:剪力引起的弯距对上排锚筋的拉力F=M/L=342720/120=2856NT:单根锚栓所受的拉力的合力T=N/2+F/2=12485.300/2+2856.00/2=7670.65N结论:化学螺栓的拉拔测试力需大于计算出的N两倍的值(15341.30)编制: 审定:江苏龙升幕墙工程有限公司2008年月日。

幕墙预埋螺栓拉拔试验

幕墙预埋螺栓拉拔试验

幕墙埋件拉拔试验的相关规定及数据一、《混凝土结构后锚固技术规程》JGJ 145-20131、锚栓:将被连接件锚固到基材上的锚固组件产品,分为机械锚栓和化学锚栓。

2、机械锚栓:利用锚栓与锚孔之间的摩擦作用或锁键作用形成锚固的锚栓,按照其工作原理分为两类:扩底型锚栓、膨胀型锚栓。

3、扩底型锚栓:通过锚孔底部扩孔与锚栓组件之间的锁键形成锚固作用的锚栓,分为模扩底锚栓和自扩底锚栓。

后扩孔锚栓4、膨胀型锚栓:利用膨胀件挤压锚孔孔壁形成锚固作用的锚栓,分为扭矩控制式膨胀型锚栓和位移控制式膨胀型锚栓。

5、化学锚栓:由金属螺杆和锚固胶组成,通过锚固胶形成锚固作用的锚栓。

化学锚栓分为普通化学锚栓和特殊倒锥形化学锚栓。

6、破坏模式:荷载作用下锚固连接的破坏形式,分为锚栓钢材破坏、混凝土破坏、混合型破坏、拔出破坏、穿出破坏及界面破坏。

7、不开裂混凝土:正常使用极限状态下,考虑混凝土收缩、温度变化及支座位移的影响,锚固区混凝土受压。

8、开裂混凝土:正常使用极限状态下,考虑混凝土收缩、温度变化及支座位移的影响,锚固区混凝土受拉。

9、锚板厚度应按现行国家标准《钢结构设计规范》GB50017进行设计,且不宜小于锚栓直径的0.6倍;受拉和受弯锚板的厚度尚宜大于锚栓间距的1/8;外围锚栓孔至锚板边缘的距离不应小于2倍shi的锚栓孔直径和20mm。

10、后锚固产品进场后,应按下列规定进行进场检验。

1、外观检查2、力学性能试验二、《玻璃幕墙工程技术规范》JGJ102-20031、玻璃幕墙立柱与主体混凝土结构应通过预埋件连接,预埋件应在主体结构混凝土施工时买入,预埋件的位置应准确;当没有条件采用预埋件连接时,应采用其他可靠的连接措施,并通过试验确定其承载力。

2、由锚板和对称配置的锚固钢筋所组成的受力预埋件,可按本规范附录C的规定进行设计。

3、槽式预埋件的预埋钢板及其他连接措施,应按照现行国家标准《钢结构设计规范》GB 50017的有关规定进行设计。

化学锚栓拉拔力

化学锚栓拉拔力

学锚栓,一、基本参数工程所在地:青岛市幕墙计算标高:15.33 m 玻璃设计分格:B×H=1549×2000 mmB:玻璃宽度H:玻璃高度设计地震烈度:7度地面粗糙度类别:A类二、荷载计算1、风荷载标准值W K:作用在幕墙上的风荷载标准值(KN/m2)βgz:瞬时风压的阵风系数,取1.60μs:风荷载体型系数,取1.2μz:风荷载高度变化系数,取1.527青岛市地区风压W0=0.6 KN/m (按50年一遇)W k=βgzμsμz W0=1.60×1.2×1.527×0.60=1.76 KN/m2>1.0 KN/m2取W K=1.76 KN/m22、风荷载设计值W :风荷载设计值 (KN/m 2)r w :风荷载作用效应的分项系数,取1.4W=r w ×W k=1.4×1.76=2.46 KN/m 23、玻璃幕墙构件重量荷载G AK :玻璃幕墙构件自重标准值,取0.50 KN/m 2G A :玻璃幕墙构件自重设计值G A =1.2×G AK =1.2×0.50=0.60 KN/m 24、地震作用q EK :垂直于幕墙平面的分布水平地震作用标准值 (KN/m 2)q E :垂直于幕墙平面的分布水平地震作用设计值 (KN/m 2)βE :动力放大系数,取5.0αmax :水平地震影响系数最大值,取0.08G AK :幕墙构件(包括玻璃和接头)的重量标准值,取0.50 KN/m 2q EK =AK max E G ⨯α⨯β=5.0×0.08×0.50=0.20KN/m 2q E =γE ×q EK=1.3×0.20=0.26 KN/m 25、荷载组合风荷载和地震荷载的水平分布作用标准值q K =ψW ·q WK +ψE ·q EK=1.0×1.76+0.5×0.20=1.86 KN/m 2风荷载和地震荷载的水平分布作用设计值q=ψW ·γW ·q WK +ψE ·γE ·q EK=1.0×1.4×1.76+0.5×1.3×0.20=2.59 KN/m 2 第二章、化学锚栓强度计算一、部位要素该处最大计算标高按15.33 m 计,受到由水平风荷载和地震荷载作用效应的组合荷载设计值为2.59 KN/m ,桁架的分格宽度为1549 mm 。

