天津高考数学理科试卷(带详解)
天津理数高考试题文档版(含答案).doc
绝密★启用前201X 年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2. 本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A ,B 互斥,那么•如果事件A ,B 相互独立,那么()()()P A B P A P B =+. ()()()P AB P A P B =.•圆柱的体积公式V Sh =.•圆锥的体积公式13V Sh =. 其中S 表示圆柱的底面面积, 其中S 表示圆锥的底面面积, h 表示圆柱的高.h 表示圆锥的高.一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 学科.网(1)已知集合}{4,3,2,1=A ,}{A x x y y B ∈-==,23,则=B A (A )}{1(B )}{4(C )}{3,1(D )}{4,1 (2)设变量x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧-+-++-.0923,0632,02y x y x y x 则目标函数y x z 52+=的最小值为(A )4-(B )6(C )10(D )17≥ ≥ ≤(3)在ABC ∆中,若13=AB ,3=BC , 120=∠C , 则=AC(A )1 (B )2 (C )3 (D )4(4)阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )2 (B )4(C )6(D )8(5)设}{n a 是首项为正数的等比数列,学科&网公比为q ,则“0<q ”是“对任意的正整数n ,0212<n n a a +-”的(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 (6)已知双曲线14222=-by x )>(0b ,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,学科&网四边形ABCD 的面积为b 2,则双曲线的方程为(A )143422=-y x (B )134422=-y x (C )144222=-y x (D )112422=-y x (7)已知ABC ∆是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得EF DE 2=,则BC AF ⋅的值为(A )85-(B )81 (C )41(D )811 (8)已知函数⎪⎩⎪⎨⎧+++-+=0,1)1(log 0,3)34()(2x x x a x a x x f a<(0>a ,学.科网且1≠a )在R 上单调递减,且关于x 的方程x x f -=2)(恰好有两个不相等的实数解,则a 的取值范围是(A )]32,0((B )]43,32[ (C ) ]32,31[{43}(D ) )32,31[{43}≥ (第4题图)绝密★启用前201X 年普通高等学校招生全国统一考试(天津卷)数 学(理工类)第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分. (9)已知a ,∈b R ,i 是虚数单位,若a b =-+)i 1)(i 1(,则ba的值为_____________. (10)82)1(xx -的展开式中7x 的系数为_____________.(用数字作答) (11)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),学科.网则该四棱锥的体积 为_____________3m .(12)如图,AB 是圆的直径,弦CD 与AB 相交于点E ,22==AE BE ,ED BD =,则线段CE 的长为_____________.(13)已知)(x f 是定义在R 上的偶函数,且在区间)0,(-∞上单调递增.若实数a 满足)2()2(1--f f a >,则a 的取值范围是_____________.(14)设抛物线⎩⎨⎧==pty pt x 2,22(t 为参数,0>p )的焦点F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设)0,27(p C ,AF 与BC 相交于点E .若AF CF 2=,且ACE ∆的面积为23,则p 的值为_____________.三. 解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分)已知函数3)3cos()2sin(tan 4)(---=ππx x x x f .(Ⅰ)求)(x f 的定义域与最小正周期; (Ⅱ)讨论)(x f 在区间]4,4[ππ-上的单调性.(16)(本小题满分13分)某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分 别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(Ⅰ)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (Ⅱ)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列 和数学期望.(17)(本小题满分13分)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面⊥OBEF 平面ABCD ,点G 为AB 的中点,2==BE AB .(Ⅰ)求证:EG ∥平面ADF ; (Ⅱ)求二面角C EF O --的正弦值; (Ⅲ)设H 为线段AF 上的点,且HF AH 32=,求直线BH 和平面CEF 所成角的正弦值.(18)(本小题满分13分)已知}{n a 是各项均为正数的等差数列,学.科.网公差为d .对任意的*∈N n ,n b 是n a 和1+n a 的等比中项.(Ⅰ)设221n n n b b c -=+,*∈N n ,求证:数列}{n c 是等差数列;(Ⅱ)设d a =1,∑=-=nk kkn b T 212)1(,*∈N n ,求证21211d T nk k<∑=.(19)(本小题满分14分)设椭圆13222=+y a x )3(>a 的右焦点为F ,右顶点为A .已知FAeOA OF 311=+, 其中O 为原点,e 为椭圆的离心率. 学.科.网(Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若HF BF ⊥,且MOA ∠≤MAO ∠,求直线l 的斜率的取值范围.(20)(本小题满分14分)设函数b ax x x f ---=3)1()(,∈x R ,其中a ,∈b R . (Ⅰ)求)(x f 的单调区间;(Ⅱ)若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:3201=+x x ; (Ⅲ)设0>a ,函数)()(x f x g =,求证:)(x g 在区间]2,0[上的最大值不小于...41201X 年普通高等学校招生全国统一考试(天津卷)数 学(理工类)一、选择题: (1)【答案】D (2)【答案】B (3)【答案】A (4)【答案】B (5)【答案】C (6)【答案】D (7)【答案】B (8)【答案】C第Ⅱ卷二、填空题: (9)【答案】2 (10)【答案】56- (11)【答案】2 (12)【答案】233(13)【答案】13(,)22(14) 【答案】6 三、解答题 (15)【答案】(Ⅰ),2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,.π(Ⅱ)在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 学科&网在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 【解析】试题分析:(Ⅰ)先利用诱导公式、两角差余弦公式、二倍角公式、配角公式将函数化为基本三角函数:()()=2sin 23f x x π-,再根据正弦函数性质求定义域、学科&网周期()II 根据(1)的结论,研究三角函数在区间[,44ππ-]上单调性试题解析:()I 解:()f x 的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭. ()4tan cos cos 34sin cos 333f x x x x x x ππ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭213=4sin cos sin 32sin cos 23sin 322x x x x x x ⎛⎫+-=+- ⎪ ⎪⎝⎭()()=sin 231-cos 23sin 23cos 2=2sin 23x x x x x π+-=--.所以, ()f x 的最小正周期2.2T ππ== ()II 解:令2,3z x π=-函数2sin y z =的单调递增区间是2,2,.22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦由222232k x k πππππ-+≤-≤+,得5,.1212k x k k Z ππππ-+≤≤+∈ 设5,,,441212A B x k x k k Z ππππππ⎧⎫⎡⎤=-=-+≤≤+∈⎨⎬⎢⎥⎣⎦⎩⎭,易知,124A B ππ⎡⎤=-⎢⎥⎣⎦.所以, 当,44x ππ⎡⎤∈-⎢⎥⎣⎦学.科网时,()f x 在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 考点:三角函数性质,诱导公式、两角差余弦公式、二倍角公式、配角公式 【结束】 (16) 【答案】(Ⅰ)13(Ⅱ)详见解析 【解析】试题分析:(Ⅰ)先确定从这10人中随机选出2人的基本事件种数:210C ,再确定选出的2人参加义工活动次数之和为4所包含基本事件数:112344C C C +,最后根据概率公式求概率(Ⅱ)先确定随机变量可能取值为0,1,2.学.科网再分别求出对应概率,列出概率分布,最后根据公式计算数学期望试题解析:解:()I 由已知,有()1123442101,3C C C P A C +==所以,事件A 发生的概率为13. ()∏随机变量X 的所有可能取值为0,1,2.()2223342100C C C P X C ++==415=, ()111133342107115C C C C P X C +===, ()11342104215C C P X C ===. 所以,随机变量X 学.科网分布列为X 0 12 P415 715415随机变量X 的数学期望()4740121151515E X =⨯+⨯+⨯=.考点:概率,概率分布与数学期望 【结束】 (17)【答案】(Ⅰ)详见解析(Ⅱ)33(Ⅲ)721【解析】试题分析:(Ⅰ)利用空间向量证明线面平行,关键是求出面的法向量,利用法向量与直线方向向量垂直进行论证(Ⅱ)利用空间向量求二面角,关键是求出面的法向量,再利用向量数量积求出法向量夹角,最后根据向量夹角与二面角相等或互补关系求正弦值(Ⅲ)利用空间向量证明线面平行,关键是求出面的法向量,再利用向量数量积求出法向量夹角,最后根据向量夹角与线面角互余关系求正弦值试题解析:依题意,OF ABCD ⊥平面,如图,以O 为点,分别以,,AD BA OF 的方向为x 轴,y 轴、z 轴的正方向建立空间直角坐标系,依题意可得(0,0,0)O ,()1,1,0,(1,1,0),(1,1,0),(11,0),(1,1,2),(0,0,2),(1,0,0)A B C D E F G -------,.(I )证明:依题意,()(2,0,0),1,1,2AD AF ==-.设()1,,n x y z =为平面ADF 的法向量,则110n AD n AF ⎧⋅=⎪⎨⋅=⎪⎩,即2020x x y z =⎧⎨-+=⎩ .不妨设1z =,可得()10,2,1n =,又()0,1,2EG =-,可得10EG n ⋅=,又因为直线EG ADF ⊄平面,所以//EG ADF 平面.(II )解:易证,()1,1,0OA =-为平面OEF 的一个法向量.依题意,()()1,1,0,1,1,2EF CF ==-.设()2,,n x y z =为平面CEF 的法向量,则220n E F n C F ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x y z +=⎧⎨-++=⎩ .不妨设1x =,可得()21,1,1n =-.因此有2226cos ,3OA n OA n OA n ⋅<>==-⋅,于是23sin ,3OA n <>=,所以,二面角O EF C --的正弦值为33. (III )解:由23AH HF =,学.科网得25AH AF =.因为()1,1,2AF =-,所以2224,,5555AH AF ⎛⎫==- ⎪⎝⎭,进而有334,,555H ⎛⎫- ⎪⎝⎭,从而284,,555BH ⎛⎫=⎪⎝⎭,因此2227cos ,21BH n BH n BH n ⋅<>==-⋅.所以,直线BH 和平面CEF 所成角的正弦值为721.考点:利用空间向量解决立体几何问题 【结束】 (18)【答案】(Ⅰ)详见解析(Ⅱ)详见解析 【解析】试题分析:(Ⅰ)先根据等比中项定义得:21n n n b a a +=,从而22112112n n n n n n n n c b b a a a a da +++++=-=-=,因此根据等差数列定义可证:()212122n n n n c c d a a d +++-=-=(Ⅱ) 对数列不等式证明一般以算代证先利用分组求和化简()2211nnn n k T b ==-∑()()()2222221234212n n b b b b b b -=-++-++-+()221d n n =+,再利用裂项相消法求和()222111111111111212121nn n k k k kT d k k d k k d n ===⎛⎫⎛⎫==-=⋅- ⎪ ⎪+++⎝⎭⎝⎭∑∑∑,易得结论. 试题解析:(I )证明:由题意得21n n n b a a +=,有22112112n n n n n n n n c b b a a a a da +++++=-=-=,因此()212122n n n n c c d a a d +++-=-=,所以{}n c 是等差数列.(II )证明:()()()2222221234212n n n T b b b b b b -=-++-++-+()()()22224222212n n n a a d a a a d d n n +=+++=⋅=+所以()222211111111111112121212nn n k k k k T d k k d k k d n d ===⎛⎫⎛⎫==-=⋅-< ⎪ ⎪+++⎝⎭⎝⎭∑∑∑. 考点:等差数列、等比中项、分组求和、裂项相消求和 【结束】 (19)【答案】(Ⅰ)22143x y +=(Ⅱ)),46[]46,(+∞--∞ 【解析】试题分析:(Ⅰ)求椭圆标准方程,只需确定量,由113||||||c OF OA FA +=,得113()cc a a a c +=-,再利用2223a c b -==,可解得21c =,24a =(Ⅱ)先化简条件:MOA MAO ∠=∠⇔||||MA MO =,即M再OA 中垂线上,1M x =,再利用直线与椭圆位置关系,联立方程组求B ;利用两直线方程组求H ,最后根据HF BF ⊥,列等量关系解出直线斜率.取值范围 试题解析:(1)解:设(,0)F c ,由113||||||c OF OA FA +=,即113()cc a a a c +=-,可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=. (2)(Ⅱ)解:设直线l 的斜率为k (0≠k ),则直线l 的方程为)2(-=x k y .设),(B B y x B ,由方程组⎪⎩⎪⎨⎧-==+)2(13422x k y y x ,消去y ,整理得0121616)34(2222=-+-+k x k x k . 解得2=x ,或346822+-=k k x ,由题意得346822+-=k k x B ,从而34122+-=k ky B . 由(Ⅰ)知,)0,1(F ,设),0(H y H ,有),1(H y FH -=,)3412,3449(222++-=k kk k BF .由HF BF ⊥,得0=⋅HF BF ,所以034123449222=+++-k ky k k H,解得k k y H 12492-=.因此直线MH 的方程为kk x k y 124912-+-=.设),(M M y x M ,由方程组⎪⎩⎪⎨⎧-=-+-=)2(124912x k y k k x k y 消去y ,解得)1(1292022++=k k x M .在MAO ∆中,||||MO MA MAO MOA ≤⇔∠≤∠,即2222)2(MMMM y x y x +≤+-,化简得1≥M x ,即1)1(1292022≥++k k ,解得46-≤k 或46≥k . 所以,直线l 的斜率的取值范围为),46[]46,(+∞--∞ . 考点:学.科网椭圆的标准方程和几何性质,直线方程 【结束】(20)【答案】(Ⅰ)详见解析(Ⅱ)详见解析(Ⅲ)详见解析 【解析】试题分析:(Ⅰ)先求函数的导数:a x x f --=2)1(3)(',再根据导函数零点是否存在情况,分类讨论:①当0a ≤时,有()0f x '≥恒成立,所以()f x 的单调增区间为(,)-∞∞.②当0a >时,存在三个单调区间(Ⅱ)由题意得3)1(20a x =-,计算可得00(32)()f x f x -=再由)()(01x f x f =及单调性可得结论(Ⅲ)实质研究函数)(x g 最大值:主要比较(1),(1)f f -,33|(|,|()|33a a f f -的大小即可,分三种情况研究①当3a ≥时,33120331aa +≤<≤-,②当334a ≤<时,3321233133103321a a a a +≤<+<-<≤-,③当304a <<时,23313310<+<-<a a . 试题解析:(Ⅰ)解:由b ax x x f ---=3)1()(,可得a x x f --=2)1(3)('. 下面分两种情况讨论:(1)当0≤a 时,有0)1(3)('2≥--=a x x f 恒成立,所以)(x f 的单调递增区间为),(+∞-∞. (2)当0>a 时,令0)('=x f ,解得331ax +=,或331a x -=.当x 变化时,)('x f ,)(x f 的变化情况如下表:x)331,(a --∞ 331a - )331,331(a a +- 331a+ ),331(+∞+a )('x f+0 - 0 + )(x f单调递增极大值单调递减极小值单调递增所以)(x f 的单调递减区间为)331,331(a a +-,单调递增区间为)331,(a --∞,),331(+∞+a. (Ⅱ)证明:因为)(x f 存在极值点,所以由(Ⅰ)知0>a ,且10≠x ,由题意,得0)1(3)('200=--=a x x f ,即3)1(20ax =-,进而b ax a b ax x x f ---=---=332)1()(00300. 又b a ax x ab x a x x f --+-=----=-32)1(38)22()22()23(000300)(33200x f b a x a =---=,且0023x x ≠-,由题意及(Ⅰ)知,存在唯一实数满足 )()(01x f x f =,且01x x ≠,因此0123x x -=,所以3201=+x x ;(Ⅲ)证明:设)(x g 在区间]2,0[上的最大值为M ,},max{y x 表示y x ,两数的最大值.下面分三种情况同理:(1)当3≥a 时,33120331aa +≤<≤-,由(Ⅰ)知,)(x f 在区间]2,0[上单调递减,所以)(x f 在区间]2,0[上的取值范围为)]0(),2([f f ,因此|}1||,21max{||})0(||,)2(max{|b b a f f M ----== |})(1||,)(1max{|b a a b a a +--++-=⎩⎨⎧<++--≥+++-=0),(10),(1b a b a a b a b a a ,所以2||1≥++-=b a a M . (2)当343<≤a 时,3321233133103321aa a a +≤<+<-<≤-,由(Ⅰ)和(Ⅱ)知,)331()3321()0(a f a f f +=-≥,)331()3321()2(af a f f -=+≤,所以)(x f 在区间]2,0[上的取值范围为)]331(),331([a f a f -+,因此 |}392||,392max {||})331(||,)331(max {|b a a ab a a a a f a f M -----=-+= |})(392||,)(392max{|b a a a b a a a +-+--= 414334392||392=⨯⨯⨯≥++=b a a a . (3)当430<<a 时,23313310<+<-<aa ,由(Ⅰ)和(Ⅱ)知,)331()3321()0(a f a f f +=-<,)331()3321()2(af a f f -=+>, 学.科网所以)(x f 在区间]2,0[上的取值范围为)]2(),0([f f ,因此|}21||,1max{||})2(||,)0(max{|b a b f f M ----== |})(1||,)(1max{|b a a b a a +--++-=41||1>++-=b a a . 综上所述,当0>a 时,)(x g 在区间]2,0[上的最大值不小于41. 考点:导数的运算,利用导数研究函数的性质、证明不等式 【结束】。
