北师大版数学九年级上册2.6.2用一元二次方程解决销售问题教案 (1)
北师版九年级数学上册 第二章 一元二次方程 应用一元二次方程 第2课时 利用一元二次方程解决营销问题

(2)2018年丙类芯片的产量为3x+400=1600(万块),设丙类芯片的产量 每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得y =3200,∴丙类芯片2020年的产量为1600+2×3200=8000(万块),2018 年HW公司手机产量为 2800÷10%= 28000(万部),由题意得400(1+ m%)2+2×400(1+m%-1)2+8000=28000×(1+10%),设m%=t,化 简得3t2+2t-56=0,解得t=4或t=-(舍去),∴t=4,即m%=4, ∴m=400.答:丙类芯片2020年的产量为8000万块,m的值为400
10.(教材P55习题1变式)某种文化衫,平均每天销售40件,每件盈利20元, 若每件降价1元,则每天可多售出10件.如果每天要盈利1080元,则每件应 降价__2_或__1_4__元.
11.(宜宾中考)某产品每件的生产成本为50元,原定销售价为65元,经市场 预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%. 若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x, 根据题意可列方程是____6_5_×__(_1_-__1_0_%__)_×__(_1_+__5_%__)-__5_0_(_1_-__x_)_2=__6_5_-__5_0____.
2.某电商平台上的一家食品旗舰店将进货单价为15元/千克的饼干按16元/ 千克出售时,每天可销售100千克,按市场规律,饼干每千克提价1元,其 销售量就减少5千克,如果此店每天销售这种饼干要获取利润270元,并且 销售量较高,则把饼干的出售价定为每千克( D ) A.20元 B.15元 C.16元 D.18元
50%)3=128×287 =432<500,答:校图书馆能接纳第四个月的进馆人次
九年级数学(北师大版)上册教案:2.6应用一元二次方程(1)

第二章一元二次方程2.6 应用一元二次方程(一)教学目标:1、掌握列出一元二次方程解应用题;并能根据具体问题的实际意义,检验结果的合理性;2、理解将一些实际问题抽象为方程模型的过程,形成良好的思维习惯,学会从数学的角度提出问题、理解问题,并能运用所学的知识解决问题。
教学过程:一、情境问题问题1、一根长22cm的铁丝。
(1)能否围成面积是30cm2的矩形?(2)能否围成面积是32 cm2的矩形?并说明理由。
分析:如果设这根铁丝围成的矩形的长是xcm,那么矩形的宽是__________。
根据相等关系:矩形的长×矩形的宽=矩形的面积,可以列出方程求解。
解:问题2、如图,在矩形ABCD中,AB=6cm,BC=3cm。
点P沿边AB从点A开始向点B以2cm/s的速度移动,点Q沿边DA从点D开始向点A以1cm/s 的速度移动。
如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤3)。
那么,当t为何值时,△QAP的面积等于2cm2解:PQBC AD1 / 32 / 3二、练一练1、用长为100 cm 的金属丝制作一个矩形框子。
框子各边多长时,框子的面积是600 cm 2能制成面积是800 cm 2的矩形框子吗? 解:2、如图,在矩形ABCD 中,AB=6 cm ,BC=12 cm ,点P 从点A 沿边AB 向点B 以1cm/s 的速度移动;同时,点Q 从点B 沿边BC 向点C 以2cm/s 的速度移动,几秒后△PBQ 的面积等于8 cm 2? 解:三、课后自测:1、如图,A 、B 、C 、D 为矩形的四个顶点,AB=16cm ,BC=6cm ,动点P 、Q 分别从点A 、C 出发,点P 以3cm/s 的速度向点B 移动,一直到达B 为止;点Q 以2cm/s 的速度向点D 移动。
经过多长时间P 、Q 两点之间的距离是10cm ?2、如图,在Rt △ABC 中,AB=BC=12cm ,点D 从点A 开始沿边ABPQCBAD Q PCB A DEFD C BA3 / 3以2cm/s 的速度向点B 移动,移动过程中始终保持DE ∥BC ,DF ∥AC ,问点D 出发几秒后四边形DFCE 的面积为20cm 2?3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置O 点的正北方向10海里外的A 点有一走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。
最新北师大版九年级数学上册《一元二次方程在营销问题中的应用》精品教学课件

呢?下面我们通过计算来说明这个问题.
