第四章《图形认识初步》单元检测题(1)
(常考题)人教版初中数学七年级数学上册第四单元《几何图形初步》测试(包含答案解析)(1)
一、选择题1.给出下列各说法:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个是平的,1个是曲的;③球仅由1个面围成,这个面是平的;④正方体由6个面围成,这6个面都是平的.其中正确的为( )A .①②B .②③C .②④D .③④ 2.如图,已知直线上顺次三个点A 、B 、C ,已知AB =10cm ,BC =4cm .D 是AC 的中点,M 是AB 的中点,那么MD =( )cmA .4B .3C .2D .13.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有( )A .1个B .2个C .3个D .4个4.将一张圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开的平面图形是( )A .AB .BC .CD .D 5.从不同方向看一只茶壶,你认为是俯视效果图的是( )A .B .C .D . 6.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45.其中正确的是()A.①②B.①③C.②③D.①②③7.如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为()A.互余B.互补C.相等D.无法确定8.一根直木棒长10厘米,棒上有刻度如图,若把它作为尺子,只测量一次,能测量的长度共有()A.7种B.6种C.5种D.4种9.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.4cm或10cm D.6cm或10cm 10.如图,图中射线、线段、直线的条数分别为()A.5,5,1 B.3,3,2C.1,3,2 D.8,4,111.如图,从A地到C地,可供选择的方案是走水路、走陆路、走空中,从A地到B地有三条水路、两条陆路,从B地到C地有4条陆路可供选择,走空中,从A地不经B地直线到C地,则从A地到C地可供选择的方案有( )A.10种B.20种C.21种D.626种12.把一张长方形的纸片按如图所示的方式折叠,EM,FM为折痕,C点折叠后的C'点∠的度数是()落在MB'的延长线上,则EMFA.85°B.90°C.95°D.100°二、填空题13.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a 和b 的大小,结果可能有 种情况,它们是_______________. 14.如图,若AOB ∠是直角,OM 平分AOC ∠,ON 平分COB ∠,则MON ∠=________.15.乘火车从A 站出发,沿途经过3个车站方可到达B 站,那么在A ,B 两站之间需要安排不同的车票________种.16.已知点B 在直线AC 上,AB=6cm ,AC=10cm ,P 、Q 分别是AB 、AC 的中点,则PQ=_____17.如图,上午6:30时,时针和分针所夹锐角的度数是_____.18.已知线段MN=16cm ,点P 为任意一点,那么线段MP 与NP 和的最小值是_____cm . 19.在9点至10点之间的某时刻,钟表的时针与分针构成的夹角是110°,则这时刻是9点__________分.20.如图,OE 平分AOC ∠,OF 平分BOC ∠,124EOF ︒∠=,则AOB ∠的度数为________.三、解答题21.如图,C ,D 两点将线段AB 分成2:3:4三部分,E 为线段AB 的中点,6cm AD =.求:(1)线段AB 的长;(2)线段DE 的长.22.如图所示,已知O 是直线AB 上一点,90BOE FOD ∠=∠=︒,OB 平分COD ∠.(1)图中与DOE ∠互余的角有________________;(2)图中是否有与DOE ∠互补的角?如果有,直接写出全部结果;如果没有,说明理由.23.如图,C 是线段AB 上一点,M 是AC 的中点,N 是BC 的中点.(1)若1AM =,4BC =,求MN 的长度.(2)若6AB =,求MN 的长度.24.已知长方形纸片ABCD ,点E 在边AB 上,点F ,G 在边CD 上,连接EF ,EG .将BEG ∠对折,点B 落在直线BG 上的点B '处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点A '处,得折痕EN .(1)如图(1),若点F 与点G 重合,求MEN ∠的度数;(2)如图(2),若点G 在点F 的右侧,且30FEG ︒∠=,求MEN ∠的度数; (3)若MEN α∠=,请直接用含α的式子表示FEG ∠的大小.25.如图,直角三角形ABC 的两条直角边AB 和BC 分别长4厘米和3厘米,现在以斜边AC 为轴旋转一周.求所形成的立体图形的体积.26.如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据圆柱、圆锥、正方体、球,可得答案.【详解】解:①圆柱由3个面围成,2个底面是平面,1个侧面是曲面,故①错误;②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面,故②正确;③球仅由1个面围成,这个面是曲面,故③错误;④正方体由6个面围成,这6个面都是平面,故④正确;故选:C.【点睛】本题考查了认识立体图形,熟记各种图形的特征是解题关键.2.C解析:C【分析】由AB=10cm,BC=4cm.于是得到AC=AB+BC=14cm,根据线段中点的定义由D是AC的中点,得到AD,根据线段的和差得到MD=AD﹣AM,于是得到结论.【详解】解:∵AB=10cm,BC=4cm,∴AC=AB+BC=14cm,∵D是AC的中点,∴AD=1AC=7cm;2∵M是AB的中点,∴AM=1AB=5cm,2∴DM =AD ﹣AM =2cm .故选:C .【点睛】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.3.B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确; ②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误; ④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B .【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.C解析:C【解析】根据折叠的性质,结合折叠不变性,可知剪下来的图形是C ,有四个直角三角形构成的特殊四边形.故选C.5.A解析:A【解析】俯视图是从上面看到的平面图形,也是在水平投影面上的正投影. 易判断选A.6.D解析:D【分析】由APB ∠=A PB ''∠=36°,得APA BPB ''∠=∠,即可判断①,由B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,即可判断②,由12APB APA ''∠=∠,得=272APA A PB '''∠∠=︒,进而得45OPA ︒∠=′,即可判断③.【详解】∵射线PA 、PB 分别经过刻度117和153,APB ∠绕点P 逆时针方向旋转到A PB ''∠, ∴APB ∠=A PB ''∠=36°,∵+APA A PB APB ''''∠=∠∠,=+BPB APB APB ∠∠''∠,∴APA BPB ''∠=∠,故①正确;∵射线PA '经过刻度27,∴B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,∴B PA '∠+A PB '∠=54°+126°=180°,即:B PA '∠与A PB '∠互补,故②正确; ∵12APB APA ''∠=∠, ∴=272APA A PB '''∠∠=︒,∴=1171177245O AP P A A '∠︒-∠=︒-︒=︒′, ∴射线PA '经过刻度45.故③正确.故选D .【点睛】本题主要考查角的和差倍分关系以及补角的定义,掌握角的和差倍分关系,列出方程,是解题的关键.7.C解析:C【分析】∠1和∠2互余,∠2与∠3互余,则∠1和∠3是同一个角∠2的余角,根据同角的余角相等.因而∠1=∠3.【详解】∵∠1与∠2互余,∠2与∠3互余,∴∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,故选:C .【点睛】本题考查了余角的定义.解题的关键是掌握余角的定义,以及同角的余角相等这一性质. 8.B解析:B【分析】根据棒上标的数字,找出这根木棒被2、7两点分成的线段的条数即可.【详解】如图,∵线段AD 被B 、C 两点分成AB 、AC 、AD 、BC 、BD 、CD 六条的线段∴能量的长度有:2、3、5、7、8、10,共6个,故选B.【点睛】本题考查的实质是找出已知图形上线段的条数.9.D解析:D【分析】由点C在直线AB上,分别讨论点C在线段AB上和在线段AB的延长线上两种情况,根据线段的和差关系求出AC的长即可.【详解】∵点C在直线AB上,AB=8,BC=2,∴当点C在线段AB上时,AC=AB-BC=8-2=6cm,当点C在线段AB的延长线上时,AC=AB+BC=8+2=10cm,∴AC的长度是6cm或10cm.故选D.【点睛】本题考查线段的和与差,注意点C在直线AB上,要分几种情况讨论是解题关键.10.D解析:D【分析】直线没有端点,射线有一个端点,线段有两个端点.【详解】以A点为端点的射线有2条,以B为端点的射线有3条,以C为端点的射线有2条,以D 为端点射线有1条,合计射线8条.线段:AB,BC,AC,BD ,合计4条.直线:AC,合计1条故本题 D.【点睛】直线没有端点,射线有一个端点,线段有两个端点.11.C解析:C【分析】本题只需分别数出A到B、B到C、A到C的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.12.B解析:B【解析】【分析】根据折叠的性质:对应角相等,对应的线段相等,可得.【详解】解:根据图形,可得:∠EMB′=∠EMB,∠FMB′=∠FMC,∵∠FMC+∠FMB′+∠EMB′+∠BME=180°,∴2(∠EMB′+∠FMB′)=180°,∵∠EMB′+∠FMB′=∠FME,∴∠EMF=90°,故选B.【点睛】本题主要考查图形翻折的性质,解决本题的关键是要熟练掌握图形翻折的性质.二、填空题13.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.14.45°【分析】结合图形根据角的和差以及角平分线的定义找到∠MON与∠AOB的关系即可求出∠MON的度数【详解】解:∵OM平分∠AOCON平分∠BOC∴∠MOC=∠AOC∠NOC=∠BOC∴∠MON=解析:45°【分析】结合图形,根据角的和差,以及角平分线的定义,找到∠MON与∠AOB的关系,即可求出∠MON的度数.【详解】解:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC,∠NOC=12∠BOC,∴∠MON=∠MOC-∠NOC=12(∠AOC-∠BOC)=12(∠AOB+∠B0C-∠BOC)=12∠AOB=45°.故选答案为45°.【点睛】本题考查了角的计算,属于基础题,此类问题,注意结合图形,运用角的和差和角平分线的定义求解.15.20【解析】【分析】本题需先求出AB之间共有多少条线段根据线段的条数即可求出车票的种数【详解】设点CDE是线段AB上的三个点根据题意可得:图中共用=10条线段∵A到B与B到A车票不同∴从A到B的车票解析:20【解析】【分析】本题需先求出A、B之间共有多少条线段,根据线段的条数即可求出车票的种数.【详解】设点C、D、E是线段AB上的三个点,根据题意可得:图中共用()5152-⨯=10条线段∵A到B与B到A车票不同.∴从A到B的车票共有10×2=20种故答案为20.【点睛】本题主要考查了如何求线段的条数的问题,在解题时要注意线段的条数与车票种数的联系与区别.16.2或8【分析】本题没有给出图形在画图时应考虑到ABC三点之间的位置关系的多种可能再根据正确画出的图形解题【详解】解:如图:当点BC在点A 的不同侧时∴AP=AB=3cmAQ=AC=5cm∴PQ=AQ+解析:2或8【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.【详解】解:如图:当点B、C在点A的不同侧时,∴AP=12AB=3cm,AQ=12AC=5cm,∴PQ=AQ+AP=5+3=8cm.当点B、C在点A的同一侧时,∴AP=12AB=3cm,∴AQ=12AC=5cm,PQ=AQ-AP=5-3=2cm.故答案为8cm或2cm.【点睛】在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性.在今后解决类似的问题时,要防止漏解.17.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动解析:15°【分析】计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.【详解】∵时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°,∴时针1小时转动30°,∴6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×12=15°.故答案是:15°.