2024年天津高考数学真题(原卷版+解析版】
2024年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+U .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh=,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4A =,{}2,3,4,5B =,则A B =I ( )A. {}1,2,3,4 B. {}2,3,4 C. {}2,4 D. {}12. 设,a b ÎR ,则“33a b =”是“33a b =”( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 下列图中,相关性系数最大的是( )的获取更多高中资料关注公众号:网盘网课资源A. B.C. D.4. 下列函数是偶函数的是( )A. 22e 1x x y x -=+ B. 22cos 1x x y x +=+ C. e 1x xy x -=+ D. ||sin 4e x x x y +=5. 若0.30.3 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A. a b c>> B. b a c>> C. c a b>> D. b c a>>6. 若,m n 为两条不同的直线,a 为一个平面,则下列结论中正确的是( )A 若//m a ,n Ìa ,则//m nB. 若//,//m n a a ,则//m nC. 若//,a a ^m n ,则m n ^D. 若//,a a ^m n ,则m 与n 相交7. 已知函数()()πsin303f x x w w æö=+>ç÷èø的最小正周期为π.则函数在ππ,126éù-êúëû的最小值是( )A. B. 32-C. 0D.328. 双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A. 22182y x -= B. 22184x y -= C. 22128x y -= D. 22148x y -=9. 一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为().A.B.12+C.D.12-第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10. 已知i是虚数单位,复数))i 2i +×-=______.11. 在63333x xæö+ç÷èø展开式中,常数项为______.12. 22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为______.13. ,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为______;已知乙选了A 活动,他再选择B 活动的概率为______.14. 在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点, 1,2CE DE BE BA BC ==+uur uur uuu r l m ,则l m +=______;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ×uuu r uuur的最小值为______.15. 若函数()21f x ax =--+有唯一零点,则a 取值范围为______.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤的的16. 在ABC V 中,92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.17. 已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ^平面ABCD ,AD AB ^,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.18. 已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △.(1)求椭圆方程.(2)过点30,2æö-ç÷èø的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ×£uur uuu r 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.19. 已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=ì=í+<<î,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -³×;(ⅱ)求1nS i i b =å.20. 设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x ¥Î+时恒成立,求a 取值范围;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.的2024年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+U .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh=,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4A =,{}2,3,4,5B =,则A B =I ( )A. {}1,2,3,4B. {}2,3,4 C. {}2,4 D. {}1【答案】B 【解析】【分析】根据集合交集的概念直接求解即可.【详解】因为集合{}1,2,3,4A =,{}2,3,4,5B =,所以{}2,3,4A B =I ,获取更多高中资料关注公众号:网盘网课资源2. 设,a b ÎR ,则“33a b =”是“33a b =”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】C 【解析】【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【详解】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件.故选:C.3. 下列图中,相关性系数最大的是( )A. B.C. D.【答案】A 【解析】【分析】由点的分布特征可直接判断【详解】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A4. 下列函数是偶函数的是( )A. 22e 1x x y x -=+ B. 22cos 1x x y x +=+ C. e 1x xy x -=+ D. ||sin 4e x x x y +=【答案】B【分析】根据偶函数的判定方法一一判断即可.【详解】对A ,设()22e 1x x f x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -¹,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R ,且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ¹-,不关于原点对称, 则()h x 不是偶函数,故C 错误;对D ,设()||sin 4e x x x x j +=,函数定义域为R ,因为()sin141e j +=,()sin141ej ---=,则()()11j j ¹-,则()x j 不是偶函数,故D 错误.故选:B.5. 若0.30.3 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A. a b c >>B. b a c>> C. c a b>> D. b c a>>【答案】B 【解析】【分析】利用指数函数和对数函数的单调性分析判断即可.【详解】因为 4.2x y =在R 上递增,且0.300.3-<<,所以0.300.30 4.2 4.2 4.2-<<<,所以0.30.30 4.21 4.2-<<<,即01a b <<<,因为 4.2log y x =在(0,)+¥上递增,且00.21<<,所以 4.2 4.2log 0.2log 10<=,即0c <,所以b a c >>,故选:B6. 若,m n 为两条不同的直线,a 为一个平面,则下列结论中正确的是( )A. 若//m a ,n Ìa ,则//m nB. 若//,//m n a a ,则//m nC. 若//,a a ^m n ,则m n ^D. 若//,a a ^m n ,则m 与n 相交【答案】C 【解析】【分析】根据线面平行的性质可判断AB 的正误,根据线面垂直的性质可判断CD 的正误.【详解】对于A ,若//m a ,n Ìa ,则,m n 平行或异面,故A 错误.对于B ,若//,//m n a a ,则,m n 平行或异面或相交,故B 错误.对于C ,//,a a ^m n ,过m 作平面b ,使得s b a =I ,因为m b Ì,故//m s ,而s a Ì,故n s ^,故m n ^,故C 正确. 对于D ,若//,a a ^m n ,则m 与n 相交或异面,故D 错误.故选:C .7. 已知函数()()πsin303f x x w w æö=+>ç÷èø的最小正周期为π.则函数在ππ,126éù-êúëû的最小值是( )A. B. 32-C. 0D.32【答案】A 【解析】【分析】先由诱导公式化简,结合周期公式求出w ,得()sin2f x x =-,再整体求出,126éùÎ-êúëûππx 时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】()()πsin3sin 3πsin 33f x x x x w w w æö=+=+=-ç÷èø,由2ππ3T w==得23w =,即()sin2f x x =-,当,126éùÎ-êúëûππx 时,ππ2,63x éùÎ-êúëû,画出()sin2f x x =-图象,如下图,由图可知,()sin2f x x =-在ππ,126éù-êúëû上递减,所以,当π6x =时,()min πsin 3f x =-=故选:A8. 双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A. 22182y x -= B. 22184x y -= C. 22128x y -= D. 22148x y -=【答案】C 【解析】【分析】可利用12PF F △三边斜率问题与正弦定理,转化出三边比例,设2PF m =,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【详解】如下图:由题可知,点P 必落在第四象限,1290F PF Ð=°,设2PF m =,211122,PF F PF F q q Ð=Ð=,由21tan 2PF k q ==,求得1sin q =,因为1290F PF Ð=°,所以121PF PF k k ×=-,求得112PF k =-,即21tan 2q =,2sin q =,由正弦定理可得:121212::sin :sin :sin 902PF PF F F q q =°=,则由2PF m =得1122,2PF m F F c ===,由1212112822PF F S PF PF m m =×=×=V 得m =,则2122PF PF F c c =====由双曲线第一定义可得:122PF PF a -==a b ===所以双曲线的方程为22128x y -=.故选:C9. 一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为( )A.B.12+ C.D.12-【答案】C 【解析】【分析】采用补形法,补成一个棱柱,求出其直截面,再利用体积公式即可.【详解】用一个完全相同的五面体HIJ LMN -(顶点与五面体ABC DEF -一一对应)与该五面体相嵌,使得,D N ;,E M ;,F L 重合,因为AD BE CF ∥∥,且两两之间距离为1.1,2,3AD BE CF ===,则形成的新组合体为一个三棱柱,该三棱柱的直截面(与侧棱垂直的截面)为边长为1的等边三角形,侧棱长为1322314+=+=+=,212111142ABC DEF ABC HIJ V V --==´´´=.故选:C.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10. 已知i是虚数单位,复数))i 2i +×-=______.【答案】7【解析】【分析】借助复数的乘法运算法则计算即可得.【详解】))i 2i 527+×-=+-+=-.故答案为:7-.11. 在63333x xæö+ç÷èø的展开式中,常数项为______.【答案】20【解析】【分析】根据题意结合二项展开式的通项分析求解即可.【详解】因为63333x x æö+ç÷èø的展开式的通项为()63636216633C 3C ,0,1,,63rrr r r r r x T xr x ---+æöæö===×××ç÷ç÷èøèø,令()630r -=,可得3r =,所以常数项为0363C 20=.故答案为:20.12. 22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为______.【答案】45##0.8【解析】【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆22(1)25-+=x y 的圆心为()1,0F ,故12p=即2p =,由()2221254x y y xì-+=ïí=ïî可得22240x x +-=,故4x =或6x =-(舍),故()4,4A ±,故直线()4:13AF y x =±-即4340x y --=或4340x y +-=,故原点到直线AF 的距离为4455d ==,故答案为:4513. ,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为______;已知乙选了A 活动,他再选择B 活动的概率为______.【答案】 ①.35②. 12【解析】【分析】结合列举法或组合公式和概率公式可求甲选到A 的概率;采用列举法或者条件概率公式可求乙选了A 活动,他再选择B 活动的概率.【详解】解法一:列举法从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ,共10种情况,其中甲选到A 有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,则甲选到A 得概率为:63105P ==;乙选A 活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,其中再选则B 有3种可能性:,,ABC ABD ABE ,故乙选了A 活动,他再选择B 活动的概率为31=62.解法二:设甲、乙选到A 为事件M ,乙选到B 为事件N ,则甲选到A 的概率为()2435C 3C 5P M ==;乙选了A 活动,他再选择B 活动的概率为()()()133524351C 2C C P MN C P N M P M ===故答案为:35;1214. 在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点, 1,2CE DE BE BA BC ==+uur uur uuu r l m ,则l m +=______;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ×uuu r uuur的最小值为______.【答案】 ①.43②. 518-【解析】【分析】解法一:以{},BA BC uuu r uuu r 为基底向量,根据向量的线性运算求BE uuu r,即可得l m +,设BF BE k =uuu r uur ,求,AF DG uuu r uuu r ,结合数量积的运算律求AF DG ×uuu r uuur 的最小值;解法二:建系标点,根据向量的坐标运算求BE uuu r,即可得l m +,设()1,3,,03F a a a éù-Î-êúëû,求,AF DG uuu r uuu r ,结合数量积的坐标运算求AF DG ×uuu r uuur 的最小值.