知识讲解
解: 设甲种药品成本的年平均下降率为x.
则一年后甲种成本为5000(1-x)元,
两年后甲种药品成本为5000(1-x)2元.
依题意,得
5000(1-x)2=3000,
解得:x1≈0.225,x2≈1.775(不合题意,舍去).
.
2. 某药品经过两次降价,每瓶零售价由168元降为128元.已知两
次降价的百分率相同,每次降价的百分率为x,根据题意列方程
得( B )
A.168(1+x)2=128
B.168(1-x)2=128
C.168(1-2x)=128
D.168(1-x2)=128
强化训练
3.某企业2010年底缴税40万元,2012年底缴税48.4万元,设这两年该企业缴税
九年级数学北师版·上册
第二章一元二次方程
应用一元二次方程
第2课时
新课引入
1.商品的进价、售价、利润之间有怎样的关系?
售价=进价+利润
2.什么是平均增长率?什么是平均降低率?
在某个数据的基础上连续增长(降低)得到新的数据,
增长(降低)的百分率就是平均增长(减低)率
本节课,我们来研究有关营销问题和增长(降低)率的问题.
D.50+50(1+x)+50(1+2x)=182
课堂总结
营销问题
利用一元二次方程
a(1+x)n=b,其中a为增长前的
量,x为增长率,n为增长
次数,b为增长后的量.
解决营销问题
及平均变化率问题
平均变化率问题
北师大版九年级数学上册课件 2-6-2 应用一元二次方程求解增长率与市场营销问题

想平均每天赢利 180 元,每张贺年卡应降价多少元?
方法指导:找出等量关系式,每张贺年卡赢利的钱×张数=赢
利总钱数.
解:设每张贺年卡应降价x元,则现在的利润是(0.3-x)元,多
售出200x÷0.05=4 000x(张).
根据题意,得(0.3-x)(500+4 000x)=180,
整理,得400x2-70x+3=0.
进价
单个利润
(3)总利润=____________×销量.
典例讲解
例1 某批发市场礼品柜台春节期间购进大量贺年卡,一种贺
年卡平均每天可售出 500 张,每张赢利 0.3 元. 为了尽快减少库
存,摊主决定采取适当的降价措施.调查发现,如果这种贺年卡
的售价每降价 0.05 元,那么平均每天可多售出 200 张. 摊主要
赚8000元利润,售价应定为多少,这时应进货为多少个?
方法指导:设商品单价为(50+x)元,则每个商品的利润为
[(50+x)-40]元,因为每涨价1元,其销售会减少10,则每个
涨价x元,其销售量会减少10x,故销售量为(500-10x)个,
根据每件商品的利润×件数=8000,则(500-10x)·[(50+x)-
出等量关系列出方程,求出x的值,即可得出答案.
解:设这个增长率是x.根据题意,得
2 000×(1+x)2=2 880.
解得x1=0.2=20%,x2=-2.2(不合题意,舍去).
答:这个增长率是20%.
例3 百佳超市将进货单价为40元的商品按50元出售时,能卖
500个,已知该商品每涨价1元,其销售量就要减少10个,为了
20%
率相同,那么这个增长率是______.