【点睛】考查了钟面角,解题时注意,分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.18.16【分析】分两种情况:①点P在线段MN上;②点P在线段MN外;然后利用两点之间距离性质结合图形得出即可【详解】①点P 在线段MN 上MP+NP=MN=16cm②点P 在线段MN 外当点P 在线段MN 的上部时解析:16【分析】分两种情况:①点P 在线段MN 上;②点P 在线段MN 外;然后利用两点之间距离性质,结合图形得出即可.【详解】①点P 在线段MN 上,MP+NP=MN=16cm ,②点P 在线段MN 外,当点P 在线段MN 的上部时,由两点之间线段最短可知:MP+NP > MN =16,当点P 在线段MN 的延长线上时,MP+NP > MN =16.综上所述:线段MP 和NP 的长度的和的最小值是16,此时点P 的位置在线段MN 上, 故答案为16.【点睛】本题考查的知识点是比较线段的长短,解题的关键是熟练的掌握比较线段的长短. 19.或【分析】设分针转的度数为x 则时针转的度数为根据题意列方程即可得到结论【详解】解:设分针转的度数为x 则时针转的度数为当时∴当时∴故答案为:或【点睛】本题考查了一元一次方程的应用----钟面角正确的理 解析:4011或32011 【分析】 设分针转的度数为x ,则时针转的度数为12x ,根据题意列方程即可得到结论. 【详解】解:设分针转的度数为x ,则时针转的度数为12x , 当9011012x x ︒︒+-=时,24011x ︒=, ∴2404061111︒︒÷= 当()9018011012x x ︒︒︒+--=时,192011x ︒⎛⎫= ⎪⎝⎭ ∴192032061111÷= 故答案为:4011或32011 【点睛】本题考查了一元一次方程的应用----钟面角,正确的理解题意是解题的关键.20.【分析】根据角平分线的性质计算出再根据角的关系即可求解【详解】∵平分平分∴∴∴【点睛】本题考查了角的平分线定义及性质熟练掌握角平分线的意义是解本题的关键解析:112︒【分析】根据角平分线的性质计算出2AOC COE ∠=∠,2BOC COF ∠=∠,再根据角的关系,即可求解.【详解】∵OE 平分AOC ∠,OF 平分BOC ∠,∴2AOC COE ∠=∠,2BOC COF ∠=∠,∴2()2248AOC BOC COE COF EOF ︒∠+∠=∠+∠=∠=,∴360248112AOB ︒︒︒∠=-=.【点睛】本题考查了角的平分线定义及性质,熟练掌握角平分线的意义是解本题的关键.三、解答题21.(1)10.8cm ;(2)0.6cm【分析】(1)设2cm AC x =,3cm CD x =,4cm BD x =,则根据6cm AD =列式计算即可. (2)由E 为线段AB 的中点,且根据(1)知AB 的长为10.8cm ,即可求出DE 的长.【详解】(1)设2cm AC x =,3cm CD x =,4cm BD x =.则有236x x +=,解得 1.2x =.则234910.8x x x x ++==.所以AB 的长为10.8cm .(2)因为E 为线段AB 的中点, 所以1 5.4cm 2AE AB ==. 所以6 5.40.6cm DE AD AE =-=-=【点睛】本题考查的是两点之间的距离,熟知各线段之间的和及倍数关系是解答此题的关键. 22.(1)EOF ∠,BOD ∠,BOC ∠;(2)BOF ∠,COE ∠.【分析】(1)由∠BOE=90°,则∠DOE+∠BOD=90°,要求与∠DOE 互余的角,只要找到与∠BOD 相等的角即可,即∠BOC ,∠EOF ;(2)根据同角的余角相等,结合OB 平分∠COD ,可得∠DOE=∠AOF ,∠EOF=∠BOD=∠BOC ,则∠DOE 的补角与∠AOF 的补角相等,即∠DOE 互补的角:∠BOF 、∠EOC ;【详解】解:(1)∵∠BOE=∠FOD=90°,∴∠AOF+∠EOF=90°,∠BOD+∠DOE=90°,∠DOE+∠EOF=90°,∵OB 平分∠COD ,∴∠BOD=∠BOC ,∠AOF=∠DOE ,∴与∠DOE 互余的是:∠EOF 、∠BOD 、∠BOC ;故答案为:∠EOF 、∠BOD 、∠BOC ;(2)由(1)以及同角的余角相等可知,∠AOF=∠DOE ,∠EOF=∠BOD=∠BOC , ∴∠DOE 的补角与∠AOF 的补角相等,∵∠AOF+∠BOF=180°,∠BOF=∠EOC ,∴∠AOF+∠EOC=180°,∴∠DOE 的补角有:∠BOF 和∠EOC .【点睛】本题考查了补角和余角的定义,以及角平分线的定义,解题的关键是根据同角或等角的余角相等,同角或等角的补角相等进行解答.23.(1)3;(2)3.【分析】(1)由中点可得CN 和MC 的长,再由 MN=MC+CN 可求得MN 的长;(2)由已知可得AB 的长是NM 的2倍,已知AB 的长,可求得MN 的长度.【详解】解:(1)∵N 是BC 的中点,M 是AC 的中点,1AM =,4BC =,∴2CN =,1AM CM ==,∴3MN MC CN =+=.(2)∵M 是AC 的中点,N 是BC 的中点,6AB =, ∴132NM MC CN AB =+==. 【点睛】本题主要考查了两点间的距离,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.24.(1)90︒;(2)105︒;(3)若点G 在点F 的右侧,2180FEG α︒∠=-;若点G 在点F 的左侧,1802FEG α︒∠=-【分析】(1)由题意根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)由题意根据∠MEN=∠NEF+∠FEG+∠MEG ,求出∠NEF+∠MEG 即可解决问题. (3)根据题意分点G 在点F 的右侧以及点G 在点F 的左侧两种情形分别求解即可.【详解】解:(1)因为EN 平分AEF ∠,EM 平分BEF ∠,所以12NEF AEF ∠=∠,12MEF BEF ∠=∠, 所以1111()2222MEN NEF MEF AEF BEF AEF BEF AEB ∠=∠+∠=∠+∠=∠+∠=∠. 因为180AEB ︒∠=, 所以1180902MEN ︒︒∠=⨯=. (2)因为EN 平分AEF ∠,EM 平分BEG ∠, 所以12NEF AEF ∠=∠,12MEG BEG ∠=∠, 所以1111()()2222NEF MEG AEF BEG AEF BEG AEB FEG ∠+∠=∠+∠=∠+∠=∠-∠. 因为180AEB ︒∠=,30FEG ︒∠=, 所以()118030752NEF MEG ︒︒︒∠+∠=-=, 所以7530105MEN NEF FEG MEG ︒︒︒∠=∠+∠+∠=+=.(3)因为EN 平分AEF ∠,EM 平分BEG ∠, 所以12NEF AEF AEN ∠=∠=∠,12MEG BEG BEM ∠=∠=∠, 若点G 在点F 的右侧,MEN NEF FEG MEG α∠=∠+∠+∠=, ()()(180)2180FEG NEF MEG AEN BEM ααααα︒︒∠=-∠+∠=-∠+∠=-=--;若点G 在点F 的左侧,MEN NEF MEG FEG α∠=∠+∠-∠=1801802FEG NEF MEG AEN BEM ααααα︒︒∠=∠+∠-=∠+∠-=--=-.【点睛】本题考查角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.25.6π立方厘米【解析】试题分析:先根据勾股定理求出斜边为5厘米,再用“3×4÷5=2.4厘米”求出斜边上的高,绕斜边旋转一周后所得到的就是两个底面半径为2.4厘米,高的和为5厘米的圆锥体,由此利用圆锥的体积公式求得这两个圆锥的体积之和即可.试题过B 作BD ⊥AC ,∵直角边AB和BC分别长4厘米和3厘米,∴AC=2234=5(厘米),斜边上的高为“3×4÷5=2.4(厘米),所形成的立体图形的体积:132.42 5 =9.6π(立方厘米).26.见解析【解析】试题分析:根据旋转的特点和各几何图形的特性判断即可.试题如图所示:。
第四章 图形的初步认识《原创新课堂》2016秋单元检测题(含答案)
第4章检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.数轴是一条()A.射线B.直线C.线段D.以上都是2.下列几何图形是六棱柱的是()3.借助一副三角尺,你能画出下面度数为()的角.A.65°B.75°C.85°D.95°4.(2016·济宁)如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是(D)5.如图,已知AD>BC,则AC与BD的关系()A.AC>BD B.AC=BD C.AC<BD D.无法确定6.(2016春·曹县校级月考)如果OC是∠AOB的平分线,则下列结论不正确的是() A.∠AOC=∠BOC;B.2∠AOC=∠AOB;C.∠AOB=2∠BOC;D.∠AOB=∠AOC 7.下列说法错误的是()A.两个互余的角都是锐角B.一个角的补角大于这个角本身C.互为补角的两个角不可能都是锐角D.互为补角的两个角不可能都是钝角8.(2016·资阳)如图是一个正方体纸盒的外表面展开图,则这个正方体是()9.(2015秋·开江县期末)用一个平面截去正方体的一个角,则截面不可能是( )A .等腰直角三角形B .等腰三角形C .锐角三角形D .等边三角形10.(2016春·盐城校级月考)下列说法:①对顶角相等;②过直线外一点有且只有一条直线与这条直线平行;③直线外一点与直线上各点连接的所有线段中,垂线段最短;④一个角的余角比它的补角大90°.其中正确的个数为( )A .4个B .3个C .2个D .1个 二、填空题(每小题3分,共24分) 11.写出下列立体图形的具体名称:12.判断如图所示的图形中球体有______________;多面体有______________.13.(2016春·重庆校级月考)如图是由若干个小正方形搭建的几何体的三视图,那么此几何体由____个小正方形搭建而成.第14题图)14.(2016春·曹县校级月考)已知,如图,点A ,O ,C 在同一直线上,OE 平分∠AOB ,OF平分∠BOC ,则∠EOF =____°.15.P 为线段AB 上一点,且AP =25AB ,M 是AB 的中点,若PM =2 cm ,则AB =____cm .16.经过一点A 画直线,可以画__无数__条;过不在同一直线上三点中的任意两点画直线,一共可能画____条.17.(2016·萧山区模拟)如图,是一个包装盒的三视图,则这个包装盒的表面积是___________________.(结果保留π)18.有一个圆形钟面,在7点30分时,时针与分针所成角的大小为____.三、解答题(共66分)19.(8分)已知平面上四点A,B,C,D,如图:(1)画直线AB;(2)画射线AD;(3)直线AB,CD相交于点E;(4)连结AC,BD相交于点F.20.(8分)如图,(1)∠AOC是哪两个角的和;(2)∠AOB是哪两个角的差;(3)如果∠AOB=∠COD,那么∠AOC与∠DOB相等吗?21.(8分)(2015秋·南江县期末)如图,由若干个完全相同的小正方体堆成的一个几何体放置在平整的地面上.(1)请画出这个几何体的三视图;(2)如果在这个几何体的表面喷上红色的漆,则在所有的小正方体中,有__1__个小正方体只有一个面是红色,有__2__个小正方体只有两个面是红色,有__3__个小正方体只有三个面是红色.22.(10分)已知如图,B,C两点把线段AD分成2∶4∶3三部分,CD=6 cm.(1)求AD的长;(2)若M是AD的中点,求线段MC的长.23.(10分)一个正方体六个面分别标有字母A,B,C,D,E,F,其展开图如图所示,已知:A=x2-2xy,B=A-C,C=3xy+y2,若该正方体相对两个面上的多项式的和相等,试用x,y的代数式表示多项式D,并求当x=-1,y=-2时,多项式D的值.24.(10分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°,(1)求∠BOC的度数;(2)通过计算判断OE是否平分∠BOC.25.(12分)(2015秋·开江县期末)如图①,已知线段AB=16 cm,点C为线段AB上的一个动点,点D,E分别是AC和BC的中点.(1)若点C恰为AB的中点,求DE的长;(2)若AC=6 cm,求DE的长;(3)试说明不论AC取何值(不超过16 cm),DE的长不变;(4)知识迁移:如图②,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD,OE分别平分∠AOC和∠BOC,试说明∠DOE的大小与射线OC的位置无关.参考答案一、选择题(每小题3分,共30分)1.数轴是一条(B)A.射线B.直线C.线段D.以上都是2.下列几何图形是六棱柱的是(D)3.借助一副三角尺,你能画出下面度数为(B)的角.A.65°B.75°C.85°D.95°4.(2016·济宁)如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是(D)5.如图,已知AD>BC,则AC与BD的关系(A)A.AC>BD B.AC=BD C.AC<BD D.无法确定6.(2016春·曹县校级月考)如果OC是∠AOB的平分线,则下列结论不正确的是(D) A.∠AOC=∠BOC;B.2∠AOC=∠AOB;C.∠AOB=2∠BOC;D.∠AOB=∠AOC 7.下列说法错误的是(B)A.两个互余的角都是锐角B.一个角的补角大于这个角本身C.互为补角的两个角不可能都是锐角D.互为补角的两个角不可能都是钝角8.(2016·资阳)如图是一个正方体纸盒的外表面展开图,则这个正方体是(C)9.(2015秋·开江县期末)用一个平面截去正方体的一个角,则截面不可能是( A )A .等腰直角三角形B .等腰三角形C .锐角三角形D .等边三角形10.