【详解】解法一:因为12CE DE =,即23CE BA =uur uur ,则13BE BC CE BA BC =+=+uuu r uur u uu ur r uuu r ,可得1,13l m ==,所以43l m +=;由题意可知:1,0BC BA BA BC ==×=uuu r uuu r uuu r uuu r,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+Îuuu r uuu r uuu r uuu r,则113AF AB BF AB k BE k BA k BC æö=+=+=-+ç÷èøuuu r uuu r uuu r uuu r uuu r uuur uuu r ,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC æöæö=+=-+=-+-ç÷ç÷èøèøuuur uuu r uuu r uuu r uuu r uuu r uuur ,可得11111113232AF DG k BA k BC k BA k BC éùéùæöæöæö×=-+×-+-ç÷ç÷ç÷êúêúèøèøèøëûëûuuu r uuur uuu r uuu ruuu r uuur22111563112329510k k k k æöæöæö=-+-=--ç÷ç÷ç÷èøèøèø,又因为[]0,1k Î,可知:当1k =时,AF DG ×uuu r uuur取到最小值518-;解法二:以B 为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E æö---ç÷èø,可得()()11,0,0,1,,13BA BC BE æö=-==-ç÷èøuuu r uuu r uuu r ,因为(),BE BA BC l m l m =+=-uuu r uuu r uuu r ,则131l m ì-=-ïíï=î,所以43l m +=;因为点F 在线段1:3,,03BE y x x éù=-Î-êúëû上,设()1,3,,03F a a a éù-Î-êúëû,且G 为AF 中点,则13,22a G a -æö-ç÷èø,可得()131,3,,122a AF a a DG a +æö=+-=--ç÷èøuuu r uuur ,则()()22132331522510a AF DG a a a +æöæö×=+---=+-ç÷ç÷èøèøuuu r uuur ,且1,03a éùÎ-êúëû,所以当13a =-时,AF DG ×uuu r uuur 取到最小值为518-;故答案为:43;518-.15. 若函数()21f x ax =--+有唯一零点,则a 的取值范围为______.【答案】()(1-È【解析】【分析】结合函数零点与两函数的交点的关系,构造函数()g x =与()23,21,ax x a h x ax x a ì-³ïï=íï-<ïî,则两函数图象有唯一交点,分0a =、0a >与0a <进行讨论,当0a >时,计算函数定义域可得x a ³或0x £,计算可得(]0,2a Î时,两函数在y 轴左侧有一交点,则只需找到当(]0,2a Î时,在y 轴右侧无交点的情况即可得;当0a <时,按同一方式讨论即可得.【详解】令()0f x =,即21ax =--,由题可得20x ax -³,当0a =时,x ÎR,有211=--=,则x =±当0a >时,则23,2121,ax x a ax x a ì-³ïï--=íï-<ïî,即函数()g x =与函数()23,21,ax x a h x ax x a ì-³ïï=íï-<ïî有唯一交点,由20x ax -³,可得x a ³或0x £,当0x £时,则20ax -<,则211ax ax =--=-,即()22441x ax ax -=-,整理得()()()2242121210a xax a x a x éùéù---=++--=ëûëû,当2a =时,即410x +=,即14x =-,当()0,2a Î,12x a =-+或102x a=>-(正值舍去),当()2,a Î+¥时,102x a =-<+或102x a=<-,有两解,舍去,即当(]0,2a Î时,210ax --+=在0x £时有唯一解,则当(]0,2a Î时,210ax --+=在x a ³时需无解,当(]0,2a Î,且x a ³时,由函数()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数()h x 在12,a a æöç÷èø上单调递减,在23,a a æöç÷èø上单调递增,令()g x y ==,即2222142a x y a a æö-ç÷-ø=è,故x a ³时,()g x 图象为双曲线()222214y x a a -=右支的x 轴上方部分向右平移2a 所得,由()222214y x a a-=的渐近线方程为22a y x x a =±=±,即()g x 部分的渐近线方程为22a y x æö=-ç÷èø,其斜率为2,又(]0,2a Î,即()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî在2x a ³时的斜率(]0,2a Î,令()0g x ==,可得x a =或0x =(舍去),且函数()g x 在(),a +¥上单调递增,故有13a aa a ì<ïïíï>ïî,解得1a <<,故1a <<符合要求;当a<0时,则23,2121,ax x a ax x a ì-£ïï--=íï->ïî,即函数()g x =与函数()23,21,ax x a h x ax x a ì-£ïï=íï->ïî有唯一交点,由20x ax -³,可得0x ³或x a £,当0x ³时,则20ax -<,则211ax ax =--=-,即()22441x ax ax -=-,整理得()()()2242121210a xax a x a x éùéù---=++--=ëûëû,当2a =-时,即410x -=,即14x =,当()2,0a Î-,102x a =-<+(负值舍去)或102x a=-,当(),2a Î-¥时,102x a =->+或102x a=>-,有两解,舍去,即当[)2,0a Î-时,210ax --+=在0x ³时有唯一解,则当[)2,0a Î-时,210ax --+=在x a £时需无解,当[)2,0a Î-,且x a £时,由函数()23,21,ax x ah x ax x a ì-£ïï=íï->ïî关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数()h x 在21,a a æöç÷èø上单调递减,在32,a a æöç÷èø上单调递增,同理可得:x a £时,()g x 图象为双曲线()222214y x a a -=左支的x 轴上方部分向左平移2a 所得,()g x 部分渐近线方程为22a y x æö=-+ç÷èø,其斜率为2-,又[)2,0a Î-,即()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî在2x a <时的斜率[)2,0a Î-,令()0g x ==,可得x a =或0x =(舍去),的且函数()g x 在(),a -¥上单调递减,故有13a aa aì>ïïíï<ïî,解得1a <<-,故1a <<-符合要求;综上所述,()(1a Î-U .故答案:()(1-È.【点睛】关键点点睛:本题关键点在于将函数()f x 的零点问题转化为函数()g x =与函数()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî的交点问题,从而可将其分成两个函数研究.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤16. 在ABC V 中,92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.【答案】(1)4 (2(3)5764【解析】【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【小问1详解】设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,为即229254922316t t t t =+-´´´,解得2t =(负舍);则4,6a c ==.【小问2详解】法一:因为B为三角形内角,所以sin B ===,再根据正弦定理得sin sin a b A B =,即4sin A =sin A =法二:由余弦定理得2222225643cos22564bc a A bc +-+-===´´,因为()0,πA Î,则sin A ==小问3详解】法一:因为9cos 016B =>,且()0,πB Î,所以π0,2B æöÎç÷èø,由(2)法一知sin B =,因为a b <,则A B <,所以3cos 4A ==,则3sin 22sin cos 24A A A ===,2231cos 22cos 12148A A æö=-=´-=ç÷èø()1957cos 2cos cos 2sin sin 281664B A B A B A -=+=´+=.法二:3sin 22sin cos 24A A A ===,则2231cos 22cos 12148AA æö=-=´-=ç÷èø,因为B 为三角形内角,所以sinB ===所以()9157cos 2cos cos 2sin sin 216864B A B A B A -=+=´=【17. 已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ^平面ABCD ,AD AB ^,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.【答案】(1)证明见解析(2(3【解析】【分析】(1)取1CB 中点P ,连接NP ,MP ,借助中位线的性质与平行四边形性质定理可得1N//D MP ,结合线面平行判定定理即可得证;(2)建立适当空间直角坐标系,计算两平面的空间向量,再利用空间向量夹角公式计算即可得解;(3)借助空间中点到平面的距离公式计算即可得解.【小问1详解】取1CB 中点P ,连接NP ,MP ,由N 是11B C 的中点,故1//NP CC ,且112NP CC =,由M 是1DD 的中点,故1111122D M DD CC ==,且11//D M CC ,则有1//D M NP 、1D M NP =,故四边形1D MPN 是平行四边形,故1//D N MP ,又MP Ì平面1CB M ,1D N Ë平面1CB M ,故1//D N 平面1CB M ;【小问2详解】以A 为原点建立如图所示空间直角坐标系,有()0,0,0A 、()2,0,0B 、()12,0,2B 、()0,1,1M 、()1,1,0C 、()11,1,2C ,则有()11,1,2CB =-uuur 、()1,0,1CM =-uuuu r 、()10,0,2BB =uuur,设平面1CB M 与平面11BB CC 的法向量分别为()111,,m x y z =r 、()222,,n x y z =r,则有111111200m CB x y z m CM x z ì×=-+=ïí×=-+=ïîuuur r uuuu r r ,1222122020n CB x y z n BB z ì×=-+=ïí×==ïîuuur r uuur r ,分别取121x x ==,则有13y =、11z =、21y =,20z =,即()1,3,1m =r 、()1,1,0n =r,则cos ,m =r ,故平面1CB M 与平面11BB CC;【小问3详解】由()10,0,2BB =uuur ,平面1CB M 的法向量为()1,3,1m =r,=即点B 到平面1CB M.18. 已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △.(1)求椭圆方程.(2)过点30,2æö-ç÷èø的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ×£uur uuu r 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)221129x y +=(2)存在()30,32T t t æö-££ç÷èø,使得0TP TQ ×£uur uuu r 恒成立.【解析】【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.(2)设该直线方程为:32y kx =-,()()()1122,,,,0,P x y Q x y T t , 联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用,k t 表示TP TQ ×uur uuu r,再根据0TP TQ ×£uur uuu r 可求t 的范围.【小问1详解】因为椭圆的离心率为12e =,故2a c =,b =,其中c 为半焦距,所以()()2,0,0,,0,A c B C æ-ççè,故122ABC S c =´=△故c =a =,3b =,故椭圆方程为:221129x y +=.【小问2详解】若过点30,2æö-ç÷èø的动直线的斜率存在,则可设该直线方程为:32y kx =-,设()()()1122,,,,0,P x y Q x y T t ,由22343632x y y kx ì+=ïí=-ïî可得()223412270k x kx +--=,故()222Δ144108343245760k kk=++=+>且1212221227,,3434k x x x x k k +==-++而()()1122,,,TP x y t TQ x y t =-=-uur uuu r,故()()121212123322TP TQ x x y t y t x x kx t kx t æöæö×=+--=+----ç÷ç÷èøèøuur uuu r ()()22121233122kx x k t x x t æöæö=+-++++ç÷ç÷èøèø()22222731231342342k k k t t k k æöæöæö=+´--+´++ç÷ç÷ç÷++èøèøèø()2222222327271812332234k k k t t t k k æö----++++ç÷èø=+()22223321245327234t t k t k æöéù+--++-ç÷ëûèø=+,因为0TP TQ ×£uur uuu r 恒成立,故()223212450332702t t t ì+--£ïíæö+-£ïç÷èøî,解得332t -££.若过点30,2æö-ç÷èø的动直线的斜率不存在,则()()0,3,0,3P Q -或()()0,3,0,3P Q -,此时需33t -££,两者结合可得332t -££.综上,存在()30,32T t t æö-££ç÷èø,使得0TP TQ ×£uur uuu r 恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.19. 已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=ì=í+<<î,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -³×;(ⅱ)求1nS i i b =å.【答案】(1)21n n S =- (2)①证明见详解;②()131419nn S ii n b=-+=å【解析】【分析】(1)设等比数列{}n a 的公比为0q >,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知12,1k k n a b k -==+,()121n k k b -=-,利用作差法分析证明;②根据题意结合等差数列求和公式可得()()1211213143449k k k k i i b k k ---=éù=---ëûå,再结合裂项相消法分析求解.【小问1详解】设等比数列{}n a 的公比为0q >,因为1231,1a S a ==-,即1231a a a +=-,可得211q q +=-,整理得220q q --=,解得2q =或1q =-(舍去),所以122112nn n S -==--.【小问2详解】(i )由(1)可知12n n a -=,且N*,2k k γ,当124kk n a +=³=时,则111221111k k k k k a n n a a -++ì=<-=-í-=-<î,即11k k a n a +<-<可知12,1k k n a b k -==+,()()()1111222121k k k n a k k b b a a k k k k --+=+--×=+-=-,可得()()()()1112112122120kn k n k k k k k k k k b k a b ---=--+=--³--=-׳-,当且仅当2k =时,等号成立,所以1n k n b a b -³×;(ii )由(1)可知:1211nn n S a +=-=-,若1n =,则111,1S b ==;若2n ³,则112k k k a a -+-=,当1221k k i -<£-时,12i i b b k --=,可知{}i b 为等差数列,可得()()()111211112221122431434429k k k k k k k k i i b k kk k k -------=-éù=×+=×=---ëûå,所以()()()232113141115424845431434499nnS n n i i n b n n -=-+éù=+´-´+´-´+×××+---=ëûå,且1n =,符合上式,综上所述:()131419nn S ii n b=-+=å.【点睛】关键点点睛:1.分析可知当1221k k i -<£-时,12i i b b k --=,可知{}i b 为等差数列;2.根据等差数列求和分析可得()()1211213143449k k k k i i b k k ---=éù=---ëûå.20. 设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处切线方程;(2)若()(f x a x ³在()0,x ¥Î+时恒成立,求a 的取值范围;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.【答案】(1)1y x =- (2){}2(3)证明过程见解析【解析】【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到2a =,再证明2a =时条件满足;(3)先确定()f x 的单调性,再对12,x x 分类讨论.【小问1详解】的由于()ln f x x x =,故()ln 1f x x =¢+.所以()10f =,()11f ¢=,所以所求的切线经过()1,0,且斜率为1,故其方程为1y x =-.【小问2详解】设()1ln h t t t =--,则()111t h t t t¢-=-=,从而当01t <<时()0h t ¢<,当1t >时()0h t ¢>.所以()h t 在(]0,1上递减,在[)1,+¥上递增,这就说明()()1h t h ³,即1ln t t -³,且等号成立当且仅当1t =.