北师大版数学九年级上册2.6.2用一元二次方程解决销售问题教案

我也注意到,在小组讨论环节,有些学生表现得比较被动,可能是因为他们对问题的理解不够深入,或者是在小组合作中缺乏自信。在未来的教学中,我需要更多地关注这部分学生,鼓励他们积极参与,提供更多的支持和引导。
-例如:在解决商品打折问题时,学生需理解原价、折扣和折后价格之间的关系,并能正确列出方程。
(2)熟练运用一元二次方程的求解方法,包括直接开平方法、因式分解法、配方法等。
-如在例题中,指导学生如何将实际问题转化为方程,并选择合适的求解方法。
(3)理解一元二次方程解的实际意义,能将数值解与实际问题中的情境对应起来。
今天的学习,我们了解了一元二次方程在解决销售问题中的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对一元二次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我们探讨了一元二次方程在销售问题中的应用。我发现,学生在理解方程的实际意义和求解方法上存在一些挑战。首先,将现实生活中的销售问题转化为数学方程对学生来说并不容易,他们需要更多具体的例子和引导来理解这一点。例如,商品打折的问题,如何将打折的百分比转化为方程中的系数,这一点对学生来说是个难点。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生运用数学知识解决实际问题的能力,让学生在实际情境中发现数学规律,提高数学抽象和建模的核心素养。
2.强化学生逻辑推理和数学运算的能力,通过列出并求解一元二次方程,使学生掌握数学工具,提高解决实际问题的效率。
北师大版数学九年级上册2营销问题及平均变化率问题与一元二次方程1教案与反思

第2课时营销问题及平均变化率问题与一元二次方程投我以桃,报之以李。
《诗经·大雅·抑》原创不容易,【关注】,不迷路!1.会用列一元二次方程的方法解决营销问题及平均变化率问题;(重点、难点)2.进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生应用数学的意识.一、情景导入某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?二、合作探究探究点一:利用一元二次方程解决营销问题某超市将进价为40元的商品按定价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得8000元的利润,且尽量减少库存,售价应为多少?解析:销售利润=(每件售价-每件进价)×销售件数,若设每件涨价x 元,则售价为(50+x)元,销售量为(500-10x)件,根据等量关系列方程即可.解:设每件商品涨价x 元,根据题意,得(50+x -40)(500-10x )=8000,即x 2-40x +300=0.解得x 1=10,x 2=30.经检验,x 1=10,x 2=30都是原方程的解.当x =10时,售价为10+50=60(元),销售量为500-10×10=400(件). 当x =30时,售价为30+50=80(元),销售量为500-10×30=200(件). ∵要尽量减少库存,∴售价应为60元.方法总结:理解商品销售量与商品价格的关系是解答本题的关键,另外,“尽量减少库存”不能忽视,它是取舍答案的一个重要依据.探究点二:利用一元二次方程解决平均变化率问题某商场今年1月份的销售额为60万元,2月份的销售额下降10%,改进经营管理后月销售额大幅度上升,到4月份销售额已达到121.5万元,求3,4月份销额的月平均增长率.解析:设3,4月份销售额的月平均增长率为x ,那么2月份的销售额为60(1-10%)万元,3月份的销售额为60(1-10%)(1+x )万元,4月份的销售额为60(1-10%)(1+x )2万元.解:设3,4月份销售额的月平均增长率为x .根据题意,得60(1-10%)(1+x )2=121.5,则(1+x )2=2.25, 解得x 1=0.5,x 2=-2.5(不合题意,舍去).所以,3,4月份销售额的月平均增长率为50%.方法总结:解决平均增长率(或降低率)问题的关键是明确础量和变化后的量.如果设基础量为a ,变化后的量为b ,平均每年的增长率(或降低率)为x ,则两年后的值为a (1±x )2.由此列出方程a (1±x )2=b ,求出所需要的量.三、板书设计营销问题及平均变化率⎩⎪⎨⎪⎧营销问题平均变化率问题经历将实际问题抽象为代数问题的过程,探问题中的数量关系,并能运用一元二次方程对之进行描述.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高生学习数学的兴趣.【素材积累】指豁出性命,进行激烈的搏斗。
北师大版九年级数学上册第二章 一元二次方程 营销问题及其他问题

……
小 分
小 分
支
支
x
…… 支干
x 主干 1
归纳总结
1. 在分析例 3 和例 4 中的数量关系时它们有何区别?