(2016春·盐城校级月考)下列说法:①对顶角相等;②过直线外一点有且只有一条直线与这条直线平行;③直线外一点与直线上各点连接的所有线段中,垂线段最短;④一个角的余角比它的补角大90°.其中正确的个数为( B )A .4个B .3个C .2个D .1个 二、填空题(每小题3分,共24分) 11.写出下列立体图形的具体名称:12.判断如图所示的图形中球体有__②③④__;多面体有__①⑤⑦__.13.(2016春·重庆校级月考)如图是由若干个小正方形搭建的几何体的三视图,那么此几何体由__6__个小正方形搭建而成.第14题图)14.(2016春·曹县校级月考)已知,如图,点A ,O ,C 在同一直线上,OE 平分∠AOB ,OF平分∠BOC ,则∠EOF =__90__°.15.P 为线段AB 上一点,且AP =25AB ,M 是AB 的中点,若PM =2 cm ,则AB =__20__cm .16.经过一点A 画直线,可以画__无数__条;过不在同一直线上三点中的任意两点画直线,一共可能画__3__条.17.(2016·萧山区模拟)如图,是一个包装盒的三视图,则这个包装盒的表面积是__600π_cm 2__.(结果保留π)18.有一个圆形钟面,在7点30分时,时针与分针所成角的大小为__45°__.三、解答题(共66分)19.(8分)已知平面上四点A,B,C,D,如图:(1)画直线AB;(2)画射线AD;(3)直线AB,CD相交于点E;(4)连结AC,BD相交于点F.解:略20.(8分)如图,(1)∠AOC是哪两个角的和;(2)∠AOB是哪两个角的差;(3)如果∠AOB=∠COD,那么∠AOC与∠DOB相等吗?解:(1)∠AOC是∠AOB与∠BOC的和(2)∠AOC与∠BOC的差或∠AOD与∠BOD的差(3)∠AOC=∠BOD.理由如下:∵∠AOB=∠COD,∴∠AOB+∠BOC=∠COD+∠BOC.即∠AOC=∠BOD21.(8分)(2015秋·南江县期末)如图,由若干个完全相同的小正方体堆成的一个几何体放置在平整的地面上.(1)请画出这个几何体的三视图;(2)如果在这个几何体的表面喷上红色的漆,则在所有的小正方体中,有__1__个小正方体只有一个面是红色,有__2__个小正方体只有两个面是红色,有__3__个小正方体只有三个面是红色.解:(1)如图所示:(2)只有一个面是红色的应该是第一列正方体中最底层中间那个,共1个;有2个面是红色的应是第一列最底层最后面那个和第二列最后面那个,共2个;只有三个面是红色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个,共3个.故答案为:1,2,322.(10分)已知如图,B ,C 两点把线段AD 分成2∶4∶3三部分,CD =6 cm .(1)求AD 的长;(2)若M 是AD 的中点,求线段MC 的长.解:(1)∵AB ∶BC ∶CD =2∶4∶3,∴CD =39AD =13AD ,∵CD =6,∴AD =3CD =18 cm(2)由(1)知AD =18,∵M 是AD 的中点,∴MD =12AD =12×18=9 cm ,∴MC =MD -CD =9-6=3 cm23.(10分)一个正方体六个面分别标有字母A ,B ,C ,D ,E ,F ,其展开图如图所示,已知:A =x 2-2xy ,B =A -C ,C =3xy +y 2,若该正方体相对两个面上的多项式的和相等,试用x ,y 的代数式表示多项式D ,并求当x =-1,y =-2时,多项式D 的值.解:由图形可知A 与C 相对,B 与D 相对,∴B +D =A +C ,又∵A =x 2-2xy ,B =A -C ,C =3xy +y 2,则D =A +C -B =A +C -(A -C )=2C =2(3xy +y 2)=6xy +2y 2,当x =-1,y =-2时,6xy +2y 2=12+8=20,故当x =-1,y =-2时,多项式D 的值是2024.(10分)如图,O 为直线AB 上一点,∠AOC =50°,OD 平分∠AOC ,∠DOE =90°,(1)求∠BOC 的度数;(2)通过计算判断OE 是否平分∠BOC .解:(1)∠BOC =180°-∠AOC =180°-50°=130°(2)∵OD 平分∠AOC ,∴∠COD =12∠AOC =12×50°=25°,∵∠DOE =90°,∴∠COE =90°-∠COD =90°-25°=65°,∴∠BOE =∠BOC -∠COE =130°-65°=65°,∴∠COE =∠BOE =65°,因此OE 平分∠BOC25.(12分)(2015秋·开江县期末)如图①,已知线段AB =16 cm ,点C 为线段AB 上的一个动点,点D ,E 分别是AC 和BC 的中点.(1)若点C 恰为AB 的中点,求DE 的长;(2)若AC =6 cm ,求DE 的长;(3)试说明不论AC 取何值(不超过16 cm ),DE 的长不变;(4)知识迁移:如图②,已知∠AOB =130°,过角的内部任一点C 画射线OC ,若OD ,OE 分别平分∠AOC 和∠BOC ,试说明∠DOE 的大小与射线OC 的位置无关.解:(1)∵点C 恰为AB 的中点,∴AC =BC =12AB =8 cm ,∵点D ,E 分别是AC 和BC 的中点,∴DC =12AC =4 cm ,CE =12BC =4 cm ,∴DE =8 cm (2)∵AB =16 cm ,AC =6 cm ,∴BC =10 cm ,由(1)得,DC =12AC =3 cm ,CE =12CB =5 cm ,∴DE =8 cm (3)∵点D ,E 分别是AC 和BC 的中点,∴DC =12AC ,CE =12BC ,∴DE =12(AC +BC )=12AB =8,∴不论AC 取何值(不超过16 cm ),DE 的长不变 (4)∵OD ,OE 分别平分∠AOC 和∠BOC ,∴∠DOC =12∠AOC ,∠EOC =12∠BOC ,∴∠DOE =∠DOC +∠EOC =12(∠AOC +∠BOC )=12∠AOB =65°,∴∠DOE =65°与射线OC 位置无关。
七年级数学上学期第四单元几何图形初步测试卷5套带答案
第4章 单元测试题(时间100分钟 满分100分)一、选择题:(每小题3分,共30分)1.如图1所示的棱柱有( )A.4个面B.6个面C.12条棱D.15条棱C(2)A DB2.如图2,从正面看可看到△的是( )3.如图3,图中有( )A.3条直线B.3条射线C.3条线段 D.以上都不对4.下列语句正确的是( )A.如果PA=PB,那么P是线段AB的中点;B.作∠AOB的平分线CDC.连接A、B两点得直线AB;D.反向延长射线OP(O为端点)5.如图4,比较∠α、∠β、∠γ 的大小得( )A. ∠γ>∠β>∠α;B. ∠α=∠β;C. ∠γ>∠α>∠β;D. ∠β>∠α>∠γ.6.5点整时,时钟上时针与分钟之间的夹角是( )A.210°B.30°C.150°D.60°7.两个角,它们的比是6:4,其差为36°,则这两个角的关系是( )A.互余B.互补C.既不互余也不互补D.不确定8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是( )A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对9.如果∠α=3∠β, ∠α=2∠θ,则必有( )2310.如图5所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为( )A.8°B.4°C.2°D.1°二、填空题:(每小题3分,共30分)11.已知线段AB=8cm,延长AB 至C,使AC=2AB,D 是AB 中点,则线段CD=______.12.如图,从城市A 到城市B 有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为___________.13.57.32°=_______°_______′_______″;27°14′24″=_____°.14.已知∠a=36°42′15″,那么∠a 的余角等于________.15.∠1+∠2=180°,∠2+∠3=180°,根据________,得∠1=∠3.16.表示O 点南偏东15°方向和北偏东25°方向的两条射线组成的角等于____17.如图,∠AOC=90°,∠AOB=∠COD,则∠BOD=______°.航线铁路公路(6)A B18.102°43′32″+77°16′28″=________;98°12′25″÷5=_____.19.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……,____________cm.20.在平面上有任意四点,过其中任意两点画直线,能画_______条直线.三、解答题:(21、24、25、26每题6分,22、23题每题8分)21.根据下列语句画图:(1)画∠AOB=120°;(2)画∠AOB 的角平分线OC;(3)反向延长OC 得射线OD;(4)分别在射线OA、OB、OD 上画线段OE=OF=OG=2cm;(5)连接EF、EG、FG;(6)你能发现EF、EG、FG 有什么关系?∠EFG、∠EGF、∠GEF 有什么关系?22.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长.23.如图,直线AB、CD 交于O 点,且∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线.(1)求∠2和∠3的度数.(2)OF平分∠AOD吗?为什么?24.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.25.测量员沿着一块地的周围测绘.从A向东走600米到B,再从B向东南(∠ABC= 135°)走500米到C,再从C向西南(∠BCD=90°)走800米到D.用1厘米代表100米画图, 求DA的长(精确到10米)和DA的方向(精确到1°).北D CA B26.利用线段、角、三角形、圆等图形为你的学校设计一个校标,并简述你的设计思路.参考答案一、选择题1.D2.C3.C4.D5.C6.C7.B8.B9.C 10.B二、填空题11.12cm 12.两点之间,线段最短 13.57、19、12;27.2414. 53°17′45″ 15.同角的补角相等16.140° 17.90 18.180°;19°38′29″. 19. 20.1或4或6三、解答题21.(6)EF=EG=FG,∠EFG=∠EGF=∠FEG=60°22.AM=7cm或3cm23.(1)∠2=100°,∠3=40°;(2)∠AOF=40°,OF平分∠AOD24.设这个角为x0,( 180-x):(90-x)=3:1,x=45.第4章 单元测试题2检测时间:45分钟,满分:100分班级 学号 姓名 得分一、填空题:(每空2分,共46分)1.正方体有______条棱,_____个顶点, 个面.2.圆柱的侧面展开图是一个 ,圆锥的侧面展开图是一个 ,棱柱的侧面展开图是一个 。
人教版七年级上册数学《几何图形初步》单元综合检测(带答案)
人教版数学七年级上学期第四章单元测试满分:100分时间:90分钟一、选择题1.有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是()A. B. C. D.2.用两把常用三角板不可能拼成的角度为()A. B. C. D.3. 如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是( )A. ∠AOD>∠BOCB. ∠AOD<∠BOC;C. ∠AOD=∠BOCD. 无法确定4.如果两个不相等的角的和为,则这两个角可能是()A. 一个小于直角,一个大于直角B. 两个大于直角的角C. 两个小于直角的角D. 以上答案都不对5.已知∠α=35°,那么∠α的余角的补角等于A. 35°B. 65°C. 125°D. 145°6.如图是一个正方体展开图,把展开图折叠成正方体后,”我”字一面的相对面上的字是( )A. 的B. 中C. 国D. 梦7.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A. 甲B. 乙C. 丙D. 丁8.如图,一副三角尺按不同的位置摆放,摆放位置中的图形有A. 1个B. 2个C. 3个D. 4个二、填空题9.如果点,,在一条直线上,线段,线段,则、两点间的距离是________.10.如图所示,把一根绳子对折成线段AB,从P处把绳子剪断,已知AP=PB,若剪断后的各段绳子中最长的一段为30cm,则绳子的原长为________ cm..11.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是.12.如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是_______13.如图所示,已知∠AOB=90°,∠COD=90°,∠AOC︰∠BOD=1︰2,则∠BOD=________.14.如图,M是线段AB的中点,N是线段BC的中点,AB=8cm,BC=6cm,则线段MN=__ cm.三、解答题15. (6分)下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.16.已知∠α=76°,∠β=41°31′.(1)求∠β的余角;(2)求∠α的2倍与∠β的的差.17.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中共有多少个小于平角的角?(2)求∠BOD的度数.(3)请通过计算说明OE是否平分∠BOC.18.如图,C,D为线段AB上的两点,M,N分别是线段AC,BD的中点.(1)如果CD=5cm,MN=8cm,求AB的长;(2)如果AB=a,MN=b,求CD的长.19.