设()()12ln g t a t t =--,则()((ln 12ln f x a x x x a x x a x g æö--=-=-=×ç÷øè.当()0,x ¥Î+的取值范围是()0,¥+,所以命题等价于对任意()0,t ¥Î+,都有()0g t ³.一方面,若对任意()0,t ¥Î+,都有()0g t ³,则对()0,t ¥Î+有()()()()112012ln 12ln 1212g t a t t a t a t at a t t t æö£=--=-+£-+-=+--ç÷èø,取2t =,得01a £-,故10a ³>.再取t =,得2022a a a £+-=-=-,所以2a =.另一方面,若2a =,则对任意()0,t ¥Î+都有()()()212ln 20g t t t h t =--=³,满足条件.综合以上两个方面,知a 的取值范围是{}2.【小问3详解】先证明一个结论:对0a b <<,有()()ln 1ln 1f b f a a b b a-+<<+-.证明:前面已经证明不等式1ln t t -³,故lnln ln ln ln ln ln 1ln 1bb b a a a b a aa b b b b b a b a a --=+=+<+---,且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a bbæö---ç÷--èø=+=+>+=+----,所以ln ln ln 1ln 1b b a aa b b a -+<<+-,即()()ln 1ln 1f b f a a b b a-+<<+-.由()ln 1f x x =¢+,可知当10ex <<时()0f x ¢<,当1e x >时()0f x ¢>.所以()f x 在10,eæùçúèû上递减,在1e ,éö+¥÷êëø上递增.不妨设12x x £,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211ex x ££<时,有()()()()()()122122121ln 1f x f x f x f x x x x x x -=-<+-<-<情况二:当1210ex x <££时,有()()()()12121122ln ln f x f x f x f x x x x x -=-=-.对任意的10,e c æùÎçúèû,设()ln ln x x x c c j =--()ln 1x x j =+¢.由于()x j ¢单调递增,且有11110j =+<+=-+=¢,且当2124ln 1x c c ³-æö-ç÷èø,2cx >2ln 1c ³-可知()2ln 1ln 1ln 102c x x c j æö=+>++=-³ç÷èø¢.所以()x j ¢在()0,c 上存在零点0x ,再结合()x j ¢单调递增,即知00x x <<时()0x j ¢<,0x x c <<时()0x j ¢>.故()x j 在(]00,x 上递减,在[]0,x c 上递增.①当0x x c ££时,有()()0x c j j £=;②当00x x <<112221e e f f cæö=-£-=<ç÷èø,故我们可以取1,1q c öÎ÷ø.从而当201cx q <<->()1ln ln ln ln 0x x x c c c c c c q cj ö=-<-<--=-<÷ø.再根据()x j 在(]00,x 上递减,即知对00x x <<都有()0x j <;综合①②可知对任意0x c <£,都有()0x j £,即()ln ln 0x x x c c j =--£.根据10,ec æùÎçúèû和0x c <£的任意性,取2c x =,1x x =,就得到1122ln ln 0x x x x -£.所以()()()()12121122ln ln f x f x f x f x x x x x -=-=-£.情况三:当12101ex x <££<时,根据情况一和情况二讨论,可得()11e f x f æö-££ç÷èø,()21e f f x æö-££ç÷èø而根据()f x 的单调性,知()()()1211e f x f x f x f æö-£-ç÷èø或()()()1221e f x f xf f x æö-£-ç÷èø.故一定有()()12f x f x -£成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合()f x 的单调性进行分类讨论.的。
高考天津卷数学理科试卷含答案
普通高等学校招生全国统一考试数学(理工类)参考公式:·如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =·如果事件A B ,相互独立,那么其中R 表示球的半径()()()P A B P A P B =··一、选择题:在每小题列出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,32i 1i=-( ) A.1i +B. 1i -+C.1i -D.1i --2.设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A.4B.11C.12D.143.“2π3θ=”是“πtan 2cos 2θθ⎛⎫=+ ⎪⎝⎭”的( ) A.充分而不必要条件B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件4.设双曲线22221(00)x y a b a b-=>>,,且它的一条准线与抛物线24y x=的准线重合,则此双曲线的方程为( )A.2211224x y -=B.2214896x y -= C.222133x y -=D.22136x y -= 5.函数2log 2)(0)y x =>的反函数是( ) A.142(2)xx y x +=-> B.142(1)x x y x +=-> C.242(2)x x y x +=->D.242(1)xx y x +=->6.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A.若a b ,与α所成的角相等,则a b ∥ B.若a b αβ,∥∥,αβ∥,则a b ∥ C.若a b a b αβ⊂⊂,,∥,则αβ∥ D.若a b αβ⊥⊥,,αβ⊥,则a b ⊥7.在R 上定义的函数()f x 是偶函数,且()(2)f x f x =-,若()f x 在区间[12],上是减函数,则()f x ( )A.在区间[21]--,上是增函数,在区间[34],上是增函数 B.在区间[21]--,上是增函数,在区间[34],上是减函数 C.在区间[21]--,上是减函数,在区间[34],上是增函数8.设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =( ) A.2B.4C.6D.89.设a b c ,,均为正数,且122log a a =,121log 2bb ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( )A.a b c <<B.c b a <<C.c a b <<D.b a c <<10.设两个向量22(2cos )λλα=+-,a 和sin 2m m α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,中央电视台mλ的取值范围是( ) A.B.[48],C.D.普通高等学校招生全国统一考试数学(理工类)第Ⅱ卷二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上.12.一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .13.设等差数列{}n a 的公差d 是2,前n 项的和为n S ,则22lim n n n a n S →∞-= .14.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则直线AB 的方程是 .15.如图,在ABC △中,12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则ADBC =· . 16.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.18.(本小题满分12分)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为黑球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率;(Ⅲ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.19.(本小题满分12分) 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,60AB AD AC CD ABC ⊥⊥∠=,,°,PA AB BC ==,E 是PC 的中点.(Ⅰ)证明CD AE ⊥;(Ⅱ)证明PD ⊥平面ABE ;(Ⅲ)求二面角A PD C --的大小.AB DCABCDPE20.(本小题满分12分)已知函数2221()()1ax a f x x x -+=∈+R ,其中a ∈R . (Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值.21.(本小题满分14分)在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S ; (Ⅲ)证明存在k *∈N ,使得11n k n ka aa a ++≤对任意n *∈N 均成立.22.(本小题满分14分)设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212AF F F ⊥,原点O 到直线1AF 的距离为113OF .(Ⅰ)证明a =;(Ⅱ)设12Q Q ,为椭圆上的两个动点,12OQ OQ ⊥,过原点O 作直线12Q Q 的垂线OD ,垂足为D ,求点D 的轨迹方程.2007年普通高等学校招生全国统一考试(天津卷)数学(理工类)参考解答一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. 1.C 2.B 3.A 4.D 5.C 6.D 7.B 8.B 9.A 10.A二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分. 11.2 12.14π 13.3 14.30x y +=15.83-16.390三、解答题17.本小题考查三角函数中的诱导公式、特殊角三角函数值、两角差公式、倍角公式、函数sin()y A x ωϕ=+的性质等基础知识,考查基本运算能力.满分12分.(Ⅰ)解:π()2cos (sin cos )1sin 2cos 224f x x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭.因此,函数()f x 的最小正周期为π.(Ⅱ)解法一:因为π()24f x x ⎛⎫=- ⎪⎝⎭在区间π3π88⎡⎤⎢⎥⎣⎦,上为增函数,在区间3π3π84⎡⎤⎢⎥⎣⎦,上为减函数,又π08f ⎛⎫=⎪⎝⎭,3π8f ⎛⎫= ⎪⎝⎭3π3πππ14244f ⎛⎫⎛⎫=-==- ⎪ ⎪⎝⎭⎝⎭, 故函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,,最小值为1-.解法二:作函数π()24f x x ⎛⎫=- ⎪⎝⎭在长度为一个周期的区间π9π84⎡⎤⎢⎥⎣⎦,上的图象如下:间π3π84⎡⎤⎢⎥⎣⎦,由图象得函数()f x 在区3π14f ⎛⎫=-⎪⎝⎭. 18.本小题主要考查互斥事件、相互独立事件、离散型随机变量的分布列和数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分.(Ⅰ)解:设“从甲盒内取出的2个球均为黑球”为事件A ,“从乙盒内取出的2个球均为黑球”为事件B .由于事件AB ,相互独立,且23241()2C P A C ==,24262()5C P B C ==. 故取出的4个球均为黑球的概率为121()()()255P A B P A P B ==⨯=··. (Ⅱ)解:设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件C ,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件D .由于事件C D ,互斥,且21132422464()15C C C P C C C ==··,123422461()5C C PD C C ==·. 故取出的4个球中恰有1个红球的概率为417()()()15515P C D P C P D +=+=+=. (Ⅲ)解:ξ可能的取值为0123,,,.由(Ⅰ),(Ⅱ)得1(0)5P ξ==,7(1)15P ξ==, 13224611(3)30C P C C ξ===·.从而3(2)1(0)(1)(3)10P P P P ξξξξ==-=-=-==.xξ的分布列为ξ的数学期望012351510306E ξ=⨯+⨯+⨯+⨯=.19.本小题考查直线与直线垂直、直线与平面垂直、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力.满分12分.(Ⅰ)证明:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,CD ⊂平面ABCD ,故PA CD ⊥.AC CD PA AC A ⊥=,∵,CD ⊥∴平面PAC .而AE ⊂平面PAC ,CD AE ⊥∴.(Ⅱ)证明:由PA AB BC ==,60ABC ∠=°,可得AC PA =. E ∵是PC 的中点,AE PC ⊥∴.由(Ⅰ)知,AE CD ⊥,且PC CD C =,所以AE ⊥平面PCD .而PD ⊂平面PCD ,AE PD ⊥∴.PA ⊥∵底面ABCD PD ,在底面ABCD 内的射影是AD ,AB AD ⊥,AB PD ⊥∴. 又AB AE A=∵,综上得PD⊥平面ABE .(Ⅲ)解法一:过点A 作AM PD ⊥,垂足为M ,连结EM .则(Ⅱ)知,AE ⊥平面PCD ,AM 在平面PCD 内的射影是EM ,则EM PD ⊥. 因此AME ∠是二面角A PD C --的平面角. 由已知,得30CAD ∠=°.设AC a=,可得32PA a AD PD a AE a ====,,,. 在ADP Rt △中,AM PD ⊥∵,AM PD PA AD =∴··,则a PA AD AM PD===··. 在AEM Rt △中,sin 4AE AME AM ==. 所以二面角A PD C --的大小是arcsin4. 解法二:由题设PA ⊥底面ABCD ,PA ⊂平面PAD ,则平面PAD ⊥平面ACD ,交线为AD .过点C 作CF AD ⊥,垂足为F ,故CF ⊥平面PAD .过点F 作FM PD ⊥,垂足为M ,连结CM ,故CM PD ⊥.因此CMP ∠是二面角A PD C --的平面角. 由已知,可得30CAD ∠=°,设AC a =,ABCDPEM可得12PA a AD PD CF a FD =====,,,,. FMD PAD ∵△∽△,FM FDPA PD=∴.于是,14a aFD PA FM a PD ===··. 在CMF Rt △中,1tan aCFCMF FM ===所以二面角A PD C --的大小是.20.本小题考查导数的几何意义,两个函数的和、差、积、商的导数,利用导数研究函数的单调性和极值等基础知识,考查运算能力及分类讨论的思想方法.满分12分. (Ⅰ)解:当1a =时,22()1x f x x =+,4(2)5f =, 又2222222(1)2222()(1)(1)x x x x f x x x +--'==++·,6(2)25f '=-. 所以,曲线()y f x =在点(2(2))f ,处的切线方程为46(2)525y x -=--, 即62320x y +-=.(Ⅱ)解:2222222(1)2(21)2()(1)()(1)(1)a x x ax a x a ax f x x x +--+--+'==++. 由于0a ≠,以下分两种情况讨论. (1)当0a >时,令()0f x '=,得到11x a=-,2x a =.当x 变化时,()()f x f x ',的变所以()f x 在区间1a ⎛⎫-- ⎪⎝⎭,∞,()a +,∞内为减函数,在区间1a a ⎛⎫- ⎪⎝⎭,内为增函数.ABCDPEF M函数()f x 在11x a =-处取得极小值1f a ⎛⎫- ⎪⎝⎭,且21f a a ⎛⎫-=- ⎪⎝⎭, 函数()f x 在21x a=处取得极大值()f a ,且()1f a =. (2)当0a <时,令()0f x '=,得到121x a x a==-,,当x 变化时,()()f x f x ',的变化所以()f x 在区间()a -,∞,1a ⎛⎫- ⎪⎝⎭,+∞内为增函数,在区间1a a ⎛⎫- ⎪⎝⎭,内为减函数. 函数()f x 在1x a =处取得极大值()f a ,且()1f a =. 函数()f x 在21x a=-处取得极小值1f a ⎛⎫- ⎪⎝⎭,且21f a a ⎛⎫-=- ⎪⎝⎭. 21.本小题以数列的递推关系式为载体,主要考查等比数列的前n 项和公式、数列求和、不等式的证明等基础知识与基本方法,考查归纳、推理、运算及灵活运用数学知识分析问题和解决问题的能力.满分14分.(Ⅰ)解法一:22222(2)22a λλλλ=++-=+,2232333(2)(2)222a λλλλλ=+++-=+, 3343444(22)(2)232a λλλλλ=+++-=+.由此可猜想出数列{}n a 的通项公式为(1)2n nn a n λ=-+.以下用数学归纳法证明.(1)当1n =时,12a =,等式成立.(2)假设当n k =时等式成立,即(1)2k kk a k λ=-+,那么111(2)2k k k a a λλλ++=++-11(1)222k k k k kk λλλλλ++=-+++-11[(1)1]2k k k λ++=+-+.这就是说,当1n k =+时等式也成立.根据(1)和(2)可知,等式(1)2n nn a n λ=-+对任何n *∈N 都成立.解法二:由11(2)2()n n n n a a n λλλ+*+=++-∈N ,0λ>,可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭, 所以2nn n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭为等差数列,其公差为1,首项为0,故21n n n a n λλ⎛⎫-=- ⎪⎝⎭,所以数列{}n a 的通项公式为(1)2n nn a n λ=-+. (Ⅱ)解:设234123(2)(1)n n n T n n λλλλλ-=++++-+-, ①345123(2)(1)n n n T n n λλλλλλ+=++++-+- ②当1λ≠时,①式减去②式, 得212311(1)(1)(1)1n n n n n T n n λλλλλλλλλ+++--=+++--=---,21121222(1)(1)(1)1(1)n n n n n n n n T λλλλλλλλλ++++----+=-=---.