每个支干只分裂一次,而每名患者每轮都传染.
2. 运用一元二次方程模型解决实际问题的步骤有哪些?
实际问题
分析数量关系 建立一元二 设出未知数 次方程模型
解一元二 次方程
实际问题的解
检验
一元二次方程的根
干又长出同样数目的小分支,主干,支干和小分支
的总数是133,每个支干长出多少小分支?
解:设每个支干长出 x 个小分支,
则 1 + x + x2 = 133,
小
小
分
分
支
支
即 x2 + x −132 = 0.
x
解得 x1 = −12 (舍),x2 = 11. 支干
答:每个支干长出 11 个小分支.
…… ……
解:设每件衬衫降价 x 元,根据题意得:
(40 - x)(20 + 2x) = 1200
整理得:x2 - 30x + 200 = 0.解方程得:x1 = 10,x2 = 20. 因为要尽快减少库存,所以 x = 10 舍去.
答:每件衬衫应降价 20 元.
解这个方程,得 x1 = 10, x2 = 40(舍). 售价为:40+x = 40+10 = 50(元)
应购置台灯:600-10x = 600-10×10 = 500(个)
归纳总结
利润问题常见关系式
基本关系:(1) 利润=售价-__进__价____;
利润
(2) 利润率= 进价 ×100%; (3) 总利润=__单__个__利__润____×销量.
初中数学北师大版九年级上册《26应用一元二次方程(1)》教学设计

北师大版数学九年级上 2.6 应用一元二次方程(1) 教学设计同学们,这些天我们学习了一元二次方程的相关知识,下面请回答:问题:还记得本章开始时梯子下滑的问题吗?如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m .如果梯子的顶端下滑1m ,那么梯子的底端滑动多少米?提示:如果设梯子底端滑动x m ,那么你能列出怎样的方程?解:(x +6)2+72=10212651,651x x =-+=--(舍)(1)在这个问题中,梯子顶端下滑1m 时,梯子底端滑动的距离大于1m ,那么梯子顶端下滑几米时,梯子底端滑动的距离和它相等呢?解:设梯子顶端下滑x 米时,顶端滑动距离与梯子底端滑动的距离相等.梯子底端原来离墙的距离:例1:如图,某海军基地位于A处,在其正南方向200 n mile 处有一重要目标B,在B的正东方向200 n mile处有一重要目标C.小岛D位于AC的中点,岛上有一补给码头;小岛F位于BC的中点.一艘军舰从A出发,经B到C 匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E 处,那么相遇时补给船航行了多少海里?(结果精确到0.1 n mile)解:连接DF.∵AD=CD,BF=CF,∴DF是△ABC的中位线.解:设经x秒二人在B处相遇,这时乙共行AB=3x,甲共行AC+BC=7x,∵AC=10,∴BC=7x−10,又∵∠A=90°,∴BC2=AC2+AB2,∴(7x−10)2=102+(3x)2,∴x=0(舍去)或x=3.5,∴AB=3x=10.5,AC+BC=7x=24.5,答:甲走了24.5步,乙走了10.5步.1.如图,在宽为20米,长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地,若耕地面积需要551平方米,则修建的路宽应为()A.1米B.1.5米C.2米D.2.5米答案:A2.在一块长为35m,宽为26m的矩形绿地上有宽度相同的两条路,如图所示,其中绿地面积为850m2,求小路的宽.解:设小路的宽为x m,则(26-x)(35-x)=850,x2-61x+60=0,解得:x1=1,x2=60(舍去).答:小路的宽为1m.3.如图是由三个边长分别为6,9和x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9B.3或5C.4或6D.3或6答案:D某种品牌的手机经过四、五月份连续两次降价,每部售价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6节应用一元二次方程
第2课时商品利润问题
教学目标:
1、使学生会用一元二次方程解应用题.