锚栓规程

锚栓规程

前言根据建设部建标[1998]58号文的要求,规程编制组经广泛调查研究,认真总结工程实践经验,参考有关国际标准和国外先进标准,并在广泛征求意见基础上,制定了本规程。

本规程的主要技术内容是:总则,术语和符号,材料,设计基本规定,锚固连接内力分析,承载能力极限状态计算,锚固抗震设计,构造措施,锚固施工与验收及锚固承载力现场检验方法。

本规程由建设部建筑工程标准技术归口单位中国建筑科学研究院归口管理,授权由主编单位负责具体解释。

本规程主编单位是:中国建筑科学研究院(地址:北京市北三环东路30号;邮政编码:100013)。

本规程参加单位是:中科院大连化物所,河南省建筑科学研究院,慧鱼(太仓)建筑锚栓有限公司,喜利得(中国)有限公司。

本规程主要起草人是:万墨林、韩继云、邸小坛、贺曼罗、吴金虎、王稚、萧雯。

目次1总则2术语与符号3材料3.1混凝土基材3.2锚栓3.3锚固胶4设计基本规定4.1锚栓分类及适用范围4.2锚固设计原则5锚固连接内力分析5.1一般规定5.2群锚受拉内力计算5.3群锚受剪内力计算6承载能力极限状态计算6.1受拉承载力计算6.2受剪承载力计算6.3拉剪复合受力承载力计算7锚固抗震设计8构造措施9锚固施工与验收9.1基本要求9.2锚孔9.3锚栓的安装与锚固9.4锚固质量检查与验收附录A 锚固承载力现场检验方法本规程用词用语说明条文说明1 总则1.0.1为使混凝土结构后锚固连接设计与施工做到技术先进、安全可靠、经济合理,制订本规程。

1.0.2本规程适用于被连接件以普通混凝土为基材的后锚固连接设计、施工与验收,不适用以砌体或轻混凝土为基材的锚固。

1.0.3 后锚固连接设计应考虑被连接结构的类型(结构构件与非结构构件)、锚栓受力状况(受拉、受压、受弯、受剪、及其组合)、荷载类型及锚固连接的安全等级(重要与一般)等因素的综合影响。

1.0.4后锚固连接设计、施工与验收,除满足本规程的规定外,尚应符合国家现行的有关强制性标准的规定。

幕墙设计中常见问题及预防

幕墙设计中常见问题及预防

幕墙设计中常见问题及预防建筑幕墙是建筑物外围护结构是悬挂于主体结构上而相对主体可活动的完整的结构体系,其装饰、功能、质量、环保、耐火性能、安全等为人们所关注,现将近年从事幕墙设计审查见到的错误作一归纳整理,并对错误预防发表一些看法,供建筑设计师、幕墙设计师和幕墙企业借鉴和参考。