这时数列{}n a 的前n 项和21212(1)22(1)n n n n n n S λλλλ+++--+=+--. 当1λ=时,(1)2n n n T -=.这时数列{}n a 的前n 项和1(1)222n n n n S +-=+-. (Ⅲ)证明:通过分析,推测数列1n n a a +⎧⎫⎨⎬⎩⎭的第一项21a a 最大,下面证明: 21214,22n n a a n a a λ++<=≥. ③ 由0λ>知0n a >,要使③式成立,只要212(4)(2)n n a a n λ+<+≥, 因为222(4)(4)(1)(1)2n nn a n λλλλ+=+-++124(1)424(1)2n n n n n n λλλ++>-+⨯=-+·1212222n n n n a n λ++++=,≥≥.所以③式成立.因此,存在1k =,使得1121n k n k a a aa a a ++=≤对任意n *∈N 均成立. 22.本小题主要考查椭圆的标准方程和几何性质、直线方程、求曲线的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分.(Ⅰ)证法一:由题设212AF F F ⊥及1(0)F c -,,2(0)F c ,,不妨设点()A c y ,,其中0y >.由于点A 在椭圆上,有22221c y a b +=,即222221a b y a b-+=. 解得2b y a =,从而得到2b Ac a ⎛⎫ ⎪⎝⎭,.直线1AF 的方程为2()2b y x c ac=+,整理得2220b x acy b c -+=. 由题设,原点O 到直线1AF 的距离为113OF,即23c =将222c a b =-代入上式并化简得222a b =,即a =.证法二:同证法一,得到点A 的坐标为2b c a ⎛⎫⎪⎝⎭,.过点O 作1OB AF ⊥,垂足为B ,易知1F BO △∽12F F A △,故211BO F A OF F A=.由椭圆定义得122AF AF a +=,又113BO OF =, 所以2212132F AF A F A a F A==-, 解得22aF A =,而22b F A a =,得22b a a =,即a =.(Ⅱ)解法一:设点D 的坐标为00()x y ,.当00y ≠时,由12OD Q Q ⊥知,直线12Q Q 的斜率为0x y -,所以直线12Q Q 的方程为0000()x y x x y y =--+,或y kx m =+,其中00x k y =-,200x m y y =+.点111222()()Q x y Q x y ,,,的坐标满足方程组22222y kx m x y b =+⎧⎨+=⎩,.将①式代入②式,得2222()2x kx m b ++=, 整理得2222(12)4220k x kmx m b +++-=,于是122412kmx x k +=-+,21222212m b x x k -=+.由①式得2212121212()()()y y kx m kx m k x x km x x k =++=+++2222222222242121212m b km m b k k km m k k k---=++=+++··. 由12OQ OQ ⊥知12120x x y y +=.将③式和④式代入得22222322012m b b k k --=+, 22232(1)m b k =+.将200000x x k m y y y =-=+,代入上式,整理得2220023x y b +=.当00y =时,直线12Q Q 的方程为0x x =,111222()()Q x y Q x y ,,,的坐标满足方程组022222x x x y b =⎧⎨+=⎩,. 所以120x x x ==,12y =,. 由12OQ OQ ⊥知12120x x y y +=,即2220202b x x --=, 解得22023x b =. 这时,点D 的坐标仍满足2220023x y b +=. 综上,点D 的轨迹方程为 22223x y b +=.解法二:设点D 的坐标为00()x y ,,直线OD 的方程为000y x x y -=,由12OD Q Q ⊥,垂足为D ,可知直线12Q Q 的方程为220000x x y y x y +=+.记2200m x y =+(显然0m ≠),点111222()()Q x y Q x y ,,,的坐标满足方程组0022222x x y y m x y b +=⎧⎪⎨+=⎪⎩, ①. ②由①式得00y y m x x =-. ③由②式得22222200022y x y y y b +=. ④ 将③式代入④式得222220002()2y x m x x y b +-=. 整理得2222220000(2)4220x y x mx x m b y +-+-=,于是222122200222m b y x x x y -=+. ⑤ 由①式得00x x m y y =-. ⑥由②式得22222200022x x x y x b +=. ⑦ 将⑥式代入⑦式得22222000()22m y y x y x b -+=, 整理得2222220000(2)220x y y my y m b x +-+-=,于是22212220022m b x y y x y -=+. ⑧ 由12OQ OQ ⊥知12120x x y y +=.将⑤式和⑧式代入得2222220022220000222022m b y m b x x y x y --+=++, 22220032()0m b x y -+=.将2200m x y =+代入上式,得2220023x y b +=. 所以,点D 的轨迹方程为22223x y b +=.。
2023年新高考天津数学高考真题(解析版)
2023年普通高等学校招生全国统一考试(天津卷)数学一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合{}{}{}1,2,3,4,5,1,3,1,2,4UA B ===,则U B A = ( )A. {}1,3,5B. {}1,3C. {}1,2,4D.{}1,2,4,5【答案】A 【解析】【分析】对集合B 求补集,应用集合的并运算求结果;【详解】由{3,5}U B = ,而{1,3}A =, 所以{1,3,5}U B A = . 故选:A2. “22a b =”是“222a b ab +=”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分又不必要条件【答案】B 【解析】【分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【详解】由22a b =,则a b =±,当0a b =−≠时222a b ab +=不成立,充分性不成立;由222a b ab +=,则2()0a b −=,即a b =,显然22a b =成立,必要性成立; 所以22a b =是222a b ab +=的必要不充分条件. 故选:B 3. 若0.50.60.51.01, 1.01,0.6ab c ==,则,,a b c 的大小关系为( ) A. c a b >> B. c b a >> C. a b c >> D. b a c >>【答案】D 【解析】【分析】根据对应幂、指数函数的单调性判断大小关系即可. 【详解】由 1.01x y =在R 上递增,则0.50.61.01 1.01a b =<=, 由0.5y x =在[0,)+∞上递增,则0.50.51.010.6a c =>=.所以b a c >>. 故选:D4. 函数()f x 的图象如下图所示,则()f x 的解析式可能为( )A.()25e e 2x xx −−+ B.25sin 1xx + C.()25e e 2x xx −++D.25cos 1xx + 【答案】D 【解析】【分析】由图知函数为偶函数,应用排除,先判断B 中函数的奇偶性,再判断A 、C 中函数在(0,)+∞上的函数符号排除选项,即得答案.【详解】由图知:函数图象关于y 轴对称,其为偶函数,且(2)(2)0f f −=<,由225sin()5sin ()11x xx x −=−−++且定义域为R ,即B 中函数为奇函数,排除; 当0x >时25(e e )02x x x −−>+、25(e e )02x x x −+>+,即A 、C 中(0,)+∞上函数值为正,排除; 故选:D5. 已知函数()f x 的一条对称轴为直线2x =,一个周期为4,则()f x 的解析式可能为( ) A. sin 2x πB. cos 2x πC. sin 4x πD. cos 4x π【答案】B【解析】【分析】由题意分别考查函数的最小正周期和函数在2x =处的函数值,排除不合题意的选项即可确定满足题意的函数解析式.【详解】由函数的解析式考查函数的最小周期性: A 选项中242Tππ==,B 选项中242Tππ==,C 选项中284T ππ==,D 选项中284T ππ==,排除选项CD ,对于A 选项,当2x =时,函数值sin 202π ×=,故()2,0是函数的一个对称中心,排除选项A ,对于B 选项,当2x =时,函数值cos 212π ×=−,故2x =是函数的一条对称轴, 故选:B.6. 已知{}n a 为等比数列,n S 为数列{}n a 的前n 项和,122n n a S +=+,则4a 的值为( ) A. 3 B. 18C. 54D. 152【答案】C 【解析】【分析】由题意对所给的递推关系式进行赋值,得到关于首项、公比的方程组,求解方程组确定首项和公比的值,然后结合等比数列通项公式即可求得4a 的值.【详解】由题意可得:当1n =时,2122a a +,即1122a qa =+, ① 当2n =时,()31222a a a ++,即()211122a q a a q =++, ②联立①②可得12,3a q ==,则34154a a q==. 故选:C.7. 调查某种群花萼长度和花瓣长度,所得数据如图所示,其中相关系数0.8245r =,下列说法正确的是( )A. 花瓣长度和花萼长度没有相关性B. 花瓣长度和花萼长度呈现负相关C. 花瓣长度和花萼长度呈现正相关D. 若从样本中抽取一部分,则这部分的相关系数一定是0.8245 【答案】C 【解析】【分析】根据散点图的特点可分析出相关性的问题,从而判断ABC 选项,根据相关系数的定义可以判断D 选项.【详解】根据散点的集中程度可知,花瓣长度和花萼长度有相关性,A 选项错误散点的分布是从左下到右上,从而花瓣长度和花萼长度呈现正相关性,B 选项错误,C 选项正确;由于0.8245r =是全部数据的相关系数,取出来一部分数据,相关性可能变强,可能变弱,即取出的数据的相关系数不一定是0.8245,D 选项错误 故选:C8. 在三棱锥−P ABC 中,线段PC 上的点M 满足13PM PC =,线段PB 上的点N 满足23PN PB =,则三棱锥P AMN −和三棱锥−P ABC 的体积之比为( ) A.19B.29C.13D.49【答案】B 【解析】【分析】分别过,M C 作,MM PA CC PA ′′⊥⊥,垂足分别为,M C ′′.过B 作BB ′⊥平面PAC ,垂足为B ′,连接PB ′,过N 作NN PB ′′⊥,垂足为N ′.先证NN ′⊥平面PAC ,则可得到//BB NN ′′,再证//MM CC ′′ .由三角形相似得到13MM CC ′′=,'2'3NN BB =,再由P AMN N PAMP ABC B PACV V V V −−−−=即可求出体积比.【详解】如图,分别过,M C 作,MM PA CC PA ′′⊥⊥,垂足分别为,M C ′′.过B 作BB ′⊥平面PAC ,垂足为B ′,连接PB ′,过N 作NN PB ′′⊥,垂足为N ′.因为BB ′⊥平面PAC ,BB ′⊂平面PBB ′,所以平面PBB ′⊥平面PAC .又因为平面PBB ′ 平面PAC PB ′=,NN PB ′′⊥,NN ′⊂平面PBB ′,所以NN ′⊥平面PAC ,且//BB NN ′′.在PCC ′△中,因为,MM PA CC PA ′′⊥⊥,所以//MM CC ′′,所以13PM MM PC CC ′==′,在PBB ′△中,因为//BB NN ′′,所以23PN NN PB BB ′==′,所以11123231119332PAM P AMN N PAM P ABC B PAC PAC PA MM NN S NNV V V V S BB PA CC BB −−−− ′′′⋅⋅⋅⋅ ==== ′′′⋅⋅⋅⋅. 故选:B9. 双曲线2222(0,0)x y a b a b−>>的左、右焦点分别为12F F 、.过2F 作其中一条渐近线的垂线,垂足为P .已知22PF =,直线1PF,则双曲线的方程为( ) A. 22184x y −=B. 22148x y −=C. 22142x y −=D. 22124x y −=【答案】D 【解析】【分析】先由点到直线的距离公式求出b ,设2POF θ∠=,由tan b bOP aθ==得到OP a =,2OF c =.再由三角形的面积公式得到P y ,从而得到P x,则可得到22a a =+,解出a ,代入双曲线的方程即可得到答案.【详解】如图,因为()2,0F c ,不妨设渐近线方程为by x a=,即0bx ay −=,所以2bcPF b c==, 所以2b =设2POF θ∠=,则2tan PF b bOP OP aθ===,所以OP a =,所以2OF c =. 因为1122P ab c y =⋅,所以P ab y c =,所以tan P P P ab y b c x x a θ===,所以2P a x c =, 所以2,a ab P c c, 因为()1,0F c −,所以1222222242PF abab a a c k a a c a a a c c=====+++++)224a a +=,解得a =,所以双曲线的方程为22124x y −=故选:D二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10. 已知i 是虚数单位,化简514i23i++的结果为_________.【答案】4i +##i 4+ 【解析】.【分析】由题意利用复数的运算法则,分子分母同时乘以23i −,然后计算其运算结果即可.【详解】由题意可得()()()()514i 23i 514i5213i4i 23i23i 23i 13+−++===+++−. 故答案为:4i +.11. 在6312x x −的展开式中,2x 项的系数为_________. 【答案】60 【解析】【分析】由二项式展开式的通项公式写出其通项公式()61841612kk k k k T C x −−+=−×××,令1842k −=确定k 的值,然后计算2x 项的系数即可.【详解】展开式的通项公式()()6361841661C 212C kkk kk k kk T x x x −−−+ =−=−×××, 令1842k −=可得,4k =,则2x 项的系数为()4644612C 41560−−××=×=.故答案为:60.12. 过原点的一条直线与圆22:(2)3C x y ++=相切,交曲线22(0)y px p =>于点P ,若8OP =,则p 的值为_________.【答案】6 【解析】【分析】根据圆()2223x y ++=和曲线22y px =关于x 轴对称,不妨设切线方程为y kx =,0k >,即可根据直线与圆的位置关系,直线与抛物线的位置关系解出.【详解】易知圆()2223x y ++=和曲线22y px =关于x 轴对称,不妨设切线方程为y kx =,0k >,=k=22y y px = = 解得:00x y = =或23p xy= =, 所以483p OP ===,解得:6p .当k = 故答案为:6.13. 甲乙丙三个盒子中装有一定数量的黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取一个球,是白球的概率为_________. 【答案】 ①. 0.05 ②. 35##0.6 【解析】【分析】先根据题意求出各盒中白球,黑球的数量,再根据概率的乘法公式可求出第一空; 根据古典概型的概率公式可求出第二个空.【详解】设甲、乙、丙三个盒子中的球的个数分别为5,4,6n n n ,所以总数为15n , 所以甲盒中黑球个数为40%52n n ×=,白球个数为3n ; 甲盒中黑球个数25%4n n ×=,白球个数为3n ; 甲盒中黑球个数为50%63n n ×=,白球个数为3n ;记“从三个盒子中各取一个球,取到的球都是黑球”为事件A ,所以,()0.40.250.50.05P A =××=;记“将三个盒子混合后取出一个球,是白球”为事件B , 黑球总共有236n n n n ++=个,白球共有9n 个,所以,()93155n P B n ==. 故答案为:0.05;35. 14. 在ABC 中,60A ∠= ,1BC =,点D 为AB 的中点,点E 为CD 的中点,若设,AB a AC b == ,则AE 可用,a b 表示为_________;若13BF BC = ,则AE AF ⋅ 的最大值为_________.【答案】 ①. 1142a b + ②. 1324 【解析】【分析】空1:根据向量的线性运算,结合E 为CD 的中点进行求解;空2:用,a b表示出AF ,结合上一空答案,于是AE AF ⋅ 可由,a b表示,然后根据数量积的运算和基本不等式求解.【详解】空1:因为E 为CD 的中点,则0ED EC += ,可得AE ED AD AE EC AC +=+=, 两式相加,可得到2AE AD AC =+,为即122AEa b =+ ,则1142AE a b =+ ; 空2:因为13BF BC = ,则20FB FC += ,可得AF FC AC AF FB AB +=+=, 得到()22AF FC AF FB AC AB +++=+,即32AF a b =+,即2133AFa b =+ . 于是()2211211252423312a b a F b a AE A a b b +⋅+=+⋅+ ⋅=. 记,AB x AC y ==, 则()()222222111525225cos 602221212122A x xy a a b b xy y x y E AF +⋅+=++=++ ⋅= ,在ABC 中,根据余弦定理:222222cos 601BC x y xy x y xy =+−=+−= ,于是1519222122122AE xy x xy AF y++=+ =⋅ , 由221+−=x y xy 和基本不等式,2212x y xy xy xy xy +−=≥−=,故1xy ≤,当且仅当1xy ==取得等号, 则1xy ==时,AE AF ⋅有最大值1324. 故答案为:1142a b + ;1324.15. 若函数()2221f x ax x x ax =−−−+有且仅有两个零点,则a 的取值范围为_________.【答案】()()(),00,11,∞∞−∪∪+ 【解析】【分析】根据绝对值的意义,去掉绝对值,求出零点,再根据根存在的条件即可判断a的取值范围.