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.参考答案一、选择题1.有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是()A. B. C. D.【答案】B【解析】【分析】根据五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱的面数进行判断.【详解】依题意得,有六个面的立体图形为:①正方体,③四棱柱,④长方体,共有3个.故答案选:B.【点睛】本题考查的知识点是认识立体图形,解题的关键是熟练的掌握立体图形概念.2.用两把常用三角板不可能拼成的角度为()A. B. C. D.【答案】C【解析】【分析】根据两个三角板可拼出的角度有15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,180°【详解】∵三角板的度数为30°,60°,90°;45°,45°,90°∴可拼出的角度有15°,30°,45°,60°,75°,90°105°,120°,135°,150°,180°.故答案选:C.【点睛】本题考查的知识点是角的计算,解题的关键是熟练的掌握角之间的转换.3. 如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是( )A. ∠AOD>∠BOCB. ∠AOD<∠BOC;C. ∠AOD=∠BOCD. 无法确定【答案】C【解析】本题考查了角的大小比较根据题意∠AOC=∠BOD,再根据图得知∠COD为∠AOD与∠BOC的公共角,从而得出答案.∵∠AOC=∠BOD,∠COD为∠AOD与∠BOC的公共角,∴∠AOC+∠COD=∠BOD+∠COD,∴∠AOD=∠BOC,故选C.4.如果两个不相等的角的和为,则这两个角可能是()A. 一个小于直角,一个大于直角B. 两个大于直角的角C. 两个小于直角的角D. 以上答案都不对【答案】A【解析】【分析】根据补角定义,两个不相等的角的和为180°,则这两个角是一个锐角,一个钝角,由此选择答案即可.【详解】∵两个不相等的角的和为180°,∴这两个角是一个锐角(小于直角),一个钝角(大于直角).故答案选:A.【点睛】本题考察的知识点是余角和补角,解题的关键是熟练的掌握余角和补角的定义与计算.5.已知∠α=35°,那么∠α的余角的补角等于A. 35°B. 65°C. 125°D. 145°【答案】C【解析】【分析】根据余角和补角的概念列式计算即可.【详解】解:∵∠α=35°,∴∠α的余角为:90°-35°=55°,∴∠α的余角的补角为:180°-55°=125°,故选:C.【点睛】本题考查的是余角和补角的概念,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.6.如图是一个正方体展开图,把展开图折叠成正方体后,”我”字一面的相对面上的字是( )A. 的B. 中C. 国D. 梦【答案】D【解析】试题分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,”们”与”中”是相对面,”我”与”梦”是相对面,”的”与”国”是相对面.故选D.考点:正方体相对两个面上的文字.【此处有视频,请去附件查看】7.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A. 甲B. 乙C. 丙D. 丁【答案】D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D.8.如图,一副三角尺按不同的位置摆放,摆放位置中的图形有A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:根据角的和差关系可得第一个图形∠α=∠β=45°,根据同角的余角相等可得第二个图形∠α=∠β,根据等角的补角相等可得第三个图形∠α=∠β,第四个图形∠α+∠β=180°,不相等,因此∠α=∠β的图形个数共有3个.故选C.点睛:此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等,等角的余角相等.二、填空题9.如果点,,在一条直线上,线段,线段,则、两点间的距离是________.【答案】或【解析】【分析】根据题意画出图形,根据点C在线段AB上和在线段AB外两种情况进行解答即可.【详解】解:当如图1所示点C在线段AB的外时,∵AB=6cm,BC=8cm,∴AC=6+8=14(cm);当如图2所示点C在线段AB上时,∵AB=6cm,BC=8cm,∴AC=8-6=2(cm).故答案为:14cm或2cm.【点睛】本题考查的是两点间的距离,解答此题时要注意进行分类讨论,不要漏解.10.如图所示,把一根绳子对折成线段AB,从P处把绳子剪断,已知AP=PB,若剪断后的各段绳子中最长的一段为30cm,则绳子的原长为________ cm..【答案】40或80【解析】解:本题有两种情形:(1)当点A是绳子的对折点时,将绳子展开如图.∵AP=PB,剪断后的各段绳子中最长的一段为30cm,∴BP=30cm,AP=10cm.∴绳子的原长=2AB=80cm;(2)当点B是绳子的对折点时,将绳子展开如图.∵AP=PB,剪断后的各段绳子中最长的一段为30cm,∴2BP=30cm,∴BP=15cm,AP=5cm.∴绳子的原长=2AB=40cm.11.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是.【答案】两点之间线段最短【解析】试题分析:根据线段的性质:两点之间线段最短填空即可.解:从A到B有多条道路,人们会走中间的直路,而不会走其他曲折的路,这是因为两点之间,线段最短.故答案为:两点之间,线段最短.考点:线段的性质——两点之间,线段最短12.如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是_______【答案】南偏西60°【解析】【分析】根据方向角的定义即可解答.【详解】由于人相对与太阳与太阳相对于人的方位正好相反,∵在阳光下你的身影的方向北偏东60°方向,∴太阳相对于你的方向是南偏西60°.故答案为:南偏西60°.【点睛】本题考查了方向角的概念,熟知方向角的概念是解答本题的关键.13.如图所示,已知∠AOB=90°,∠COD=90°,∠AOC︰∠BOD=1︰2,则∠BOD=________.【答案】120°【解析】【分析】根据周角的定义及已知条件可得∠AOC+∠BOD=180°,再由∠AOC︰∠BOD=1︰2即可求得∠BOD的度数.【详解】∵∠AOB=90°,∠COD=90°,∴∠AOC+∠BOD=360°-(∠AOB+∠COD)=180°,∵∠AOC︰∠BOD=1︰2,∴∠BOD=2∠AOC,∴∠AOC+2∠AOC=180°,即∠AOC=60°,∴∠BOD=2∠AOC=120°.故答案为:120°.【点睛】本题考查了角的计算,根据平角的定义求得∠AOC+∠BOD=180°是解决问题的关键.14.如图,M是线段AB的中点,N是线段BC的中点,AB=8cm,BC=6cm,则线段MN=__ cm.【答案】7 cm.【解析】【分析】由线段中点的定义知AM=MB=AB=4cm,BN=NC=BC=3cm.然后结合图示中的”MN=MB+BN”来求线段MN的长度.【详解】解:∵M是线段AB的中点,AB=8cm,∴MB=AB=4cm;∵N是线段BC的中点,BC=6cm,∴BN=NC=BC=3cm;∴MN=MB+BN=4+3=7cm.故答案为7.【点睛】本题考查了两点间的距离和线段中点的性质.注意”数形结合”的数学思想在本题中的应用.三、解答题15. (6分)下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.【答案】小马不会得满分的.见解析.【解析】试题分析:在同一平面内,若∠BOA与∠BOC可能存在两种情况,即当OC在∠AOB的内部或OC在∠AOB 的外部.试题解析:如图,当OC在∠AOB的内部时,∠AOC=∠BOA﹣∠BOC=55°,当OC在∠AOB的外部时,∠AOC=∠BOA+∠BOC=85°,故∠AOC的度数是55°或85°.考点:角的计算.16.已知∠α=76°,∠β=41°31′.(1)求∠β的余角;(2)求∠α的2倍与∠β的的差.【答案】(1)48°29′;(2)131°14′30″.【解析】试题分析:(1)根据余角的定义即可求解;(2)根据题意列出式子求解即可.试题解析:(1)∠β的余角=90°-∠β=90°-41°31′=48°29′.(2)∵∠α=76°,∠β=41°31′,∴2∠α-∠β=2×76°-×41°31′=152°-20°45′30″=131°14′30″.17.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中共有多少个小于平角的角?(2)求∠BOD的度数.(3)请通过计算说明OE是否平分∠BOC.【答案】(1)9;(2)155°;(3)OE平分∠BOC.理由见解析.【解析】试题分析:(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE-∠DOC和∠BOE=∠BOD-∠DOE分别求得∠COE与∠BOE的度数即可说明.试题解析:解:(1)图中小于平角的角有9个.它们分别是:∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)∵∠AOC=50°,OD平分∠AOC,∴∠DOC=∠AOC=25°,∠BOC=180°﹣∠AOC=130°,∴∠BOD=∠DOC+∠BOC=155°.(3)∵∠DOE=90°,∠DOC=25°,∴∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又∵∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,∴∠COE=∠BOE,即OE平分∠BOC.点睛:本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.18.如图,C,D为线段AB上的两点,M,N分别是线段AC,BD的中点.(1)如果CD=5cm,MN=8cm,求AB的长;(2)如果AB=a,MN=b,求CD的长.【答案】(1)线段AB的长为11cm;(2)2b﹣a.【解析】【分析】(1)先根据M,N分别是线段AC,BD的中点,可得MC=AC,DN=BD,再根据MC+CD+DN=MN=8cm,可得MC+DN=8﹣5=3cm,进而可得:AC+BD=2MC+2DN=2×3=6cm,所以AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),(2)根据M,N分别是线段AC,BD的中点,可得CM=AM=AC,BN=DN=BD,再根据AM+BN=MC+DN=AB﹣MN,可得MC+DN=a﹣b,进而可得:CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.【详解】(1)M,N分别是线段AC,BD的中点,∴MC=AC,DN=BD,∵MC+CD+DN=MN=8cm,∴MC+DN=8﹣5=3cm,∴AC+BD=2MC+2DN=2×3=6cm,∴AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),即线段AB的长为11cm,(2)M,N分别是线段AC,BD的中点,∴CM=AM=AC,BN=DN=BD,∵AM+BN=MC+DN=AB﹣MN,∴MC+DN=a﹣b,∴CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.【点睛】本题主要考查线段的中点性质和线段和差关系,解决本题的关键是要熟练掌握线段中点性质,根据线段和差关系进行求解.19.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.【答案】(1)25°;(2)①n°+25°,②n=65°;(3)m°+25°.【解析】【分析】(1)如图1,根据OM平分∠AOB,∠AOB=130°,利用角平分线的定义可得:∠AOM=∠AOB=×130°=65°,再根据ON平分∠COD,∠COD=80°,可得∠AON=∠COD=×80°=40°,进而求出∠MON=∠AOM﹣∠AON=65°﹣40°=25°,(2)①如图2中,根据图形中角的和差关系可得:∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°,②当∠MON=90°时,由于n°+25°=90°,所以n=65°,(3)如图3中,根据图中角的和差关系可得:∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°. 【详解】(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°,(2)①如图2中,∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°,②当∠MON=90°时,n°+25°=90°,∴n=65°,(3)如图3中,∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.【点睛】本题主要考查角平分线的定义和角的和差关系,解决本题的关键是要熟练掌握角平分线的定义,并能结合图形分析角的和差关系.。
数学七年级上册《几何图形初步》单元综合检测题(含答案)
24.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后OM恰好平分∠BOC,则t=(直接写结果)
(1)若以点C为原点,则点A对应的数是;点B对应的数是.