一、幕墙设计易遗漏的问题:1.在设计说明中未写明抗震设防烈度,这是荷载组合重要条件之一。

2.在设计说明中未写明结构的设计使用年限。

3.在设计说明中只写了钢材的牌号,未写明质量等级。

4.在设计说明中未说明焊条型号、焊缝形式和焊缝质量等级。

5.在设计说明中未说明或图示明埋于土中或地下的钢柱脚需用砼裹。

6.在设计说明中未写在全隐框、半隐框、全玻璃幕墙和点支式玻璃幕墙都必须采用中性硅酮结构胶,而不应采用酸性硅酮结构胶,采用镀膜玻璃时更为重要。

7.在设计说明中未写明硅酮结构胶和耐候密封胶必须在有效期内用。

8.在设计说明中未写明硅酮结构胶相容性试验和复验的内容要求,不合格不得使用。

9.在设计说明中未写明除全玻幕墙外,不应在现场填注硅酮结构胶。

10.在设计说明中未写明幕墙玻璃应采用安全玻璃:哪些要夹胶?哪些要钢化片?11.在设计说明中未给出立柱、横梁型材截面图重要尺寸及重要部位最小壁厚。

12.在设计说明中未写明花岗石板材的弯曲强度应经检测机构实测结果其值不应小于8Mpa。

13.在设计说明中未写明同一幕墙应采用同一品牌的单、双组分硅酮结构胶,并有保质年限的质保书。

用于石材幕墙的胶还应有无污染的试验报告和供方提供试验报告。

14.在设计说明中未写明同一幕墙应采用同一品牌的硅酮结构密封胶和硅酮耐候胶相容性可配套使用报告。

15.设计节点图中幕墙立柱、芯子与连接件螺栓直径小于M10,有的螺栓不对穿,有的螺栓数量少于2个,要严格审查螺栓强度计算书。

二、幕墙节能安全设计方面的问题1.热工节能设计是强制性条款必需落实有的建筑采用很薄的6mm单层玻璃的幕墙面积过大。

膨胀螺栓拉拔力计算

膨胀螺栓拉拔力计算

膨胀螺栓拉拔力计算该工程基本设计参数:基本风压值Wo=0.55kN/m2,幕墙(计算部位)最高点23.000米,幕墙通过膨胀螺栓及化学锚栓与建筑主体结构连接,最不利的连接形式分为三种情况:第一种为通过膨胀螺栓及化学锚栓与砼结构连接的玻璃幕墙,最不利的龙骨宽为B=1.170米,分格高为H=1.980米,立柱连接点之间间距为3.200米,标准层间设一个支点;第二种为通过膨胀螺栓及化学锚栓与砼结构连接的石材幕墙,最不利的龙骨分格宽为B=1.200米,立柱连接点之间间距为3.600米,标准层间设一个支点;第三种为通过膨胀螺栓与实心砖结构连接的石材幕墙,最不利的龙骨分格宽为B=0.650米,立柱连接点之间间距小于2.000米,标准层间增设一个支点。

相应的风压高度变化系数为μz =0.9,按C类地区计算,8度抗震设防设计。

按照国家行业标准《玻璃幕墙工程技术规范》JGJ 102—2003及《金属与石材幕墙工程技术规范》JC 133—2001针对本工程的实际情况,对幕墙的膨胀螺栓允用强度进行计算和校核。

一、设计荷载与作用幕墙设计计算中按50年需要考虑的荷载与作用有:风荷载、地震作用,分别计算如下:1、风荷载标准值:W k=βGZ·μS·μZ·W o式中:W k:为作用于幕墙上的风荷载标准值(kN/m2)βGZ:为Z高度处瞬时风压的阵风系数,取βGZ = 1.90 (按C类地区计算)μ:为风荷载的体型系数,按国家现行标准《建筑结构荷载规范》SGB50009—2001采用,取μ= 1.2Sμ:为风压高度变化系数,按国家现行标准《建筑结构荷载规范》Z= 0.9 (按C类地区计算)GB50009—2001采用,取μZW:为基本风压值(kN/m2), 按国家现行标准《建筑结构荷载规范》o=0.55 kN/m2GB50009—2001采用,取WoW k=1.90×1.2×0.9×0.55=1.13 kN/m2按规范规定,取W k=1.13 kN/m22、风荷载设计值:W=r w×W k式中:W:为作用于幕墙上的风荷载设计值(kN/m2)W k:为作用于幕墙上的风荷载标准值(kN/m2)W k=1.13 kN/m2r w:风荷载分项系数。

锚栓拉拔力计算

锚栓拉拔力计算

化学锚栓拉拔力值计算混凝土位置M12X160化学锚栓拉拔力为Nmax=;锚栓计算:计算说明:层高3600位置石材幕墙后置埋件化学锚栓强度计算计算层间高度3600mm,分格最大宽度1000mm石材幕墙自重1100N/平方米,地震荷载880 N/平方米风荷载标准值1000 N/平方米埋件受力计算:1、N1: 埋件处风荷载总值(N):N1wk=Wk×B×Hsjcg×1000=×××1000=连接处风荷载设计值(N) :N1w=×N1wk=×=N1Ek: 连接处地震作用(N):N1Ek=qEAk×B×Hsjcg×1000=×××1000=N1E: 连接处地震作用设计值(N):N1E=×N1Ek=×=N1: 连接处水平总力(N):N1=N1w+×N1E=+×=2、N2: 埋件处自重总值设计值(N):N2k=1100×B×Hsjcg=1100××=N2: 连接处自重总值设计值(N):N2=×N2k=×=3、M: 弯矩设计值(N ·mm):e2: 立柱中心与锚板平面距离: 70mmM: 弯矩设计值(N ·mm):M= N2×e2=4752×70= 332640N ·mm4、埋件强度计算螺栓布置示意图如下:123440120404022040300200螺栓布置示意图d:锚栓直径12mmde:锚栓有效直径为10.36mmd0:锚栓孔直径16mm一个锚栓的抗剪承载力设计值为Nvb= nv ×π×d24×fvb (GB50017-2003 7.2.1-1)= 1×π×1224×140 =t:锚板厚度,为10mm一个锚栓的承压承载力设计值为Ncb= d ×t ×fcb(GB50017-2003 7.2.1-2)= 12×10×305=36600N一个拉力锚栓的承载力设计值为Ntb= π×de24×ftb (GB50017-2003 7.2.1-6) =π×4×140 =在轴力和弯矩共同作用下,锚栓群受力形式。