2、进一步培养学生将实际问题转化为数学问题的能力和分析问题、解决问题的能力,培养学生运用数学的意识.
3、通过列方程解应用题,进一步体会运用代数中方程的思想方法解应用题的优越性.
教学重点:经历和体验利用一元二次方程解决实际问题的过程,找出等量关系,建立数学模型。
教学难点:根据等量关系设未知数列方程.
教学过程:
一、情境导入,初步认识
刚刚过去的双11,很多人都加入了剁手党,据统计,双11一天销售额就达到了一千多亿,其中西安每户家庭平均购物八件,为什么大家都赶到双11购物呢?因为便宜,也就是说双11这一天商品利润降低导致了销量的增加。
这节课我们一起来学习用一元二次方程解决商品的销售问题。
销售问题中都含有哪些量?
1、商品的进价、售价、利润之间有怎样的关系?
2、总利润和单位利润,销量的关系?
二、预习导学
阅读教材54页例题,了解本节课主要内容 三、课堂探究
1、例:新华商场销售某种冰箱,每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元? 分析:等量关系
如果设每台冰箱降价x 元,那么每台冰箱的定价就是(2900-x )元,每台冰箱的销售利润为(2900-x-2500)元,平均每天销售冰箱的数量为( 50
x
48⨯
+ )台,这样就可以列出一个方程,从而使问题得到解决。
教学说明:在教学中引导学生一句句分析题目中含有的量,以及各个量之间的关系,列出等量关系式。
学会利用表格的方式列方程。
注意检验方程的根符不符合题意。
对于不合题意的解要舍弃。
2、做一做
某商城将进货价位30元的台灯以40售出,平均每月能售出600个,调查发现,售价在40至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应购进台灯多少个?
教学说明:学生分小组讨论,列出方程,并由小组代表说出分析过程,学生订正,教师点拨。
四、当堂训练
3、某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元。
为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降价0.05元,那么商场平均每天可多售出200张;摊主要想平均每天盈利180元,那么每张贺卡应降价多少元?
教学说明:学生独立完成,两名学生板书。
学生订正,教师点拨。
五、小结
利用方程解决实际问题的关键是什么?
列出等量关系式
六、作业习题2.10
2.6 商品利润问题
导学单
【学习目标】
1、找出营销问题中的等量关系
2、会用一元二次方程解应用题.
【学习重点】找出等量关系,用一元二次方程解决实际问题。
【学习难点】根据等量关系设未知数列方程.
一、情境导入
销售问题中都含有哪些量?()
1、商品的进价、售价、利润之间有怎样的关系?
2、总利润和单位利润,销量的关系?
二、预习导学
阅读教材54页例题,了解本节课主要内容
三、课堂探究
1、例:新华商场销售某种冰箱,每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?
分析:如果设每台冰箱降价x元,那么每台冰箱的定价就是()元,每台冰箱的销售利润为()元,而当销售价每降低50元时,平均每天能多售出4台,而当销售价每降低x元时,平均每天能多售出()台,这样就可以列出一个方程,从而使问题得到解决。
等量关系:
2、做一做
某商城将进货价位30元的台灯以40售出,平均每月能售出600个,调查发现,售价在40至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应购进台灯多少个?
分析:如果设每个台灯涨价x元,而当销售价每涨1元时,平均每天少售出4台,而当销售价每涨x元时,平均每天能多售出()台,
根据题意列出方程:
四、当堂训练
3、某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元。
为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降价0.05元,那么商场平均每天可多售出200张;摊主要想平均每天盈利180元,那么每张贺卡应降价多少元?
五、小结
利用方程解决实际问题的关键是什么?
六、作业习题2.10。