(2)A,B两点间的距离是;B,C两点间的距离是;A,C之间的距离是.
(3)当原点在处时,三个点到原点的距离之和最小,最小距离是.
20.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,请求x﹣2y﹣3z的值.
21.∠AOB与∠COD有共同的顶点O,其中∠AOB=∠COD=60°.
故选B.
【点睛】本题考查了余角和补角,正确表示出这个角的补角与余角是解题的关键.
3.在平面内,有两个角∠AOB=60°,∠AOC=30°,OA为两角的公共边,则∠BOC为( )
A.30°B.90°C.30°或90°D.无法确定
【答案】C
【解析】
【分析】
本题是角的计算的多解问题,求解时要注意分情况讨论.
A. 30°B. 90°C. 30°或90°D.无法确定
4.货轮A在航行的过程中发现:客轮B在它的南偏东80°的方向上,同时,在它的北偏东20°的方向上又发现了客轮C,则∠BAC的度数是( )
A.60°B.120°C.100°D.80°
5.如图,是学校花圃的一角,有的同学为了省时间图方便,在花圃中踩出了一条”捷径”,”捷径”的数学道理是( )
故选C.
【点睛】本题考查了直线、射线、线段的相关知识,熟练掌握各相关概念是解题的关键.
七年级数学上册第四单元《几何图形初步》-解答题专项测试卷(含答案解析)(1)
一、解答题1.小刚和小强在争论一道几何问题,问题是射击时为什么枪管上有准星.小刚说:“过两点有且只有一条直线,所以枪管上才有准星.”小强说:“过两点有且只有一条直线我当然知道,可是若将人眼看成一点,准星看成一点,目标看成一点,这样不是有三点了吗?既然过两点有且只有一条直线,那弄出第三点是为什么呢?”聪明的你能回答小强的疑问吗?解析:见解析【分析】根据直线的性质,结合实际意义,易得答案.【详解】解:如果将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,人眼与目标确定的这条直线应与子弹所走的直线重合,即与准星和目标所确定的这条直线重合,即可看到哪儿打到哪儿.换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.【点睛】题考查直线的性质,无限延伸性即没有端点;同时结合生活中的射击场景,立意新颖,熟练掌握直线的性质是解题的关键.2.直线l上有A,B两点,AB=24cm,点O是线段AB上的一点,OA=2OB.(1)OA=__________cm,OB=___________cm;(2)若C点是线段AO上的一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发向右运动,点P的速度为2cm/s,点Q的速度为1cm s⁄,设运动时间为t(s),当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP−OQ=8;②当点P经过点O时,动点M从点O出发,以3cm s⁄的速度向右运动.当点M追上点Q后立即返回.以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q运动,如此往返,直到点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程为___________cm.解析:(1)16,8;(2)83;(3)①t=165或16s;②48.【解析】【分析】(1)由OA=2OB,OA+OB=24即可求出OA、OB.(2)设OC=x,则AC=16-x,BC=8+x,根据AC=CO+CB列出方程即可解决.(3)①分两种情形①当点P在点O左边时,2(16-2t)-(8+t)=8,当点P在点O右边时,2(2t-16)-(8+x)=8,解方程即可.②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2-1)=16由此即可解决.【详解】(1)∵AB=24,OA=2OB , ∴20B+OB=24, ∴OB=8,0A=16, 故答案分别为16,8. (2)设CO 的长为x cm .由题意,得x +(x +8)=24−8−x . 解得x =83. 所以CO 的长为83cm .(3)①当点P 在点O 左边时,2(16−2t)−(8+t)=8,t=165,当点P 在点O 右边时,2(2t−16)−(8+t)=8,t=16, ∴t=165 或16s 时,2OP−OQ=8.②设点M 运动的时间为ts,由题意:t(2−1)=16,t=16, ∴点M 运动的路程为16×3=48cm. 故答案为48cm. 【点睛】此题考查一元一次方程的应用,两点间的距离,解题关键在于根据题意列出方程. 3.如图所示,长度为12cm 的线段AB 的中点为点M ,点C 将线段MB 分成:1:2MC CB =,求线段AC 的长度.解析:8cm 【解析】 【分析】设MC =xcm ,由MC :CB =1:2得到CB =2xcm ,则MB =3x ,根据M 点是线段AB 的中点,AB =12cm ,得到AM =MB 12=AB 12=⨯12=3x ,可求出x 的值,又AC =AM +MC =4x ,即可得到AC 的长. 【详解】设MC =xcm ,则CB =2xcm , ∴MB =3x .∵M 点是线段AB 的中点,AB =12cm , ∴AM =MB 12=AB 12=⨯12=3x , ∴x =2,而AC =AM +MC , ∴AC =3x +x =4x =4×2=8(cm ). 故线段AC 的长度为8㎝. 【点睛】本题考查了两点间的距离:两点的连线段的长叫两点间的距离.也考查了方程思想的运用.4.如图是由若干个正方体形状的木块堆成的,平放于桌面上。
2022学年秋学期华东师大版七年级数学上册第四章单元检测卷附答案解析
第四章《图形的初步认识》
一、选择题(本大题共12个小题,每小题4分,共48分.以下每小题都给出了A、B、C、D四个选项,其中只有一个是符合题目要求的。)
1、下列几何体中,是圆锥的为()
2、如图是由5个大小相同的正方体组成的几何体,它的左视图为()
3、一个正方体的平面展开图如图所示,每一个面都有一个汉字,则在该正方体中和“国”字相对的汉字是(A)
17、(本小题满分12分)先化简,再求值:
小明同学对平面图形进行了自主探究;图形的顶点数A,被分成的区域数B,线段数C三者之间是否存在确定的数量关系。如图是他在探究时画出的5个图形。
(1)根据图完成表格:
A
B
C
平面图形(1)
3
6
平面图形(2)
5
8
平面图形(4)
10
6
(2)猜想:一个平面图形中顶点数A,区域数B,线段数C之间的数量关系是;
15、两根长度分别为6cm和10cm的直木条,将它们一端重合且放在同一条直线上,此时两根木条中点之间的距离为_________cm;
16、一个正方体的六个面上分别标有1,2,3,4,5,6中的一个数字,下图是将这个正方体按三种不同方法放置,对于这三种放置朝下的面上的数字之和为________.