幕墙锚栓计算范文

幕墙锚栓计算范文

幕墙锚栓计算范文1.引言幕墙锚栓是幕墙系统中的重要组成部分,其主要作用是连接幕墙和建筑结构,承受各种静力和动力荷载,并保证幕墙的稳定性和安全性。

本文针对幕墙锚栓进行计算,并详细介绍计算过程和结果。

2.计算过程2.1幕墙锚栓的作用力计算首先,需要确定幕墙锚栓的作用力。

根据设计要求和幕墙系统的荷载特点,可以计算出幕墙锚栓的垂直荷载、水平荷载和剪切荷载。

这些作用力将决定幕墙锚栓的尺寸和数量。

2.2幕墙锚栓的尺寸计算2.2.1幕墙锚栓的直径计算根据锚栓受力情况和材料的力学性能,可以利用公式计算出锚栓的直径。

通常,直径的计算遵循强度设计准则,即幕墙锚栓的强度应大于或等于作用力。

同时,还需要考虑锚栓的经济性和可施工性。

2.2.2幕墙锚栓的长度计算在确定锚栓的直径后,需要计算锚栓的长度。

锚栓的长度应根据连接部位的混凝土强度和设计要求进行确定。

一般情况下,锚栓的长度要求足够保证连接的可靠性和幕墙的稳定性。

2.3幕墙锚栓的数量计算根据幕墙锚栓的直径和长度,可以确定每个连接部位所需的锚栓数量。

通常,幕墙锚栓的数量越多,连接越稳固,安全性越高。

但过多的锚栓数量也会增加施工难度和工程成本。

因此,需要在经济性和稳定性之间做出权衡。

3.计算结果经过上述计算过程,可以得到幕墙锚栓的尺寸和数量。

例如,在幕墙系统中,根据设计要求和荷载特点,确定每个连接部位需要使用直径为20mm,长度为150mm的螺栓,每个连接部位需要使用4个幕墙锚栓。

总共需要使用100个幕墙锚栓。

4.结论幕墙锚栓是幕墙系统中十分重要的连接构件,其尺寸和数量的计算直接影响到幕墙的稳定性和安全性。

本文针对幕墙锚栓进行了详细的计算过程,并得出了相应的计算结果。

根据计算结果,可以确保幕墙锚栓的尺寸和数量满足设计要求,保证幕墙系统的稳定性和安全性。

膨胀螺栓计算书

膨胀螺栓计算书

建筑幕墙膨胀螺栓计算书1、设计说明和计算模型简化XXX建筑幕墙为厚3mm 的铝板及6+9a+6中空玻璃一端用自攻螺钉与幕墙支撑钢结构固定,封修板边缘通过连接钢带板厚3mm 用膨胀螺栓固定在主体建筑结构女儿墙上。