【详解】(1)当210x ax −+≥时,()0f x =⇔()()21210a x a x −+−−=, 即()()1110a x x −−+=, 若1a =时,=1x −,此时210x ax −+≥成立; 若1a ≠时,11x a =−或=1x −, 若方程有一根为=1x −,则110a ++≥,即2a ≥−且1a ≠;若方程有一根为11x a =−,则2111011a a a −×+≥ −−,解得:2a ≤且1a ≠; 若111x a ==−−时,0a =,此时110a ++≥成立. (2)当210x ax −+<时,()0f x =⇔()()21210a x a x +−++=, 即()()1110a x x +−−=, 若1a =−时,1x =,显然210x ax −+<不成立; 若1a ≠−时,1x =或11x a =+, 若方程有一根为1x =,则110a −+<,即2a >;若方程有一根为11x a =+,则21101a a −×+<+,解得:2a <−; 若111xa ==+时,0a =,显然210x ax −+<不成立; 综上,当2a <−时,零点为11a +,11a −; 当20a −≤<时,零点为11a −,1−; 当0a =时,只有一个零点1−; 当01a <<时,零点为11a −,1−; 当1a =时,只有一个零点1−; 当12a <≤时,零点为11a −,1−; 当2a >时,零点为1,1−.所以,当函数有两个零点时,0a ≠且1a ≠. 故答案:()()(),00,11,∞∞−∪∪+.【点睛】本题的解题关键是根据定义去掉绝对值,求出方程的根,再根据根存在的条件求出对应的范围,然后根据范围讨论根(或零点)的个数,从而解出.三、解答题:本大题共5小题,共75分,解答应写出文字说明,证明过程或演算步骤.16. 在ABC 中,角,,A B C 所对的边分別是,,a b c.已知2,120a b A ==∠= .(1)求sin B 的值; (2)求c 的值; (3)求()sin B C −. 【答案】(1(2)5 (3) 【解析】【分析】(1)根据正弦定理即可解出; (2)根据余弦定理即可解出;(3)由正弦定理求出sin C cos ,cos B C ,即可由两角差的正弦公式求出.【小问1详解】 由正弦定理可得,sin sin a b A B =2sin B=,解得:sin B =; 【小问2详解】由余弦定理可得,2222sin a b c bc A =+−,即21394222c c=+−×××−, 解得:5c =或7c =−(舍去). 【小问3详解】 由正弦定理可得,sin sin a c A C =,5sin C=,解得:sin C =,而120A = , 所以,B C都为锐角,因此cos C,cos B 为故()sin sin cos cos sin B C B C B C −=− 17. 三棱台111ABC A B C 中,若1A A ⊥面111,,2,1ABC AB AC AB AC AA AC ⊥====,,M N 分别是,BC BA 中点.(1)求证:1A N //平面1C MA ;(2)求平面1C MA 与平面11ACC A 所成夹角的余弦值; (3)求点C 到平面1C MA 的距离. 【答案】(1)证明见解析 (2)23(3)43【解析】【分析】(1)先证明四边形11MNAC 是平行四边形,然后用线面平行的判定解决; (2)利用二面角的定义,作出二面角的平面角后进行求解;(3)方法一是利用线面垂直的关系,找到垂线段的长,方法二无需找垂线段长,直接利用等体积法求解 【小问1详解】连接1,MN C A .由,M N 分别是,BC BA 的中点,根据中位线性质,MN //AC ,且12ACMN ==, 由棱台性质,11A C //AC ,于是MN //11A C ,由111MN A C ==可知,四边形11MNAC 是平行四边形,则1A N //1MC ,又1A N ⊄平面1C MA ,1MC ⊂平面1C MA ,于是1A N //平面1C MA . 【小问2详解】过M 作ME AC ⊥,垂足为E ,过E 作1EF AC ⊥,垂足为F ,连接1,MF C E . 由ME ⊂面ABC ,1A A ⊥面ABC ,故1AA ME ⊥,又ME AC ⊥,1AC AA A =∩,1,AC AA ⊂平面11ACC A ,则⊥平面11ACC A .由1AC ⊂平面11ACC A ,故1ME AC ⊥,又1EF AC ⊥,ME EF E ∩=,,ME EF ⊂平面MEF ,于是1AC ⊥平面MEF ,由MF ⊂平面MEF ,故1AC MF ⊥.于是平面1C MA 与平面11ACC A 所成角即MFE ∠.又12ABME==,1cos CAC ∠,则1sin CAC ∠,故11sin EF CAC =×∠Rt MEF 中,90MEF ∠= ,则MF ==于是2cos 3EF MFE MF ∠==【小问3详解】[方法一:几何法]过1C 作1C P AC ⊥,垂足为P ,作1C Q AM ⊥,垂足为Q ,连接,PQ PM ,过P 作1PR C Q ⊥,垂足为R .由题干数据可得,11C A C C==,1C M ==1C Q , 由1C P ⊥平面AMC ,AM ⊂平面AMC ,则1C P AM ⊥,又1C Q AM ⊥,111C Q C P C = ,11,C Q C P ⊂平面1C PQ ,于是AM ⊥平面1C PQ .又PR ⊂平面1C PQ ,则PR AM ⊥,又1PR C Q ⊥,1C Q AM Q = ,1,C Q AM ⊂平面1C MA ,故PR ⊥平面1C MA .在1Rt C PQ中,1123PC PQ PR QC ⋅==, 又2CA PA =,故点C 到平面1C MA 的距离是P 到平面1C MA 的距离的两倍, 即点C 到平面1C MA 的距离是43. [方法二:等体积法]辅助线同方法一.设点C 到平面1C MA 的距离为h .121111223323C AMC AMC V C P S −=××=×××=,111113322C C MA AMC h V h S h −=××=××= . 由11223C AMCC C MA hV V −−=⇔=,即43h =.18. 设椭圆22221(0)x y a b a b+=>>的左右顶点分别为12,A A ,右焦点为F ,已知123,1A F A F ==.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线2A P 交y 轴于点Q ,若三角形1A PQ 的面积是三角形2A FP 面积的二倍,求直线2A P 的方程.【答案】(1)椭圆的方程为22143x y +=,离心率为12e =.(2))2y x −. 【解析】【分析】(1)由31a c a c +=−=解得2,1a c ==,从而求出b =,代入椭圆方程即可求方程,再代入离心率公式即求离心率.(2)先设直线2A P 的方程,与椭圆方程联立,消去y ,再由韦达定理可得2A P x x ⋅,从而得到P 点和Q 点坐标.由211122122A QA A PQ A A P A PF A A P S S S S S =+=+ 得23Q P y y =,即可得到关于k 的方程,解出k ,代入直线2A P 的方程即可得到答案. 【小问1详解】 如图,由题意得31a c a c +=−=,解得2,1a c ==,所以b =,所以椭圆的方程为22143x y +=,离心率为12c ea ==. 【小问2详解】由题意得,直线2A P 斜率存在,由椭圆的方程为22143x y +=可得()22,0A ,设直线2A P 的方程为()2y k x =−,联立方程组()221432x y y k x += =−,消去y 整理得:()2222341616120k x k x k +−+−=, 由韦达定理得222161234A P k x x k −⋅=+,所以228634P k x k−=+, 所以2228612,3434k k P kk−−− ++ ,()0,2Q k −. 所以21142A QA Q S y =×× ,2112A PF P S y =×× ,12142A A P P S y =×× ,所以211122122A QA A PQ A A P A PF A A P S S S S S =+=+ ,所以23Q P y y =,即21222334kk k −=−+,解得k =2A P的方程为)2y x −. 19. 已知{}n a 是等差数列,255316,4a a a a +=−=. (1)求{}n a 的通项公式和1212n n ii a −−=∑.(2)已知{}n b 为等比数列,对于任意*N k ∈,若1221k k n −≤≤−,则1k n k b a b +<<, (Ⅰ)当2k ≥时,求证:2121kk kb −<<+; (Ⅱ)求{}n b 的通项公式及其前n 项和.【答案】(1)21na n =+,12121232n n n ii a −−−==×∑;(2)(Ⅰ)证明见解析;(Ⅱ)2nn b =,前n 项和为122n +−.【解析】【分析】(1)由题意得到关于首项、公差的方程,解方程可得13,2a d ==,据此可求得数列的通项公式,然后确定所给的求和公式里面的首项和项数,结合等差数列前n 项和公式计算可得12121232n n n ii a −−−==×∑.(2)(Ⅰ)利用题中的结论分别考查不等式两侧的情况,当1221k k n −≤≤−时,k n b a <,取12k n −=,当21221k k n −−≤≤−时,nk a b <,取121k n−=−,即可证得题中的不等式;(Ⅱ)结合(Ⅰ)中的结论猜想2nn b =,然后分别排除2q >和2q <两种情况即可确定数列的公比,进而可得数列的通项公式,最后由等比数列前n 项和公式即可计算其前n 项和. 【小问1详解】 由题意可得2515325624a a a d a a d +=+=−== ,解得132a d = = ,则数列{}n a 的通项公式为()1121n a a n d n =+−=+, 注意到11222121n n n a −−=×+=+,从12n a −到21n a −共有1121212n n n −−−−+=项,故()()11121121122121222122122222322n n n n n n n n n n n ii a−−−−−−−−−−=−=×++×=++−=×∑【小问2详解】(Ⅰ)由题意可知,当1221k k n −≤≤−时,k n b a <,取12k n −=,则11222121k k k kb a −−<=×+=+,即21k k b <+,当21221k k n −−≤≤−时,n k a b <,取121k n −=−,此时()1121221121k k kn a a −−−==−+=−,据此可得21kk b −<,综上可得:2121kk kb −<<+. (Ⅱ)由(Ⅰ)可知:123413,39,1517b b b b <<<<<<<<,据此猜测2nn b =,否则,若数列的公比2q >,则1111122n n n n b b q b −−−=>×>,注意到()1122112n n n −−−−=−,则()12210n n −−−>不恒成立,即1221n n −>−不恒成立,此时无法保证21nn b −<,若数列的公比2q <,则11111232n n n n b b q b −−−=<×<×,注意到()11322121n n n −−×−+=−,则1210n −−<不恒成立,即13221n n −×<+不恒成立,此时无法保证21n nb <+,综上,数列的公比为2,则数列的通项公式为2nn b =,其前n 项和为:()12122212n n n S +×−==−−..【点睛】本题的核心在考查数列中基本量的计算和数列中的递推关系式,求解数列通项公式和前n 项和的核心是确定数列的基本量,第二问涉及到递推关系式的灵活应用,先猜后证是数学中常用的方法之一,它对学生探索新知识很有裨益. 20. 已知函数()()11ln 12f x x x=++. (1)求曲线()y f x =在2x =处切线的斜率; (2)当0x >时,证明:()1f x >; (3)证明:()()51ln !ln 162n n n n<−++≤ . 【答案】(1)1ln 334−(2)证明见解析 (3)证明见解析 【解析】【分析】(1)利用导数的几何意义求斜率; (2)问题化为0x >时()2ln 12xx x +>+,构造()2()ln 12x g x x x =+−+,利用导数研究单调性,即可证结论;(3)构造()()1()ln !ln 2h nn n n n =−++,*N n ∈,作差法研究函数单调性可得()(1)1h n h ≤=,再构造(5)(1)()42x x x x x ϕ+−=−+且0x >,应用导数研究其单调性得到(5)(1)ln 42x x x x +−≤+恒成立,对()(1)h n h n −+作放缩处理,结合累加得到311(1)()ln 212126h h n −<−+<,即可证结论. 【小问1详解】ln(1)ln(1)()2x x f x x ++=+,则211ln(1)()(1)2(1)x f x x x x x +′=+−++, 所以1ln 3(2)34f ′=−,故2x =处的切线斜率为1ln 334−;【小问2详解】 要证0x >时()()11ln 112f x x x=++>,即证()2ln 12x x x +>+,令()2()ln 12x g x x x =+−+且0x >,则22214()01(2)(1)(2)x g x x x x x ′=−=>++++, 所以()g x 在(0,)+∞上递增,则()(0)0g x g >=,即()2ln 12xx x +>+. 所以0x >时()1f x >.小问3详解】设()()1()ln !ln 2h n n n n n =−++,*N n ∈, 则()()1111(1)()1()ln ()ln 11()ln(1)222h n h n n n n n n n+−=++−++=−++, 由(2)知:1x n =(0,1]∈,则111()()ln(1)12f n n n=++>, 所以(1)()0h n h n +−<,故()h n 在*N n ∈上递减,故()(1)1h n h ≤=; 下证15ln(!)()ln()26n n n n −++>, 令(5)(1)()ln 42x x x x x ϕ+−=−+且0x >,则22(1)(1)()(21)x x x x x ϕ−−′=+, 当01x <<时()0x ϕ′>,()ϕx 递增,当1x >时()0x ϕ′<,()ϕx 递减,所以()(1)0x ϕϕ≤=,故在()0,x ∞∈+上(5)(1)ln 42x x x x +−≤+恒成立,则11(6)()1111111()(1)()ln(1)1()1()2224(32)1212(3)n n h n h n n n n n n n nn+−+++−≤+⋅−<−+−+,所以11(2)(3)(1)122h h −<−,111(3)(4)()1223h h −<−,…,111(1)()()121h n h n n n −−<−−,累加得:11(2)()(1)12h h n n −<−,而3(2)2ln 22h =−,则113()(1)2ln 2122h n n −<−−+,所以311311(1)()ln 21(1)ln 212122126h h n n−<−+−<−+<,故5()6h n >;综上,5()16h n <≤,即()()51ln !ln 162n n n n<−++≤. 【【点睛】关键点点睛:第三问,作差法研究()()1()ln !ln 2h nn n n n =−++ 单调性证右侧不等关系,再构造(5)(1)()ln 42x x x x x ϕ+−=−+且0x >,导数研究其函数符号得(5)(1)ln 42x x x x +−≤+恒成立,结合放缩、累加得到311(1)()ln 21(1)212h h n n −<−+−为关键.。
2019年天津市高考理科数学试卷及答案解析【word版】
绝密 ★ 启用前2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷 注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A ,B 互斥,那么 •如果事件A ,B 相互独立,那么()()()P A B P A P B =+()()()P AB P A P B =.•圆柱的体积公式V Sh =. •圆锥的体积公式13V Sh =. 其中S 表示圆柱的底面面积, 其中S 表示圆锥的底面面积,h 表示圆柱的高. h 表示圆锥的高.一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.(1)i 是虚数单位,复数734i i( )(A )1i (B )1i (C )17312525i (D )172577i (2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5(3)阅读右边的程序框图,运行相应的程序,输出的S 的值为( )(A )15 (B )105 (C )245 (D )945FED CBA (4)函数212log 4f x x 的单调递增区间是()(A )0, (B ),0(C )2,(D ),2(5)已知双曲线22221x y a b 0,0ab 的一条渐近线平行于直线l :210y x ,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y (B )221205x y (C )2233125100x y (D )2233110025x yD ,交(6)如图,ABC 是圆的内接三角形,BAC 的平分线交圆于点BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBF ;②2FB FD FA ;③AE CEBE DE ;④AF BD AB BF .则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④ (7)设,a bR ,则|“a b ”是“a a b b ”的( )(A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要也不必要条件 (8)已知菱形ABCD 的边长为2,120BAD,点,E F 分别在边,BC DC 上,BE BC ,DFDC .若1AE AF ,23CE CF,则( )(A )12 (B )23 (C )56 (D )712第Ⅱ卷 注意事项: 1.用黑色墨水钢笔或签字笔将答案写在答题卡上。
2024年天津市高考数学试卷含答案解析