三、解答题(本大题6个小题,共56分。解答应写出必要的文字说明或演算步骤。)
【牛刀小试】如图1,若 ,求 的度数;
【类比说明】如图1,若 ,求 的度数(用含 的代数式表示);
【猜想发现】如图2,O是直线AB上一线, 是直角,OE平分 ,探究 与 的关系,直接写出结论。
22、(本小题满分12分)如图1,点O为直线AB上一点,过点O作射线OC,使 ,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方。
第四章单元检测
1第四章《图形认识初步》单元检测题(时间70分钟满分100)一、填空题(每空2分,共32分)1、要在墙上固定一根木条,至少要个钉子,根据的原理是 .2、在一直线上有A、B、C、D四个点,则图中有______条线段,有_______条射线.3、经过任意三点中的两点共可画出条直线.4、如图,在从O引出5条射线,那么图中共有______个角;如果引出n条射线,有_______个角.5、5:30时钟面上时针与分针的夹角为______________.6、已知点A、B、C三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_________.7、已知点M是线段AB的三等分点,且AB=12cm,则线段AM= .8、22.5°=________度________分;12°24′=________°.9、如果一个角的补角是150 ,那么这个角的余角是________.10、乘火车从A站出发,沿途经过3个车站可到达B站,那么在A,B两站之间最多共有________种不同的票价.11、∠1+∠2=90°,∠2+∠3=90°,根据___ __ ___,得∠1=∠3.12、如图所示,将一副三角板叠放在一起,•使直角的顶点重合于点O,则∠AOC+∠DOB=___ __度.二、选择题(每题2分,共20分)1、如图的几何体,左视图是()2、若要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,则x和y的值分别是()A.4和3 B.4和5C.5和3 D.5和13、将如图所示的正方体沿某些棱展开后,能得到的图形是()A4、下列说法中,正确的有()①过两点有且只有一条直线②连结两点的线段叫做两点的距离③两点之间,线段最短④若AB=BC,则点B是线段AC的中点A.①② B.③④ C.②④ D.①③5、甲从O点出发,沿北偏西30°走了50米到达A点,乙也从O点出发,沿南偏东35°方向走了80米到达B点,则∠AOB为()A.65° B.115° C.175° D.185°6、下面的语句中,正确的是()A.线段AB和线段BA是不同的线段;B.∠AOB和∠BOA是不同的角;C.“延长线段AB到C”与“延长线段BA到C”意义不同;D.两个角不能既相等又互补.7、如图,从A地到B地有多条道路,一般地,人们会走中间的直路,而不会走其他的曲折的路,这是因为()A.两点之间线段最短B.两直线相交只有一个交点C.两点确定一条直线D.垂线段最短8、如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是()A.1∠=3∠B.31801∠-︒=∠C.3901∠+︒=∠D.以上都不对9、如果两个角互为补角,而其中一个角比另一个角的4倍少30°,•那么这两个角是().A.42°,138°或40°,130°; B.42°,138°;C.30°,150°; D.以上答案都不对10、在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的()A.南偏西50度方向B.南偏西40度方向C.北偏东50度方向D.北偏东40度方向三、作图题(每题4分,共16分)1、已知a、b、c(a>b), 用尺规画出线段AB使AB=2a-b.(不要求写画法)2、根据下列要求画图:(1)连接线段AB;(2)画射线OA,射线OB;(3)在线段AB上取一点C,在射线OA上取一点D(点C、D不与点A重合),画直线CD,使直线CD与射线OB交于点E。
七年级数学上册第四单元《几何图形初步》-解答题专项测试题(培优专题)(1)
一、解答题1.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm).从A,B两题中任选一题作答.A.该长方体礼品盒的容积为______3cm.B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm.解析:A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.2.如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连.解析:见解析【解析】试题分析:根据旋转的特点和各几何图形的特性判断即可.试题如图所示:3.如图是由若干个正方体形状的木块堆成的,平放于桌面上。
其中,上面正方体的下底面的四个顶点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1.(1)当只有两个正方体放在一起时,这两个正方体露在外面的面积和是;(2)当这些正方体露在外面的面积和超过8时,那么正方体的个数至少是多少?(3)按此规律下去,这些正方体露在外面的面积会不会一直增大?如果会,请说明理由;如果不会,请求出不会超过哪个数值?(提示:所有正方体侧面面积加上所有正方体上面露出的面积之和,就是需求的面积,从简单入手,归纳规律.)解析:(1)7;(2)4个;(3)不会,理由见解析【分析】(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(2)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,即按此规律堆下去,总面积最大不会超过9.【详解】解:(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(3)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,∴这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,∴按此规律堆下去,总面积最大不会超过9.【点睛】此题考查了立体图形的表面积问题.解决本题的关键是得到上下正方体的一个面积之间的关系,从而即可得出依次排列的正方体的一个面的面积,这里还要注意把最下面的正方体看做是5个面之外,上面的正方体都是露出了4个面.解决本题的关键是得到上下正方体的一个面积之间的关系.4.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”解析:34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.5.已知A ,B ,C 三点,他们所表示的数分别是5,-3,a.(1)求线段AB 的长度AB ; (2)若AC=6,求a 的值; (3)若d=3a ++5a -,求d 的最小值,并判定d 与AB .解析:(1)8;(2)a =11或-1;(3)8,d =AB .【分析】(1)线段AB 的长等于A 点表示的数减去B 点表示的数;(2)AC =|A 点表示的数-C 点表示的数|,然后解方程即可;(3)要想使d 的最小,点C 一定在A 、B 两点之间,且最小值为8.【详解】(1)AB =5-(-3)=8;(2)AC =5a -=6,解得:a =11或-1;即在数轴上,若 C 点在A 点左边,则a =-1,若C 点在A 点右边,则a =11;(3)要想使d 的最小,点C 一定在A 、B 两点之间,且最小值为8,所以d =AB .【点睛】本题考查了数轴上两点之间的距离,利用数轴上求线段长度的方法,找出等量关系,解决问题.6.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.7.已知AOB m ∠=,与AOC ∠互为余角,与BOD ∠互为补角,OM 平分AOC ∠,ON 平分BOD ∠,(1)如图,当35m =时,求AOM ∠的度数;(2)在(1)的条件下,请你补全图形,并求MON ∠的度数;(3)当AOB ∠为大于30的锐角,且AOC ∠与AOB ∠有重合部分时,请求出MON ∠的度数.(写出说理过程,用含m 的代数式表示)解析:(1)27.5°;(2) 135°或10°;(3) 2135︒-︒m 或45+︒︒m 或1352︒-︒m .【分析】(1)根据题目已知条件OM 平分AOC ∠,得出∠COM=∠MOA ,因35m =即可求出.(2)∠AOB 和∠BOD 互补,分两种情况讨论,第一种情况是∠AOB 和∠BOD 没有重合部分时,第二种情况是∠AOB 和∠BOD 有重合部分时,再根据题目已知条件求解.(3)根据题目要求画出符合题目的图,在根据题目给出的已知条件求解.【详解】解:(1)∠AOB=35°∵OM 平分AOC ∠∴∠COM=∠MOA=()9035227.5︒-︒÷=︒(2)当∠AOB 和∠BOD 没有重合部分时如图所示∵∠AOB=35°,∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∵ON 平分BOD ∠∴∠BON=∠NOD=()18035272.5︒-︒÷=︒∴∠MON=∠NOB+∠BOA+∠AOM=72.5+35+27.5=135︒︒︒︒当∠AOB 和∠BOD 有重合部分时由(1)知∠MOA=27.5°,∠AOB=35°∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∠BOD=180°-35°=145°同理可得:∠NOB=72.5°∠MON=72.5°-27.5°-35°=10°∴∠MON=135°或10°(3)如图所示因为∠AOB ∠AOC 互余,AOB m ∠=∴∠AOC=90︒-m∵OM 平分AOC ∠∴∠COM=∠MOA=()902=452︒︒-÷︒-m m ∵∠OB 与∠BOD 互补∴∠AOB+∠BOD=180°ON 平分BOD ∠∴∠CON=∠NOD=()1802902︒︒-÷=︒-m m ∴∠NAO=3909022︒︒--︒=︒-m m m ∴∠MON=390+45135222︒-︒-=︒-︒m m m同理可得∠MON=45+︒︒m同理可得∠MON=2135︒-︒m∴∠MON=2135︒-︒m 或45+︒︒m 或1352︒-︒m【点睛】本题主要考查的是余角和补角的定义以及角平分线的应用,再做题之前一定要思考清楚需要分几个情况,再根据已知条件解出每种情况.8.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm ,长方形的长为8cm ,请计算修正后所折叠而成的长方体的表面积和体积.解析:(1)多余一个正方形,图形见解析;(2)表面积为:210cm 2;体积为:200cm 3.【分析】(1)根据长方体的展开图判断出多余一个正方形;(2)根据表面积=四个长方形的面积+两个正方形的面积,体积=底面积×高分别列式计算即可得解.【详解】解:(1)多余一个正方形,如图所示:(2)表面积为:225285450160210()cm ⨯+⨯⨯=+=,体积为:2358200()cm ⨯=【点睛】本题考查了几何体的展开图以及长方体的表面积、体积的求法,熟练掌握长方体的展开图是解题的关键.9.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且22AB =,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t >秒.(1)数轴上点B 表示的数是___________;点P 表示的数是___________(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P Q 、同时出发,问多少秒时P Q 、之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.解析:(1)14-,85t -;(2)2.5秒或3秒;(3)线段MN 的长度不发生变化,其值为11,图形见解析.【分析】(1)根据点B 和点P 的运动轨迹列式即可.(2)分两种情况:①点P Q 、相遇之前;②点P Q 、相遇之后,分别列式求解即可. (3)分两种情况:①当点P 在点A B 、两点之间运动时;②当点P 运动到点B 的左侧时, 分别列式求解即可.【详解】(1)14-,85t -;(2)分两种情况:①点P Q 、相遇之前,由题意得32522t t ++=,解得 2.5t =.②点P Q 、相遇之后,由题意得32522t t -+=,解得3t =.答:若点P Q 、同时出发,2.5或3秒时P Q 、之间的距离恰好等于2;(3)线段MN 的长度不发生变化,其值为11,理由如下:①当点P 在点A B 、两点之间运动时: 11111()221122222MN MP NP AP BP AP BP AB =+=+=+==⨯=; ②当点P 运动到点B 的左侧时,1111()112222MN MP NP AP BP AP BP AB =-=-=-==; ∴线段MN 的长度不发生变化,其值为11.【点睛】本题考查了数轴动点的问题,掌握数轴的性质是解题的关键.10.如图,两个直角三角形的直角顶点重合,∠AOC =40°,求∠BOD 的度数.结合图形,完成填空:解:因为∠AOC+∠COB = °,∠COB+∠BOD = ①所以∠AOC = .②因为∠AOC =40°,所以∠BOD = °.在上面①到②的推导过程中,理由依据是: .解析:90,90,∠BOD ,40,同角的余角相等【分析】根据同角的余角相等即可求解.【详解】解:因为∠AOC+∠COB = 90 °,∠COB+∠BOD = 90 ° -﹣﹣﹣①所以∠AOC = ∠BOD .﹣﹣﹣﹣②-因为∠AOC =40°,所以∠BOD = 40 °.在上面①到②的推导过程中,理由依据是:同角的余角相等.故答案为:90,90,∠BOD ,40,同角的余角相等.【点睛】本题考查了余角的性质:同角(或等角)的余角相等,及角的和差关系.11.如图,平面上有四个点A 、B 、C 、D ,根据下列语句画图.(1)画直线AB 、CD 交于E 点;(2)画线段AC 、BD 交于点F ;(3)连接E 、F 交BC 于点G ;(4)连接AD ,并将其反向延长;(5)作射线BC .解析:见解析.