标高68m、地面粗糙度C 类、抗震8 度设防。

0封修板边缘用膨胀螺栓固定间距为350mm,膨胀螺栓固定在女儿墙边的最小边距为80mm,铝板一端用自攻螺钉固定间距为350mm。

封修板边缘的膨胀螺栓采用慧鱼螺杆锚栓FZA 10x40 M6/100结构座标系:XYZ 座标,Y向上为正计算项目:封修板边缘用膨胀螺栓固定在主体建筑结构女儿墙上计算2、荷载计算2.1 永久荷载标准值铝板厚2mm 自重G1=γ*t=0.028*3*1.1=0.092 KN/m20连接钢带板厚3mm 自重G2=γ*t=0.0785*3*1.1=0.26 KN/m22.2 风荷载标准值幕墙:Wk1=βgz*μs*μz*W0=1.54*2.0*2.01*0.5= -3.1 KN/m2式中:βgz—阵风系数,计算标高147m、C 类地区取1.54μs—体型系数,取结构表面最大的吸力μs= -2.0μz—风压高度系数,标高147m 处、C 类地区取2.01W0—基本风压,北京市W0=0.5 KN/m2风荷载垂直于板表面2.3 地震作用(八度设防)铝板:qek1=βe*αmax*G1=5*0.16*0.06=0.048 KN/m232.4 荷载组合承载力极限状态0工况1. 自重+风吸力+地震q =1.4*Wk+0.5*1.3*Se=1.4*3.1+0.65*0.048=4.37 KN/m2风荷载垂直于板表面,一个膨胀螺栓受力面积A1=B*H=0.35*0.35=0.123 m2连接钢带板面积A2=B*H=0.35*0.1=0.035 m2一个膨胀螺栓受最大拉力Nsd=q*A=4.37*0.123*1000=538 N一个膨胀螺栓受最大剪力Vsd=1.35*(G1*A1+G2*A2)=1.35*(0.06*0.123+0.26*0.035)*1000*1.1=24.5 N3. 膨胀螺栓固定计算03.1 计算方法锚栓破坏有两种型式:1. 钢材失效2. 混凝土失效03.1.1 钢材失效锚栓强度校核:锚栓锚固的强度判据,承载力极限状态:Nsd ≤ Nrk,s/γms式中Nsd-是单个锚栓力的设计计算值,包括拉力、剪力Nrk,s-锚栓承载力的拉力计算值V rk,s-锚栓承载力的剪力计算值γms--钢材破坏分项安全系数,γms=1.203.1.2 混凝土失效强度校核:1. 混凝土失效Nsd ≤ Nrk,c/γmc2. 裂缝失效Nsd ≤ Nrk,sp/γmc式中γmc--混凝土破坏分项安全系数,γms=1.8Nrk,c--混凝土失效时特征承载力4Nrk,sp--裂缝失效时特征承载力03.2 膨胀螺栓固定在女儿墙强度校核0膨胀螺栓固定间距为350mm,膨胀螺栓固定在女儿墙边的最小边距为80mm 膨胀螺栓:采用慧鱼螺杆锚栓FZA 10x40 M6/10,A4 级荷载:一个膨胀螺栓受最大拉力Nsd=q*A=4.37*0.123*1000=538 N一个膨胀螺栓受最大剪力0Vsd=1.35*(G1*A1+G2*A2)=24.5 N3.2.1 钢材失效锚栓强度校核:慧鱼螺杆锚栓FZA M6×60--A4 级特征承载力,根据慧鱼手册4.1.1-8 查得拉力钢破坏Nrk,s=9.0 KN剪力钢破坏V rk,s=5.4 KN失效验算:Nsd=538 N < Nrk,s /γms=9000/1.2=7500 N0Vsd =24.5 N < V rk,s/γms=5400/1.2=4500 N慧鱼螺杆锚栓FZA 10x40 M6/10,A4 级强度满足要求!3.2.2 混凝土失效强度校核(1)混凝土失效混凝土失效时的特征承载力Nrk,c0Nrk,c=N0rk,c*(Ac,n/A0c,n)*ψs,n*ψec1,n*ψec2,n*ψre,n*ψucr,n [KN]式中N0rk,c-在间距、边距标准的特征承载力A0c,n -在间距、边距标准的理想混凝土破裂块的面积A0c,n = Scr,n*Scr,nAc,n -在间距、边距不标准的理想混凝土破裂块的面积ψs,n -考虑构件一个或多个边缘对中心对称应力干扰系数0ψs,n=0.7+0.3*C/Ccr,nC -实际边距Ccr,n -特征边距ψec1,n -考虑一组锚栓力合力偏心率的系数ψec1,n= 1 / (1+2*ei,n/Scr,n)≤105ei,n -在I 方向上锚栓力合力偏心率Scr,n -特征间距ψre,n -考虑高配筋率钢筋负影响系数0ψre,n= 0.5+hef[mm]/200≤1 用于高配筋率钢筋混凝土0= 1 用于正常配筋钢筋混凝土ψucr,n -考虑使用情况的系数ψucr,n=1.0 用于开裂的混凝土ψucr,n=1.4 用于未开裂的混凝土(2)裂缝失效Nrk,sp=N0rk,c*(Ac,n/A0c,n)*ψs,n*ψec1,n*ψec2,n*ψre,n*ψucr,n *ψh,sp[KN]式中Nrk,sp -裂缝失效的特征承载力N0rk,c -同前ψh,sp -考虑构件厚度h 影响的系数0ψh,sp= (h/2/hef)^2/3 ≤1.53.3 轴心受拉单个锚栓强度校核混凝土强度等级C30非开裂混凝土,正常配筋慧鱼螺杆锚栓FZA 10x40 M6/10,A4 级0边距C=80mm荷载Nsd=538 N0查手册4.1.4-8 页0(1)混凝土失效N0rk,c=8.9 KNψucr,n=1.0Scr,n=12Ccr,n=6A0c,n= Scr,n* Scr,n=12*12=144Ac,n=(C1+0.5* Scr,n)* Scr,n=(2+0.5*12)*12=96,C1≤Ccr,n6Ac,n/A0c,n=96/144=0.67ψs,n=0.7+0.3*C/Ccr,n=0.7+0.3*8/6>1.0 取1.0ψec1,n=0.9ψre,n=1.0ψucr,n=1.0慧鱼螺杆锚栓FZA 10x40 M6/10,A4 级受拉混凝土失效时的特征承载力Nrk,c Nrk,c=8.9*0.67*0.9=5.37 KN慧鱼螺杆锚栓FZA 10x40 M6/10,A4 级受拉混凝土失效时的许用承载力Nrk,c/γmc=5.37/1.8=2.98 KN混凝土失效验算:Nsd=538 N < Nrk,c/γmc=5.37/1.8=2.98 KN混凝土边距强度满足要求!(2)裂缝失效Nrk,sp=N0rk,c*(Ac,n/A0c,n)*ψs,n*ψec1,n*ψec2,n*ψre,n*ψucr,n *ψh,sp[KN]N0rk,c=8.9 KNψucr,n=1.0Scr,sp=160Ccr,sp=8A0c,n= Scr,sp* Scr,sp=16*16=256Ac,n=(C1+0.5* Scr,sp)* Scr,sp=(2+0.5*16)*16=160,C1≤Ccr,nAc,n/A0c,n=160/256=0.625ψs,n=0.7+0.3*C/Ccr,sp=0.7+0.3*8/8>1.0 取1.0ψec1,n=0.9ψre,n=1.0ψucr,n=1.00慧鱼螺杆锚栓FZA 10x40 M6/10,A4 级受拉裂缝失效时的特征承载力Nrk,sp Nrk,sp=8.9*0.625*0.9=5.0 KN慧鱼螺杆锚栓FZA 10x40 M6/10,A4 级受拉裂缝失效时的许用承载力Nrk,sp/γmc=5.0/1.8=2.78 KN混凝土裂缝失效验算:Nsd=538 N < Nrk,c/γmc=5.0/1.8=2.78 KN混凝土边距裂缝失效强度满足要求!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甘井子区华东路130号及周边宗地改造项目32#楼幕墙化学锚栓设计计算书计算:校核:审核:大连华威高级建筑师事务所有限公司二〇一五年四月九日设计计算书一、计算依据及说明1.工程概况说明工程名称:[工程名称]工程所在城市:大连市工程所属建筑物地区类别:C类工程所在地区抗震设防烈度:七度工程基本风压:0.65kN/m2工程强度校核处标高:10m2.