绝密★启用前2024年天津市高考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、单选题:本题共9小题,每小题5分,共45分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.集合A ={1,2,3,4},B ={2,3,4,5},则A ∩B =( ) A. {1,2,3,4}B. {2,3,4}C. {2,4}D. {1}2.设a ,b ∈R ,则“a 3=b 3”是“3a =3b ”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件3.下列图中,相关性系数最大的是( )A. B.C. D.4.下列函数是偶函数的是( )A. e x −x 2x 2+1B. cosx+x 2x 2+1C. e x −x x+1D.sinx+4xe |x|5.若a =4.2−0.3,b =4.20.3,c =log 4.20.3,则a ,b ,c 的大小关系为( )A. a >b >cB. b >a >cC. c >a >bD. b >c >a6.若m ,n 为两条直线,α为一个平面,则下列结论中正确的是( ) A. 若m//α,n ⊂α,则m//n B. 若m//α,n//α,则m//n C. 若m//α,n ⊥α,则m ⊥nD. 若m//α,n ⊥α,则m 与n 相交7.已知函数f(x)=sin3(ωx +π3)(ω>0)的最小正周期为π.则函数在[−π12,π6]的最小值是( ) A. −√ 32B. −32C. 0D. 328.双曲线x 2a 2−y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.P 是双曲线右支上一点,且直线PF 2的斜率为2,△PF 1F 2是面积为8的直角三角形,则双曲线的方程为( ) A.x 22−y 28=1 B.x 24−y 28=1 C.y 24−x 28=1 D.x 22−y 24=19.一个五面体ABC −DEF.已知AD//BE//CF ,且两两之间距离为1.并已知AD =1,BE =2,CF =3.则该五面体的体积为( ) A.√ 36B. 3√ 34+12 C. √ 32 D. 3√ 34−12第II 卷(非选择题)二、填空题:本题共6小题,每小题5分,共30分。
全国高考理科数学考试卷天津试卷参考答案
高考理科数学考试真题(天津卷)参考答案1.D 【解析】{}|22A x x =-≤≤,[]2,1AB =-.选D .2.A 【解析】由题意可知,目标函数经过可行域中的点()5,3时,z 取得最小值-7. 3.B 【解析】第一次循环,1S =,2x =; 第二次循环,9,4S x ==; 第三次循环,73S =,跳出循环.4.C 【解析】由球的体积公式可得,①正确;标准差不仅与平均数有关,还与各个数据有等于圆的半径③正确.5.C 【解析】由2e =,得b =,渐近线方程为:y =,准线方程2px =-,可求得,,,2222p p A p B p ⎛⎫⎛⎫--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。
∴122AOB pS ∆=⨯=,所以2p =.6.C 【解析】由余弦定理可得AC =sin 10A =. 7.B 【解析】令()0f x =,可得0.51log 2x x =,由图象法可知()f x 有两个零点. 8.A 【解析】解法一 由()()f x a f x +<,得()||1||||a x x a a x a ax x ++++<①当0a ≥,①⇔()||1||||x x a a x a x x ++++<,无解,即A =Φ,不符合,排除C .取12a =-,①⇔111||1||||222x x x x x -+-->,符合11,22A ⎡⎤-⊆⎢⎥⎣⎦,排除B 、D .解法二 数形结合,∵()()1||f x x a x =+是奇函数.ⅰ)取1a =,()()1||f x x x =+,如图()()1f x f x +<,无解.排除C .f (x )ⅱ)取12a =-,()11||2f x x x ⎛⎫=- ⎪⎝⎭,()12y f x a f x ⎛⎫=+=- ⎪⎝⎭,满足11,22A ⎡⎤-⊆⎢⎥⎣⎦,排除B 、D解法三 由题意0A ∈,即()()00f a f <=,所以()1||0a a a+<,当0a >时无解,所以0a <,此时210a -<,∴10a -<<.排除C 、D .又111222<-<, ∴取12a =-,①⇔111||1||||222x x x x x -+-->,符合11,22A ⎡⎤-⊆⎢⎥⎣⎦,排除B . 9.12i +【解析】由题意101a a b-=⎧⎨+=⎩,即12a b =⎧⎨=⎩,所以a + bi =12i +.10.15【解析】3662166((1)r rrr r rr TC x C x --+==-,3602r -=,解得4r =,常数项446(1)15C -=11.4cos ρθ=的直角坐标方程为224x y x +=,圆心()2,0C ,点P 的直角坐标为(2,,所以||CP =12.12【解析】()()1122AC BE AB AD BC CD AB AD AD AB ⎛⎫⎛⎫⋅=++=+- ⎪ ⎪⎝⎭⎝⎭2221111||||1||||2242AD AD AB AB AB AB =+⋅-=+-∴2111||||42AB AB +-=1,解得1||2AB =.13.83【解析】由切割线定理有2EA EB ED =⋅,解得4EB =, 又 BAE ADB ACB ABC ∠=∠=∠=∠所以 //AE BC ,又//AC BD所以AEBC 是平行四边形,有6,4AE BC AC EB ==== 又CAFCBA ∆∆,所以CA CF CB CA =,得83CF =. 14.-2【解析】∵1||2||a a b +=||||4||4||4||a b a a b a a b a a b++=++13114||4||44a a a a +=+-+=≥≥ 当且仅当||,04||b a a a b=<,即2,4a b =-=时取等号 故1||2||a a b+取得最小值时,2a =-. 15.【解析】(1)f (x )=sin 2x·ππcossin 44x ⋅+3sin 2x -cos 2x =2sin 2x -2cos 2x=π24x ⎛⎫- ⎪⎝⎭.所以,f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间3π0,8⎡⎤⎢⎥⎣⎦上是增函数,在区间3ππ,82⎡⎤⎢⎥⎣⎦上是减函数.又f (0)=-2,3π8f ⎛⎫= ⎪⎝⎭,π22f ⎛⎫= ⎪⎝⎭,故函数f (x )在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值为,最小值为-2.16.【解析】 (Ⅰ)设“取出的4张卡片中,含有编号为3的卡片”为事件A ,则12222525476()7C C C C P A C +== 所以,取出的4张卡片中,含有编号为3的卡片的概率为67. (Ⅱ)随机变量X 的所有可能取值为l ,2,3,4.()()33344477141,23535C C P X P X C C ======()()33564477243,477C C P X P X C C ======所以随机变量x 的分布列是随机变量x 的数学期望1712343535775EX =⨯+⨯+⨯+⨯=.17.【解析】解法一 如图,以点A 为原点建立空间直角坐标系,依题意得A(0,0,0), B(0,0,2),C(1,0,1),B 1(0,2,2),C 1(1,2,1),E(0,1,0)(I)易得11B C =(1,0,-1),CE =(-1,1,-1),于是110BC CE ⋅=,所以11B C CE ⊥. (Ⅱ)1B C =(1,-2,-1).设平面B 1 CE 的 法向量(),,x y z =m ,则10B C CE ⎧⋅=⎪⎨⋅=⎪⎩m m ,即200x y z x y z --=⎧⎨-+-=⎩消去x ,得y+2z =0,不妨令z=1,可得一个法向量为m=(-3,-2,1).由(I)知,11B C CE ⊥,又111CC B C ⊥,可得11B C ⊥平面1CEC ,故11B C =(1,0,-1)为平面1CEC 的一个法向量. 于是111111cos ,||||14B C B C B C ⋅<>===m m m从而1121sin ,7B C <>=m 所以二面角B 1-CE -C 1. (Ⅲ)AE =(0,1,0),1EC =(1,l ,1),设()1,,EM EC λλλλ==,01λ≤≤, 有(),1,AM AE EM λλλ=+=+.可取AB =(0,0,2)为平面11ADD A 的一个法向量,设θ为直线AM 与平面11ADD A 所成的角,则sin cos ,3AM AB AM AB AMABθ⋅=<>==⋅6=,解得13λ=,所以AM =18.【解析】:(1)设F (-c,0),由c a =,知a =.过点F 且与x轴垂直的直线为x =-c ,代入椭圆方程有2222()1c y a b-+=, 解得y ==b =又a 2-c 2=b 2,从而a ,c =1,所以椭圆的方程为22=132x y +. (2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组221,132y k x x y =(+)⎧⎪⎨+=⎪⎩消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.求解可得x 1+x 2=22623k k -+,x 1x 2=223623k k -+.因为A (3-,0),B (3,0),所以AC ·DB +AD ·CB =(x 1y 1x 2,-y 2)+(x 2y 2-x 1,-y 1) =6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1) =6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=22212623k k +++.由已知得22212623k k +++=8,解得k =19.【解析】(1)设等比数列{a n }的公比为q ,因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5, 即4a 5=a 3,于是25314a q a ==.又{a n }不是递减数列且132a =,所以12q =-. 故等比数列{a n }的通项公式为11313(1)222n n n n a --⎛⎫=⨯-=-⋅⎪⎝⎭. (2)由(1)得11,121121,.2nn n n n S n ⎧⎫+⎪⎪⎪⎛⎫=--=⎪⎨ ⎪⎝⎭⎪⎪-⎪⎪⎩⎭为奇数,为偶数当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32, 故11113250236n n S S S S <-≤-=-=. 当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1, 故221134704312n n S S S S >-≥-=-=-. 综上,对于n ∈N *,总有715126n n S S -≤-≤. 所以数列{T n }最大项的值为56,最小项的值为712-. (20) (本小题满分14分)已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明:对任意的t >0,存在唯一的s ,使()t f s =. (Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明:当2>e t 时, 有2ln ()15ln 2g t t <<. 20.【解析】(1)函数f (x )的定义域为(0,+∞).f ′(x )=2x ln x +x =x (2ln x +1),令f ′(x )=0,得x =当x 变化时,f ′(x ),f (x )的变化情况如下表:f ′(x ) - 0 +f (x )极小值所以函数f (x )的单调递减区间是e ⎛ ⎝,单调递增区间是e ⎫+∞⎪⎭. (2)证明:当0<x ≤1时,f (x )≤0.设t >0,令h (x )=f (x )-t ,x ∈[1,+∞). 由(1)知,h (x )在区间(1,+∞)内单调递增. h (1)=-t <0,h (e t )=e 2t ln e t -t =t (e 2t -1)>0. 故存在唯一的s ∈(1,+∞),使得t =f (s )成立. (3)证明:因为s =g (t ),由(2)知,t =f (s ),且s >1,从而2ln ()ln ln ln ln ln ()ln(ln )2ln ln(ln )2ln g t s s s ut f s s s s s u u====++, 其中u =ln s . 要使2ln ()15ln 2g t t <<成立,只需0ln 2uu <<. 当t >e 2时,若s =g (t )≤e ,则由f (s )的单调性,有t =f (s )≤f (e)=e 2,矛盾. 所以s >e ,即u >1,从而ln u >0成立. 另一方面,令F (u )=ln 2u u -,u >1.F ′(u )=112u -,令F ′(u )=0,得u =2.当1<u <2时,F ′(u )>0;当u >2时,F ′(u )<0. 故对u >1,F (u )≤F (2)<0. 因此ln 2uu <成立. 综上,当t >e 2时,有2ln ()15ln 2g t t <<.。
天津市高考数学试卷(理科)及答案(word版)
普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为(A) -7(B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73(C) 512 (D) 585(4) 已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A) ①②③(B) ①② (C) ②③ (D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p =(A) 1 (B) 32 (C) 2 (D) 3(6) 在△ABC 中, ,3,4AB BC ABC π∠==则sin BAC ∠ =(A)(B)(C)(D) (7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) ⎫⎪⎪⎝⎭(B) ⎫⎪⎪⎝⎭(C) ⎛⋃ ⎝⎫⎪⎝⎭⎪⎭(D) ⎛- ⎝⎭∞ 普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = .(10) 6x ⎛ ⎝ 的二项展开式中的常数项为 . (11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭, 则|CP | = . (12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为 .(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC ,AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.(15) (本小题满分13分)已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R . (Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张,编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1, 求线段AM 的长.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x 轴垂直的直线被椭圆截. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.(19) (本小题满分14分) 已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分)已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.。
2019年天津市高考数学试卷(理科)(解析版)
2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题。
参考公式:·如果事件A 、B 互斥,那么()()()P A B P A P B ⋃=+. ·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高.·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R …,则()A CB =( )A. {}2B. {}2,3C. {}1,2,3-D. {}1,2,3,4【答案】D 【解析】 【分析】先求A B ⋂,再求()A C B 。
【详解】因为{1,2}A C =,所以(){1,2,3,4}A C B =.故选D 。
【点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.2.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩……则目标函数4z x y =-+的最大值为( ) A. 2 B. 3C. 5D. 6【答案】C 【解析】 【分析】画出可行域,用截距模型求最值。
【详解】已知不等式组表示的平面区域如图中的阴影部分。
目标函数的几何意义是直线4y x z =+在y 轴上的截距, 故目标函数在点A 处取得最大值。
由20,1x y x -+=⎧⎨=-⎩,得(1,1)A -, 所以max 4(1)15z =-⨯-+=。
高考天津卷理科数学真题(含答案)