【分析】(1)连接AB 、CD 并向两方无限延长即可得到直线AB 、CD ;交点处标点E ; (2)连接AC 、BD 可得线段AC 、BD ,交点处标点F ;(3)连接AD 并从D 向A 方向延长即可;(4)连接BC ,并且以B 为端点向BC 方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.12.如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点.(1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.解析:(1)7.5;(2)12a ,理由见解析;(3)能,MN=12b ,画图和理由见解析(1)据“点M 、N 分别是AC 、BC 的中点”,先求出MC 、CN 的长度,再利用MN=CM+CN 即可求出MN 的长度即可.(2)据题意画出图形,利用MN=MC+CN 即可得出答案.(3)据题意画出图形,利用MN=MC-NC 即可得出答案.【详解】解:(1)点M 、N 分别是AC 、BC 的中点,∴CM=12AC=4.5cm , CN=12BC=3cm , ∴MN=CM+CN=4.5+3=7.5cm .所以线段MN 的长为7.5cm .(2)MN 的长度等于12a , 根据图形和题意可得:MN=MC+CN=12AC+12BC=12(AC+BC )=12a ;(3)MN 的长度等于12b , 根据图形和题意可得:MN=MC-NC=12AC-12BC=12(AC-BC )=12b .【点睛】本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.13.如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠AOC 和∠COB 的度数.解析:120°,30°【分析】先根据角平分线,求得∠BOE 的度数,再根据角的和差关系,求得BOF ∠的度数,最后根据角平分线,求得BOC ∠、AOC ∠的度数.∵OE 平分∠AOB ,∠AOB=90°∴∠BOE=∠AOB =45°又∵∠EOF=60°∴∠BOF=∠EOF -∠BOE= 15°又∵OF 平分∠BOC∴∠BOC=2∠BOF=30°∴∠AOC=∠AOB +∠BOC=120°故∠AOC=120°,∠COB=30°.【点睛】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据AOC ∠的度数是EOF ∠度数的2倍进行求解.14.如图所示,∠AOB =35°,∠BOC =50°,∠COD =22°,OE 平分∠AOD ,求∠BOE 的度数.解析:5°【解析】【分析】首先根据角的和差关系算出∠AOD 的度数,再根据角平分线的性质可得∠AOE =12∠AOD ,进而得到答案.【详解】∵∠AOB =35°,∠BOC =50°,∠COD =22°,∴∠AOD =35°+50°+22°=107°.∵OE 平分∠AOD ,∴∠AOE =12∠AOD =12×107°=53.5°,∴∠BOE =∠AOE -∠AOB =53.5°-35°=18.5°.【点睛】本题考查了角平分线的性质,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.15.已知:如图,18cm AB =,点M 是线段AB 的中点,点C 把线段MB 分成:2:1MC CB =的两部分,求线段AC 的长.请补充下列解答过程:解:因为M 是线段AB 的中点,且18cm AB =,所以AM MB ==________AB =________cm .因为:2:1MC CB =,所以MC =________MB =________cm .所以AC AM =+________=________+________=________(cm). 解析:12,9,23,6,MC ,9,6,15. 【分析】根据线段中点的性质,可得AM ,根据线段的比,可得MC ,根据线段的和差,可得答案.【详解】解:∵M 是线段AB 的中点,且18cm AB =,∴19cm 2AM MB AB ===. ∵:2:1MC CB =,∴26cm 3MC MB ==. ∴9615(cm)AC AM MC =+=+=. 故答案为:12,9,23,6,MC ,9,6,15. 【点睛】本题考查了两点间的距离,利用线段中点的性质得出AM ,线段的比得出MC 是解题关键.16.如图,已知线段AB 和CD 的公共部分1134BD AB CD ==,线段AB 、CD 的中点E 、F 之间的间距是10cm ,求AB 、CD 的长.解析:AB=12cm ,CD=16cm【分析】先设BD=xcm ,由题意得AB=3xcm ,CD=4xcm ,AC=6xcm ,再根据中点的定义,用含x 的式子表示出AE=1.5xcm 和CF=2xcm ,再根据EF=AC-AE-CF=2.5xcm ,且E 、F 之间距离是EF=10cm ,所以2.5x=10,解方程求得x 的值,即可求AB ,CD 的长.【详解】设BD=xcm ,则AB=3xcm ,CD=4xcm ,AC=6xcm .∵点E 、点F 分别为AB 、CD 的中点,∴AE=12AB=1.5xcm ,CF=12CD=2xcm . ∴EF=AC -AE -CF=2.5xcm .∵EF=10cm ,∴2.5x=10,解得:x=4.∴AB=12cm ,CD=16cm .【点睛】本题考查了线段中点的性质,设好未知数,用含x 的式子表示出各线段的长度是解题关键.17.如图,已知点C 为线段AB 上一点,15cm AC =,35CB AC =,D ,E 分别为线段AC ,AB 的中点,求线段DE 的长.解析:5cm【分析】根据线段的中点定义即可求解.【详解】解:因为15cm AC =,35CB AC =, 所以3159(cm)5CB =⨯=, 所以15924(cm)AB =+=.因为D ,E 分别为线段AC ,AB 的中点,所以112cm 2AE BE AB ===,17.5cm 2DC AD AC ===. 所以127.5 4.5(cm)DE AE AD =-=-=. 【点睛】本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.18.如图所示,已知O 是直线AB 上一点,90BOE FOD ∠=∠=︒,OB 平分COD ∠.(1)图中与DOE ∠互余的角有________________;(2)图中是否有与DOE ∠互补的角?如果有,直接写出全部结果;如果没有,说明理由.解析:(1)EOF ∠,BOD ∠,BOC ∠;(2)BOF ∠,COE ∠.【分析】(1)由∠BOE=90°,则∠DOE+∠BOD=90°,要求与∠DOE 互余的角,只要找到与∠BOD 相等的角即可,即∠BOC ,∠EOF ;(2)根据同角的余角相等,结合OB 平分∠COD ,可得∠DOE=∠AOF ,∠EOF=∠BOD=∠BOC ,则∠DOE 的补角与∠AOF 的补角相等,即∠DOE 互补的角:∠BOF 、∠EOC ;【详解】解:(1)∵∠BOE=∠FOD=90°,∴∠AOF+∠EOF=90°,∠BOD+∠DOE=90°,∠DOE+∠EOF=90°,∵OB 平分∠COD ,∴∠BOD=∠BOC ,∠AOF=∠DOE ,∴与∠DOE 互余的是:∠EOF 、∠BOD 、∠BOC ;故答案为:∠EOF 、∠BOD 、∠BOC ;(2)由(1)以及同角的余角相等可知,∠AOF=∠DOE ,∠EOF=∠BOD=∠BOC , ∴∠DOE 的补角与∠AOF 的补角相等,∵∠AOF+∠BOF=180°,∠BOF=∠EOC ,∴∠AOF+∠EOC=180°,∴∠DOE 的补角有:∠BOF 和∠EOC .【点睛】本题考查了补角和余角的定义,以及角平分线的定义,解题的关键是根据同角或等角的余角相等,同角或等角的补角相等进行解答.19.如图,射线ON ,OE ,OS ,OW 分别表示以点O 为中心的北,东,南,西四个方向,点A 在点O 的北偏东45︒方向,点B 在点O 的北偏西30方向.(1)画出射线OB ,若BOC ∠与AOB ∠互余,请在图(1)或备用图中画出BOC ∠; (2)若OP 是AOC ∠的平分线,直接写出AOP ∠的度数.(不需要计算过程) 解析:(1)见解析;(2)45︒或30.【分析】(1)根据题意作出图形即可;(2)根据角平分线的定义即可得到结论.【详解】(1)如图所示,BOC ∠与BOC '∠即为所求.(2)AOP ∠的度数为45︒或30︒.∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC 与∠AOB 互余,∴∠BOC=∠BOC′=15°,∴∠AOC=90°,∠AOC=60°,∵OP 是∠AOC 的角平分线,∴∠AOP=45°或30°.【点睛】本题主要考查了方向角的定义,余角的定义,作出图形,正确掌握方向角的定义是解题关键.20.关于度、分、秒的换算.(1)5618'︒用度表示;(2)123224'''︒用度表示;(3)12.31︒用度、分、秒表示.解析:(1)56.3︒.(2)12.54︒.(3)121836'''︒.【分析】(1)将18'转化为118()0.360⨯︒=︒即可得到答案; (2)将24''转化为124()0.460''⨯=,32.4'转化为132.4()0.5460⨯︒=︒即可得到答案; (3)将0.31︒转化为0.316018.6''⨯=,将0.6'转化为0.66036''''⨯=即可得到答案. 【详解】(1)1561856185618()56.360''︒=︒+=︒+⨯︒=︒; (2)123224︒''' 123224'''=︒++1123224()60''=︒++⨯ 1232.4'=︒+11232.4()60=︒+⨯︒ 12.54=︒;(3)12.31120.31︒=︒+︒120.3160'=︒+⨯1218.6'=︒+12180.6''=︒++12180.660'''=︒++⨯121836'''=︒++121836'''=︒.【点睛】本题主要考查了度分秒的换算,关键是掌握将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.21.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥(2)求该几何体的体积.解析:(1)C ;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2; 故该几何体体积=底面积⨯高=22=4⨯.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.22.如图,点O 是直线AB 上一点,OC 为任一条射线,OD 平分∠AOC ,OE 平分∠BOC . (1)分别写出图中∠AOD 和∠AOC 的补角(2)求∠DOE 的度数.解析:(1)∠BOD,∠BOC;(2)90°.【分析】(1)由题意根据补角的定义即和是180度的两个角互补,一个角是另一个角的补角进行分析;(2)根据角平分线的性质,可得∠COE,∠COD,再根据角的和差即可得出答案.【详解】解:(1)根据补角的定义可知,∠AOD的补角是∠BOD;∠AOC的补角是∠BOC;(2)∵OD平分∠AOC,OE平分∠BOC,∴∠COD= 12∠AOC,∠COE=12∠BOC.由角的和差得∠DOE=∠COD+∠COE=12∠AOC+12∠BOC=12∠AOB=90°.【点睛】本题考查余角和补角,利用了补角的定义和角的和差以及角平分线的性质进行分析求解.23.已知线段AB=10cm,直线AB上有一点C,BC=6cm,M为线段AB的中点,N为线段BC的中点,求线段MN的长.解析:2cm或8cm【分析】分两种情况:(1)点C在线段AB上时,(2)点C在AB的延长线上时,分别求出线段MN的值,即可.【详解】解:(1)若为图1情形,∵M为AB的中点,∴MB=MA=5cm,∵N为BC的中点,∴NB=NC=3cm,∴MN=MB﹣NB=2cm;(2)若为图2情形,∵M为AB的中点,∴MB=AB=5cm,∵N为BC的中点,∴NB =NC =3cm ,∴MN =MB +BN =8cm .【点睛】本题主要考查线段的和差倍分和线段的中点概念,根据题意,画出图形,分类讨论,是解题的关键.24.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示); (3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.解析:(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由见解析.【分析】 (1)先根据补角的定义求出∠BOC 的度数,再由角平分线的性质得出∠COE 的度数,根据∠DOE =∠COD -∠COE 即可得出结论;(2)同(1)可得出结论;(3)先根据角平分线的定义得出∠COE =∠BOE =12∠BOC ,再由∠DOE =∠COD -∠COE 即可得出结论.【详解】(1)∵COD ∠是直角,30AOC ∠=︒, 180903060BOD ∴∠=︒-︒-︒=︒,9060150COB ∴∠=︒+︒=︒,∵OE 平分BOC ∠,1752BOE BOC ∴∠=∠=︒, 756015DOE BOE BOD ∴∠=∠-∠=︒-︒=︒.(2)COD ∠是直角,AOC a ∠=,1809090BOD a a ∴∠=︒-︒-=︒-,9090180COB a a ∴∠=︒+︒-=︒-,∵OE 平分BOC ∠,119022BOE BOC a ∴∠=∠=︒-, ()11909022DOE BOE BOD a a a ∴∠=∠-∠=︒--︒-=. (3)2AOC DOE ∠=∠,理由是:180BOC AOC ∠=︒-∠,OE 平分BOC ∠,119022BOE BOC AOC ∴∠=∠=︒-∠, 90COD ∠=︒,()909018090BOD BOC AOC AOC ∴∠=︒-∠=︒-︒-∠=∠-︒,()11909022DOE BOD BOE AOC AOC AOC ⎛⎫∴∠=∠+∠=∠-︒+︒-∠=∠ ⎪⎝⎭, 即2AOC DOE ∠=∠.【点睛】本题考查的是角的计算,熟知角平分线的定义、补角的定义是解答此题的关键. 25.作图:如图,平面内有 A ,B ,C ,D 四点 按下列语句画图:(1)画射线 AB ,直线 BC ,线段 AC(2)连接 AD 与 BC 相交于点 E.解析:答案见解析【分析】利用作射线,直线和线段的方法作图.