设计依据3. 基本计算公式(1).场地类别划分:根据地面粗糙度,场地可划分为以下类别: A 类近海面,海岛,海岸,湖岸及沙漠地区;B 类指田野,乡村,丛林,丘陵以及房屋比较稀疏的乡镇;C 类指有密集建筑群的城市市区;D 类指有密集建筑群且房屋较高的城市市区; [工程名称]按C 类地区计算风压 (2).风荷载计算:幕墙属于薄壁外围护构件,根据《建筑结构荷载规范》GB50009-2012 8.1.1-2 采用 风荷载计算公式: w k =β gz ×μ sl ×μ z ×w0 其中: wk ---作用在幕墙上的风荷载标准值(kN/m 2)βgz ---瞬时风压的阵风系数,按《建筑结构荷载规范》GB50009-2012 条文说明8.6.1取定根据不同场地类型,按以下公式计算:β gz =1+2gI 10(z 10)(-α)其中g 为峰值因子取为2.5,I10为10米高名义湍流度,α为地面粗糙度指数 A 类场地: I10=0.12 ,α=0.12 B 类场地: I 10=0.14 ,α=0.15 C 类场地: I 10=0.23 ,α=0.22 D 类场地: I 10=0.39 ,α=0.30μz ---风压高度变化系数,按《建筑结构荷载规范》GB50009-2012取定, 根据不同场地类型,按以下公式计算: A 类场地: μz =1.284×(Z 10)0.24B 类场地: μz =1.000×(Z 10)0.30C 类场地: μz =0.544×(Z 10)0.44D 类场地: μz =0.262×(Z 10)0.60本工程属于C 类地区μsl ---风荷载体型系数,按《建筑结构荷载规范》GB50009-2012取定 w0---基本风压,按全国基本风压图,大连市地区取为0.65kN/m 2(3).地震作用计算: q EAk =β E ×α max ×GAk其中: qEAk ---水平地震作用标准值 β E ---动力放大系数,按 5.0 取定αmax ---水平地震影响系数最大值,按相应设防烈度取定: 6度(0.05g): αmax =0.04 7度(0.1g): αmax =0.08 7度(0.15g): αmax =0.12 8度(0.2g): α max =0.16 8度(0.3g): α max =0.24 9度(0.4g): αmax =0.32大连市地区设防烈度为七度,根据本地区的情况,故取αmax =0.08 GAk ---幕墙构件的自重(N/m 2)(4).荷载组合:结构设计时,根据构件受力特点,荷载或作用的情况和产生的应力(内力)作用方向,选用最不利的组合,荷载和效应组合设计值按下式采用:γ G S G +γ w ψ w S w +γ E ψ E S E +γ T ψ T ST各项分别为永久荷载:重力;可变荷载:风荷载、温度变化;偶然荷载:地震 水平荷载标准值: qk =Wk +0.5×qEAk ,维护结构荷载标准值不考虑地震组合 水平荷载设计值: q=1.4×Wk +0.5×1.3×qEAk荷载和作用效应组合的分项系数,按以下规定采用:①对永久荷载采用标准值作为代表值,其分项系数满足:a.当其效应对结构不利时:对由可变荷载效应控制的组合,取1.2;对有永久荷载效应控制的组合,取1.35b.当其效应对结构有利时:一般情况取1.0;②可变荷载根据设计要求选代表值,其分项系数一般情况取1.4二、 荷载计算1. 风荷载标准值计算Wk : 作用在幕墙上的风荷载标准值(kN/m 2) z : 计算高度10mμ z : 10m 高处风压高度变化系数(按C 类区计算): (GB50009-2012 条文说明8.2.1) μ z =0.544×(z 10)0.44=0.544 由于0.544<0.65,取μz =0.65I 10: 10米高名义湍流度,对应A 、B 、C 、D 类地面粗糙度,分别取0.12、0.14、0.23、0.39。