精品基础教育教学资料,仅供参考,需要可下载使用!绝密★启用前2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A 、B 互斥,那么()()()P AB P A P B =+.·如果事件A 、B 相互独立,那么()()()P AB P A P B =.·圆柱的体积公式V Sh =,其中S 表示圆柱的底面面积,h 表示圆柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,42.设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨≥-⎪⎪≥-⎩则目标函数4z x y =-+的最大值为A .2B .3C .5D .63.设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.阅读下边的程序框图,运行相应的程序,输出S 的值为A .5B .8C .24D .295.已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 ABC .2D6.已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b <<B .a b c <<C .b c a <<D .c a b <<7.已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B .CD .28.已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1B .[]0,2C .[]0,eD .[]1,e绝密★启用前2019年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅰ卷一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. 本大题共8小题, 每小题5分,共40分.1.已知{}|||2A x x =∈R ,{}|1B x x=∈R ,则A B = ( ) A.(],2-∞ B .[]1,2 C .[]2,2- D .[]2,1- 【测量目标】集合的基本运算.【考查方式】考查了集合的表示法(描述法)、集合的交集运算. 【难易程度】容易 【参考答案】D【试题解析】先化简集合A ,再利用数轴进行集合的交集运算. 由已知得{22}A x x =∈-R ,于是{21}A B x x =∈-R2.设变量x , y 满足约束条件0,230,306,x x y y y +----⎧⎪⎨⎪⎩则目标函数2z y x =-的最小值为 ( )A. 7-B.4-C. 1D. 2【测量目标】二元线性规划求目标函数的最值.【考查方式】给出约束条件,作出可行域,通过平移目标函数,求可行域的最值. 【难易程度】容易 【参考答案】A【试题解析】作出可行域,平移直线x y 2=,当直线过可行域内的点)3,5(A 时,Z 有最小值,min 3257Z =-⨯=-.第2题图 jxq563.阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为 ( )第3题图 jxq57 A. 64 B. 73C. 512D. 585【测量目标】循环结构的程序框图.【考查方式】直接执行程序框图中的语句求值. 【难易程度】容易 【参考答案】B【试题解析】1,0,1,502,9,504,7350x S S S x S S x S ===<⇒==<⇒==>,跳出循环,输出73S =.4.已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切.其中真命题的序号是: ( ) A. ①②③ B. ①② C. ①③ D. ②③ 【测量目标】球的体积,标准差,直线与圆的位置关系.【考查方式】给出三个命题运用各个命题相关的知识判断真假. 【难易程度】容易 【参考答案】C【试题解析】命题①,设球的半径为R ,则33414ππ,3283R R ⎛⎫= ⎪⎝⎭故体积缩小到原来的18,命题正确;(步骤1)对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据:1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;(步骤2) 对于命题③,圆2212x y +=的圆心()0,0到直线10x y ++=的距离222d ==,等于圆的半径,所以直线与圆相切,命题正确.(步骤3)5.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O为坐标原点. 若双曲线的离心率为2, △AOB 3则p = ( ) A. 1 B.32C. 2D. 3 【测量目标】三角形面积,双曲线与抛物线的简单几何性质.【考查方式】给出离心率及三角形面积,利用三角形面积公式,双曲线与抛物线的简单几何性质求值. 【难易程度】中等【参考答案】C【试题解析】由已知得2c a =,所以2224a b a +=,解得3ba=,即渐近线方程为3y x =±.(步骤1) 而抛物线的方程为2p x =-,于是33,,,2222p p p p A B ⎛⎫⎛⎫--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 从而AOB △的面积为13=322pp,可得2p =.(步骤2) 6.在△ABC 中, π,2,3,4AB BC ABC =∠==则sin BAC ∠ = ( )A.10 B.10 C.310D.5 【测量目标】正弦定理,余弦定理.【考查方式】给出三角形中的的部分条件,利用正、余弦定理求正弦值. 【难易程度】容易 【参考答案】C 【试题解析】 由余弦定理可得2222cos 2922352AC BA BC BA BC ABC =+-∠=+-⨯⨯⨯= (步骤1) 于是由正弦定理可得sin sin BC ACBAC ABC=∠∠,于是233102sin 105BAC ⨯∠==. (步骤2)7. 函数0.5()2|log |1x f x x =-的零点个数为 ( ) A. 1 B. 2 C. 3D. 4【测量目标】函数的图象,函数零点的判断.【考查方式】给出函数解析式,结合图象判断零点个数. 【难易程度】中等 【参考答案】B【试题解析】令0.5()2|log |10x f x x =-=,可得0.51|log |2xx ⎛⎫= ⎪⎝⎭.设()()0.51|log |,2xg x x h x ⎛⎫== ⎪⎝⎭,在同一坐标系下分别画出函数()g x (),h x 的图象,可以发现两个函数图象一定有2个交点,因此函数()f x 有2个零点.第7题图 jxq588.已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a的取值范围是 ( )A. 15,02⎛⎫- ⎪ ⎪⎝⎭B. 13,02⎛⎫- ⎪ ⎪⎝⎭C. 1130,5,022⎛⎫+ ⎪ ⎪⎝⎛⎫- ⎪ ⎪⎝⎭⎭D. 52,1⎛⎫-- ⎪ ⎝⎭∞⎪ 【测量目标】解含参的一元二次不等式.【考查方式】利用绝对值不等式解含参的一元二次不等式. 【难易程度】较难 【参考答案】A 【试题解析】()()11,,0,(1)022A f a f a a a ⎡⎤-⊆∴<∴+<⎢⎥⎣⎦,解得10a -<<,可排除C ,(步骤1)又1122f a f ⎛⎫⎛⎫-+<- ⎪ ⎪⎝⎭⎝⎭,111(1)12222a a a a ⎛⎫⎛⎫∴-++-+<-+ ⎪ ⎪⎝⎭⎝⎭,115224a a a a ⎛⎫∴-+-+<- ⎪⎝⎭.(步骤2)10a -<<115224a a ⎛⎫∴-+-+>- ⎪⎝⎭221515,2424a a ⎛⎫⎛⎫∴--+>-∴-+< ⎪ ⎪⎝⎭⎝⎭,1502a -∴<<.排除B,D.应选A.(步骤3)第Ⅱ卷二.填空题: 本大题共6小题, 每小题5分, 共30分.9.已知a , b ∈R , i 是虚数单位. 若(a + i)(1 + i) =b i, 则a + b i = . 【测量目标】复数代数形式的四则运算. 【考查方式】给出含复数的等式求值. 【难易程度】容易 【参考答案】12i +【试题解析】由(a + i)(1 + i) =b i 可得()()11i i a a b -++=,因此10,1a a b -=+=,解得1,2,a b == 故i 12i a b +=+10.6x x ⎛- ⎝的二项展开式中的常数项为 .【测量目标】二项式定理.【考查方式】给出二项式,利用二项式展开式的通项求常数项. 【难易程度】容易 【参考答案】15【试题解析】6x x ⎛- ⎝的展开通项为()()36621661C 1C rr rr r r r r T x x x --+=-=-,令3602r -=,解得4r =,故常数项为()4461C 15-=. 11.已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为π4,3⎛⎫⎪⎝⎭, 则CP = .【测量目标】坐标系与参数方程,两点间的距离公式.【考查方式】给出极坐标方程及点P 的极坐标,利用极坐标与直角坐标的互化及两点间的距离公式求距离.【参考答案】23【试题解析】由4cos ρθ=可得224x y x +=,即()2224x y -+=,因此圆心C 的直角坐标为()2,0,又点P 的直角坐标为()2,23,因此23CP =.12.在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若1AC BE =, 则AB 的长为 . 【测量目标】向量的线性运算,平面向量的数量积运算.【考查方式】已知平行四边形及部分条件,用向量表示,运用平面向量的运算求值. 【难易程度】简单 【参考答案】12【试题解析】用,AB AD 表示AC 与BE ,然后进行向量的数量积运算. 由已知得AC =AD AB +,12BE BC CE AD AB =+=-, ∴AC BE =221122AD AB AD AB AD AB -+- 211122AB AD AB =+-2111cos60122AB AD AB ︒=+-=,(步骤1) ∴12AB =.(步骤2)第12题图 jxq5913.如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .第13题图 jxq60【测量目标】圆的切割线定理,三角形相似.【考查方式】直接利用圆的切割线定理及三角形相似求值.【参考答案】83【试题解析】因为AB AC =,所以ABC C ∠=∠,因为AE 与圆相切,所以EAB C ∠=∠,所以ABC EAB ∠=∠,所以AEBC .(步骤1)又因为ACDE ,所以四边形AEBC 是平行四边形,由切割线定理可得2AE EB ED =,于是()265EB EB =+,所以4EB =(负值舍去),因此4,6AC BC ==,(步骤2) 又因为AFC DFB △∽△,所以456CF CF =-,解得83CF =.(步骤3) 14.设a + b = 2, 0b >, 则当a = 时,1||2||a a b+取得最小值. 【测量目标】基本不等式求最值.【考查方式】去掉绝对值符号,利用均值不等式求最值进而求a 的值. 【难易程度】较难 【参考答案】2-【试题解析】由于a + b = 2,所以1||||||2||444a a b a a b a a b a b a a b ++=+=++,(步骤1) 由于0,b a o >>,所以||||2144b a b a a ba b+=,因此当0a >时,1||2||a a b +的最小值是15144+=;(步骤2) 当0a <时1||2||a a b +的最小值是13144-+=, 故1||2||a a b +的最小值为34,此时||40ba ab a ⎧=⎪⎨⎪<⎩,即2a =-.(步骤3) 三.解答题: 本大题共6小题, 共80分. 解答应写出文字说明, 证明过程或演算步骤. 15. (本小题满分13分)已知函数2π()226sin cos 2co ,s 41f x x x x x x ⎛⎫=++- ⎪⎝⎭+∈R .(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.【测量目标】三角函数的周期性和最值.【考查方式】给出三角函数,利用其周期性和最值求值. 【难易程度】容易【试题解析】(I)()ππ2cos2sin3sin2cos244f x x x x x=+-π2sin22cos224x x x⎛⎫=-=-⎪⎝⎭,故()f x的最小正周期2ππ2T==;(步骤1)(II)因为()f x在区间3π0,8⎡⎤⎢⎥⎣⎦上单调递增,在区间3ππ,82⎡⎤⎢⎥⎣⎦上单调递减,并且()02f=-,3π8f⎛⎫=⎪⎝⎭,π22f⎛⎫=⎪⎝⎭,故()f x在π0,2⎡⎤⎢⎥⎣⎦上的最大值为,最小值为2-.(步骤2)16.(本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.【测量目标】古典概型,离散型随机变量的分布列及期望.【考查方式】利用古典概型的概率公式结合计数原理求概率,进而求分布列及期望.【难易程度】中等【试题解析】(I)记“取出的4张卡片中,含有编号为3的卡片”为事件A,则()1322252547C C C C6C7P A+==,故所求概率为67;(步骤1)(II)X的所有可能取值为1,2,3,4.()3347C11C35P X===,()3447C42C35P X===,()3547C23C7P X===,()3647C44C7P X===.故X的分布列如下表是:(步骤2)其期望14241712343535775EX=⨯+⨯+⨯+⨯=.(步骤3)17. (本小题满分13分) 如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1所成角的正弦值为2, 求线段AM 的长.第17题图jxq61【测量目标】两条直线的位置关系,二面角,线面角,空间向量的应用. 【考查方式】建立空间直角坐标系,利用空间向量证明及求值. 【难易程度】中等【试题解析】如图,以点A 为原点建立空间直角坐标系,由题意得()0,0,0A ,()0,0,2B ,()1,0,1C ,()10,2,2B ,()11,2,1C ,()0,1,0E .(I)易得()111,0,1B C =-,()1,1,1CE =--,故110BC CE =,因此11B C CE ⊥;(步骤1) (II)()11,2,1B C =--,设(),,x y z =n 是平面1B CE 的法向量,则10B C CE ⎧=⎪⎨=⎪⎩n n ,得200x y z x y z --=⎧⎨-+-=⎩,取1z =可得平面1B CE 的一个法向量()3,2,1=--n .(步骤2) 由(I)11B C CE ⊥,又111B C CC ⊥,故11B C ⊥平面1CEC , 知()111,0,1B C =-为平面1CEC 的一个法向量.(步骤3) 故111111cos ,B C B C B C ==n n n 277142=-⨯, 知1121sin ,7B C =n ,所以所求二面角的正弦值为217;(步骤4)(III)()0,1,0AE =,()11,1,1EC =, 设()()1,,01EM EC λλλλλ==,则(),1,AM AE EM λλλ=+=+.(步骤5)取()0,0,2AB =为平面11ADD A 的一个法向量,设θ为AM 与平面11ADD A 所成的角, 则2||sin |cos ,|||||321AM AB AM AB AM AB λθλλ===++. 于是226321λλλ=++,解得13λ=(负值舍去),(步骤6)所以2AM =.(步骤7)第17题图1 jxq6218.(本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , 离心率为33, 过点F 且与x 轴垂直的43. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为K 的直线与椭圆交于C , D 两点. 若AC DB +AC DB +AD 8CB =, 求K 的值.【测量目标】椭圆的定义与简单几何性质,直线与椭圆的位置关系.【考查方式】利用直线的定义和直线的位置关系求解椭圆的标准方程,利用直线的方程、向量的坐标运算、代数方法研究圆锥曲线的性质,运用方程求直线的斜率. 【难易程度】中等【试题解析】(I)设(),0F c -,用33=a c ,知c a 3=.(步骤1) 过点F且与x 轴垂直的直线为c x -=,代入椭圆的方程有()12222=+-by a c , 解得6y =,于是334362=b ,解得2=b .(步骤2) 又222b c a =-,从而1,3==c a ,所以椭圆的方程为22=132x y +.(步骤3)(II)设点()11,C x y ,()22,y x D ,由()0,1-F 得直线CD 的方程为()1y k x =+,由方程组221,132y k x x y =(+)⎧⎪⎨+=⎪⎩消去y ,整理得()0636322222=-+++k x k x k求解可得21x x +22623k k =-+,21x x =223623k k-+(步骤4) 因为A ()0,3-,B ()0,3所以AC DB +AD CB()()()()112222113,3,3,x y x y x y x y =--++--1212622x x y y =--()()2121262211x x k x x =--++ ()()222121262222k x x k x x k =-+-+-22212623k k +=++. (步骤5)由已知得222126823k k ++=+,解得=k . (步骤6) 19.(本小题满分14分)已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列. (Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值. 【测量目标】等比数列的通项及性质,前n 项和.【考查方式】利用等差、等比数列的性质求通项及前n 项和,分类讨论并利用单调性判断最值. 【难易程度】中等 【试题解析】(I)设{}n a 的公比为q ,因为335544,,S a S a S a +++成等差数列.所以55334455S a S a S a S a +--=+--,即534a a =,故25314a q a ==.(步骤1) 又{}n a 不是递减数列,且132a =,故12q =-, 故等比数列{n a }的通项公式为11313()(1),222n n n n a --=⨯-=-(步骤2) (II)由(I)得()()1211212nnn nn S n --⎧+⎪⎛⎫=--=⎨ ⎪-⎝⎭⎪⎩为奇数为偶数,(步骤3)当n 为奇数时,n S 随n 的增大而减小,故1312n S S <=,故1111506n n S S S S <--=. 当n 为偶数时,n S 随n 的增大而增大,故2314n S S =<,故22117012n nS S S S >--=-. 综上,{}n T 的最大项为56,最小项为712-.(步骤4) 20.(本小题满分14分)已知函数2l ()n f x x x =. (Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<. 【测量目标】利用导数求函数的单调区间,函数的零点的应用,直接证明.【考查方式】给出函数方程,利用导数求单调区间,利用零点证明等式,结合导数证明不等式. 【难易程度】较难【试题解析】(I)由题()()()2ln 2ln 10f x x x x x x x '=+=+>,令()0f x '=得x =(步骤1) 当x 变化时,()f x '、()f x 的变化情况如下表所示.因此,函数的单调递减区间为⎛ ⎝,单调递增区间为⎫+∞⎪⎭;(步骤2) (II)证明:当01x<时,()0f x . 设0t >,令()()()1h x f x t x=-,由(I)知,()h x 在区间()1,+∞单调递增.(步骤3)()10h t =-<,()()22e e ln e e 10t t t t h t t =-=->,故存在唯一的()1,s ∈+∞,使得()t f s =成立;(步骤4) (III) 证明:因为()s g t =,由(II)知()t f s =,且1s >,从而()()()2ln ln ln ln ln ln ln g t s st f s s s ===()ln 2ln ln ln 2ln s u s s u u=++,其中ln u s =. 要使()ln 215ln 2g t t <<成立,只需0ln 2uu <<.(步骤5) 当2e t >时,若()e s g t =,则由()f s 的单调性,有()()2e e t f s f ==,矛盾.故e s >,即1u >,从而ln 0u >成立.(步骤6) 另一方面,令()()ln 12u F u u u =->,则()112F u u '=-,令()0F u '=,得2u =. 当12u <<时,()0F u '>;当2u >时,()0F u '<. 故对1u >,()()20F u F <.因此ln 2uu <成立.(步骤7) 综上,当2e t >时,有2ln ()15ln 2g t t <<.(步骤8)。