(GB50009-2012 条文说明8.4.6)β gz : 阵风系数 : (GB50009-2012 8.1.1-2) β gz = 1 + 2×g ×I 10×(z 10)(-α) (GB50009-2012 条文说明8.6.1)= 1 + 2×2.5×0.23×(1010)(-0.22)= 2.15 由于2.15>2.05,取βgz =2.05 (GB50009-2012 条文说明8.1.1) μsp1:局部正风压体型系数μ sn1:局部负风压体型系数,通过计算确定μ sz :建筑物表面正压区体型系数,按照(GB50009-2012 8.3.3)取1 μ sf :建筑物表面负压区体型系数,按照(GB50009-2012 8.3.3-2)取-1对于封闭式建筑物,考虑内表面压力,按照(GB50009-2012 8.3.5)取-0.2或0.2Av :立柱构件从属面积取2.6475m 2Ah :横梁构件从属面积取0.6885m 2μ sa :维护构件面板的局部体型系数 μs1z =μsz +0.2 =1.2 μs1f =μsf -0.2=-1.2维护构件从属面积大于或等于25m 2的体型系数计算μs25z =μsz ×0.8+0.2 (GB50009-2012 8.3.4) =1μs25f =μsf ×0.8-0.2 (GB50009-2012 8.3.4) =-1对于直接承受荷载的面板而言,不需折减有 μ saz =1.2 μ saf =-1.2同样,取立柱面积对数线性插值计算得到 μ savz =μ sz +(μ sz ×0.8-μ sz )×log(Av )1.4+0.2=1+(0.8-1)×0.4228361.4+0.2=1.13959μ savf =μ sf +(μ sf ×0.8-μ sf )×log(A v )1.4-0.2=-1+((-0.8)-(-1))×0.4228361.4-0.2=-1.13959 按照以上计算得到 对于面板有: μsp1=1.2 μ sn1=-1.2 对于立柱有:μ svp1=1.13959 μsvn1=-1.13959 对于横梁有: μ shp1=1.2 μshn1=-1.2面板正风压风荷载标准值计算如下W kp =β gz ×μ sp1×μ z ×W0 (GB50009-2012 8.1.1-2) =2.05×1.2×0.65×0.65=1.03935 kN/m 2Wkp <3kN/m 2,取Wkp =3kN/m 2面板负风压风荷载标准值计算如下W kn =β gz ×μ sn1×μ z ×W0 (GB50009-2012 8.1.1-2) =2.05×(-1.2)×0.65×0.65=-1.03935 kN/m 2Wkn >-3kN/m 2,取Wkn =-3kN/m 2同样,立柱正风压风荷载标准值计算如下W kvp =β gz ×μ svp1×μ z ×W0 (GB50009-2012 8.1.1-2) =2.05×1.13959×0.65×0.65=0.987032 kN/m 2Wkvp <3kN/m 2,取Wkvp =3kN/m 2立柱负风压风荷载标准值计算如下W kvn =β gz ×μ svn1×μ z ×W0 (GB50009-2012 8.1.1-2) =-0.987032 kN/m 2Wkvn >-3kN/m 2,取Wkvn =-3kN/m 2同样,横梁正风压风荷载标准值计算如下W khp =β gz ×μ shp1×μ z ×W0 (GB50009-2012 8.1.1-2) =1.03935 kN/m 2Wkhp <3kN/m 2,取Wkhp =3kN/m 2横梁负风压风荷载标准值计算如下W khn =β gz ×μ shn1×μ z ×W0 (GB50009-2012 8.1.1-2) =-1.03935 kN/m 2Wkhn >-3kN/m 2,取Wkhn =-3kN/m 22. 风荷载设计值计算W: 风荷载设计值: kN/m 2γw : 风荷载作用效应的分项系数:1.4按《玻璃幕墙工程技术规范》JGJ 102-2003 5.4.2条规定采用 面板风荷载作用计算Wp=γw ×Wkp=1.4×3=4.2kN/m 2Wn=γw ×Wkn=1.4×(-3)=-4.2kN/m 2立柱风荷载作用计算Wvp=γw ×Wkvp=1.4×3=4.2kN/m 2Wvn=γw ×Wkvn=1.4×(-3)=-4.2kN/m 2横梁风荷载作用计算Whp=γw ×Wkhp=1.4×3=4.2kN/m 2Whn=γw ×Wkhn=1.4×(-3)=-4.2kN/m 23. 水平地震作用计算GAK: 面板平米重量取0.3072kN/m 2αmax: 水平地震影响系数最大值:0.08qEk: 分布水平地震作用标准值(kN/m 2) qEk=βE ×αmax ×GAK (JGJ102-2003 5.3.4) =5×0.08×0.3072=0.12288kN/m 2rE: 地震作用分项系数: 1.3qEA: 分布水平地震作用设计值(kN/m 2) qEA=rE ×qEk =1.3×0.12288=0.159744kN/m 24. 荷载组合计算幕墙承受的荷载作用组合计算,按照规范,考虑正风压、地震荷载组合: Szkp=Wkp=3kN/m 2Szp=Wkp ×γw+qEk ×γE ×ψE =3×1.4+0.12288×1.3×0.5=4.27987kN/m 2考虑负风压、地震荷载组合: Szkn=Wkn=-3kN/m 2Szn=Wkn ×γw-qEk ×γE ×ψE =-3×1.4-0.12288×1.3×0.5=-4.27987kN/m 2综合以上计算,取绝对值最大的荷载进行强度演算采用面板荷载组合标准值为3kN/m 2面板荷载组合设计值为4.27987kN/m 2立柱承受风荷载标准值为3kN/m 2横梁承受风荷载标准值为3kN/m 2三、 化学锚栓计算1. 锚栓计算信息描述V: 剪力设计值: V=1588.5N水平剪力设计值Vh = 0N N: 法向力设计值: N=5731.84Ne2: 锚栓中心与锚板平面距离: 0mm My: 弯矩设计值(N.mm): My=V ×e2 =1588.5×0 =0N.mmT: 扭矩设计值(N.mm): 0N.mm当前计算锚栓类型: 化学锚栓 FHB-A 10*60/10 锚栓材料类型: 不锈钢锚栓-A2-70 锚栓直径: 12mm 锚栓底板孔径: 13mm锚栓处混凝土开孔直径: 14mm 锚栓有效锚固深度: 120mm锚栓底部混凝土级别: 混凝土-C25 底部混凝土为开裂混凝土 底部混凝土基材厚度: 400mm 混凝土开裂及边缘配筋情况: 1锚栓锚固区混凝土配筋描述: 其它情况2. 锚栓承受拉力计算锚栓布置示意图如下:d :锚栓直径12mm df:锚栓底板孔径13mm在拉力和弯矩共同作用下,锚栓群有两种可能的受力形式。

相关文档
最新文档