【详解】如图:【点睛】本题考查了作图﹣复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.26.已知线段14AB =,在线段AB 上有点C ,D ,M ,N 四个点,且满足AC :CD :1DB =:2:4,12AM AC =,且14DN BD =,求MN 的长. 解析:7或3【分析】 求出AC ,CD ,BD ,求出CM ,DN ,根据MN CM CD DN =++或MN CM CD ND =+-求出即可.【详解】如图,14AB =,AC :CD :1BD =:2:4,2AC ∴=,4CD =,8BD =,12AM AC =,14DN DB =, 1CM ∴=,2DN =,1427MN CM CD DN ∴=++=++=或1423MN CM CD ND =+-=+-=. 则MN 的长是7或3.【点睛】本题考查了求出两点间的距离的应用及分类讨论的数学思想,关键是找找出线段间的数量关系.27.把一副三角板的直角顶点O 重叠在一起.(1)问题发现:如图①,当OB 平分∠COD 时,∠AOD+∠BOC 的度数是 ; (2)拓展探究:如图②,当OB 不平分∠COD 时,∠AOD+∠BOC 的度数是多少? (3)问题解决:当∠BOC 的余角的4倍等于∠AOD 时,求∠BOC 的度数.解析:(1)180°;(2)180°;(3)60°.【解析】试题分析:(1)先根据OB 平分∠COD 得出∠BOC 及∠AOC 的度数,进而可得出结论; (2)根据直角三角板的性质得出∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°进而可得出结论;(3)根据(1)、(2)的结论可知∠AOD+∠BOC=180°,故可得出∠AOD=180°﹣∠BOC ,根据∠BOC 的余角的4倍等于∠AOD 即可得出结论.解:(1)∵OB 平分∠COD ,∴∠BOC=∠BOD=45°.∵∠AOC+∠BOC=45°,∴∠AOC=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°.故答案为180°;(2)∵∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=90°+90°=180°;(3)∵由(1)、(2)得,∠AOD+∠BOC=180°,∴∠AOD=180°﹣∠BOC .∵∠AOD=4(90°﹣∠BOC ),∴180°﹣∠BOC=4(90°﹣∠BOC ),∴∠BOC=60°.考点:余角和补角;角平分线的定义.28.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm 和4cm ,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)解析:(1)圆柱;(2)它们的体积分别为3144cm π,396cm π【分析】(1)矩形旋转一周得到圆柱;(2)绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,从而可以计算出体积.【详解】解:(1)圆柱(2) 绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,21V r h π=264π=⨯⨯144π=绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,2246V π=⨯⨯96π=∴它们的体积分别为3144cm π,396cm π【点睛】本题主要考查的是圆柱的体积,熟记圆柱的体积公式是解题的关键.29.已知:点O 为直线AB 上一点,过点O 作射线OC ,100BOC ∠=︒.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数;(3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.解析:(1)80°;(2)50°;(3)50︒或150︒,图见解析【分析】(1)直接根据邻补角的概念即可求解;(2)直接根据角平分线的性质即可求解;(3)根据P BO ∠与M AO ∠互余,可得50BOP ∠=︒,分①当射线P O 在C BO ∠内部时;②当射线P O 在C BO ∠外部时,两种情况进行讨论即可.【详解】解:(1)180********∠=︒-∠=︒-︒=︒AOC BOC ;(2)由(1)得80AOC ∠=︒,90COD ∠=︒,10AOD COD AOC ∴∠=∠-∠=︒, OM 是AOC ∠的平分线,11804022AOM AOC ∴∠=∠=⨯︒=︒, 401050MOD AOM AOD ∴∠=∠+∠=︒+︒=︒;(3)由(2)得40AOM ∠=︒,BOP ∠与AOM ∠互余,90BOP AOM ∴∠+∠=︒,90904050∴∠=︒-∠=︒-︒=︒,BOP AOM∠内部时(如图3-1),①当射线OP在BOC∠=∠-∠=︒-︒=︒;COP BOC BOP1005050∠外部时(如图3-2),②当射线OP在BOC∠=∠+∠=︒+︒=︒.10050150COP BOC BOP∠的度数为50︒或150︒.综上所述,COP【点睛】此题主要考查邻补角的概念、角平分线的性质、余角的概念,熟练进行逻辑推理是解题关键.30.如图,已知平面上有四个村庄,用四个点A,B,C,D表示.(1)连接AB,作射线AD,作直线BC与射线AD交于点E;(2)若要建一供电所M,向四个村庄供电,要使所用电线最短,则供电所M应建在何处?请画出点M的位置并说明理由.解析:(1)如图所示.见解析;(2)如图,见解析;供电所M应建在AC与BD的交点处.理由:两点之间,线段最短.【分析】(1)根据射线、直线的定义进而得出E点位置;(2)根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使它在AC与BD的交点处.【详解】(1)如图所示:点E即为所求;(2)如图所示:点M即为所求.理由:两点之间,线段最短.【点睛】本题主要考查了作图与应用作图,关键是掌握线段的性质:两点之间,线段距离最短.。
人教版七年级上册数学《几何图形初步》单元检测卷带答案
人教版数学七年级上学期第四章单元测试考试时间:100分钟;满分:100分第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(2018秋•密云区期末)下列四个几何体中,是三棱柱的为()A.B.C.D.2.(2017秋•宿州期末)雨滴滴下来形成雨丝属于下列哪个选项的实际应用()A.点动成线B.线动成面C.面动成体D.以上都不对3.(2018秋•竞秀区期末)”在山区建设公路时,时常要打通一条隧道,就能缩短路程”其中蕴含的数学道理是()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段的长度是两点间的距离4.(2019春•文登区期末)下列说法正确的是()A.延长直线ABB.延长射线ABC.反向延长射线ABD.延长线段AB到点C,使AC=BC5.(2018秋•榆林期末)如图,右边的平面图形绕虚线l旋转一周,可以得到左边图形的是()A.B.C.D.6.(2018秋•临沧期末)如图,下列说法中不正确的是()A.∠1与∠AOB是同一个角B.∠AOC也可以用∠O表示C.∠β=∠BOC D.图中有三个角7.(2019春•红河州期末)点A,B,C在同一直线上,已知AB=3cm,BC=1cm,则线段AC的长是()A.2cm B.3cm C.4cm D.2cm或4cm8.(2019春•岱岳区期末)如图,点C是AB的中点,点D是BC的中点,现给出下列等式:①CD=AC﹣DB,②CD AB,③CD=AD﹣BC,④BD=2AD﹣AB.其中正确的等式编号是()A.①②③④B.①②③C.②③④D.②③9.(2019春•开福区校级期末)嘉淇乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(最小圆的半径是1km),下列关于小艇A,B的位置描述,正确的是()A.小艇A在游船的北偏东60°方向上,且与游船的距离是3kmB.游船在小艇A的南偏西60°方向上,且与小艇A的距离是3kmC.小艇B在游船的北偏西30°方向上;且与游船的距离是2kmD.游船在小艇B的南偏东60°方向上,且与小艇B的距离是2km10.(2018秋•嘉祥县期末)观察下列图形,并阅读相关文字那么20条直线相交,最多交点的个数是()A.190 B.210 C.380 D.420第Ⅱ卷(非选择题)二.填空题(共6小题,满分24分,每小题4分)11.(2018秋•番禺区期末)如图,将甲,乙两个尺子拼在一起,两端重合.若甲尺经校订是直的,那么乙尺就一定不是直的;用数学知识解释这种生活现象为.12.(2019春•莱州市期末)如图,把一条绳子折成3折,用剪刀从中剪断,得到几条绳子.13.(2019春•浦东新区期末)计算:48°59′+67°31′﹣21°12′=.14.(2019春•浦东新区期末)在直线MN上取A、B两点,使AB=10cm,再在线段AB上取一点C,使AC =2cm,P、Q分别是AB、AC的中点,则PQ=cm.15.(2018秋•福田区校级期末)当时间为3点30分时,时钟上时针与分针所成夹角的度数是.16.(2018秋•孝义市期末)已知∠AOB=60°,以点O为端点作射线OC,使∠BOC=20°,再作∠AOC的平分线OD,则∠AOD的度数为.评卷人得分三.解答题(共6小题,满分46分)17.(6分)(2018秋•龙岩期末)根据语句画出图形:如图,已知A、B、C三点.①画线段AB;②画射线AC;③画直线BC;④取AB的中点P,连接PC.18.(6分)(2018秋•天心区校级期末)角度计算题:如图,已知O为AD上一点,∠AOB与∠AOC互补,ON平分∠AOB,OM平分∠AOC,若是∠MON=42°,求∠AOB与∠AOC的度数.19.(8分)(2018秋•宁德期末)图1所示的三棱柱,高为7cm,底面是一个边长为5cm的等边三角形.(1)这个三棱柱有条棱,有个面;(2)图2方框中的图形是该三棱柱的表面展开图的一部分,请将它补全;(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,需剪开条棱,需剪开棱的棱长的和的最大值为cm.20.(8分)(2018秋•龙泉驿区期末)如图,已知∠AOB内部有三条射线,其中OE平分角∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=120°,∠AOC=50°,求∠EOF的度数;(2)如图2,若∠AOB=α,∠AOC=β,求∠EOF的度数.21.(8分)(2018秋•绍兴期末)如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC =a,BC=b.(1)若a=4 cm,b=6 cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.22.(10分)(2018秋•永新县期末)如图①,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一直角边OM在射线OB上,另一直角边ON在直线AB的下方,(1)将图①中的三角板绕点O逆时针方向旋转至图②,使边OM在∠BOC的内部,且恰好平分∠BOC,求∠BON大小;(2)将图①中的三角板绕点O逆时针方向旋转至图③.①如果ON恰好是∠AOC的角平分线,则∠AOM﹣∠NOC的度数为;②如果ON始终在∠AOC的内部,∠AOM﹣∠NOC的度数不会变化,请猜测出∠AOM﹣∠NOC的度数并说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.(2018秋•密云区期末)下列四个几何体中,是三棱柱的为()A.B.C.D.【解析】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为圆柱,不符合题意;D、该几何体为三棱柱,符合题意;故选:D.【点睛】考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.2.(2017秋•宿州期末)雨滴滴下来形成雨丝属于下列哪个选项的实际应用()A.点动成线B.线动成面C.面动成体D.以上都不对【解析】解:雨滴滴下来形成雨丝属于点动成线,故选:A.【点睛】此题考查点、线、面、体,关键是根据点动成线解答.3.(2018秋•竞秀区期末)”在山区建设公路时,时常要打通一条隧道,就能缩短路程”其中蕴含的数学道理是()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段的长度是两点间的距离【解析】解:由线段的性质可知,”在山区建设公路时,时常要打通一条隧道,就能缩短路程”这其中蕴含的数学道理是:两点之间,线段最短.故选:A.【点睛】本题考查的是线段的性质,即两点之间线段最短.4.(2019春•文登区期末)下列说法正确的是()A.延长直线ABB.延长射线ABC.反向延长射线ABD.延长线段AB到点C,使AC=BC【解析】解:A.延长直线AB,说法错误;B.延长射线AB,说法错误;C.反向延长射线AB,说法正确;D.延长线段AB到点C,则AC>BC,故本选项错误;故选:C.【点睛】本题主要考查了直线、射线、线段的概念,注意用两个字母表示射线时,端点的字母放在前边.5.(2018秋•榆林期末)如图,右边的平面图形绕虚线l旋转一周,可以得到左边图形的是()A.B.C.D.【解析】解:由图可知,只有D选项图形绕直线l旋转一周得到如图所示立体图形,故选:D.【点睛】本题考查了点、线、面、体,熟悉常见图形的旋转得到立体图形是解题的关键.6.(2018秋•临沧期末)如图,下列说法中不正确的是()A.∠1与∠AOB是同一个角B.∠AOC也可以用∠O表示C.∠β=∠BOC D.图中有三个角【解析】解:A、∠1与∠AOB是同一个角,说法正确;B、∠AOC也可用∠O来表示,说法错误;C、∠β与∠BOC是同一个角,说法正确;D、图中共有三个角:∠AOB,∠AOC,∠BOC,说法正确;故选:B.【点睛】此题主要考查了角的概念,关键是掌握角的表示方法.7.(2019春•红河州期末)点A,B,C在同一直线上,已知AB=3cm,BC=1cm,则线段AC的长是()A.2cm B.3cm C.4cm D.2cm或4cm【解析】解:本题有两种情形:(1)当点C在线段AB上时,如图,AC=AB﹣BC,又∵AB=3cm,BC=1cm,∴AC=3﹣1=2cm;(2)当点C在线段AB的延长线上时,如图,AC=AB+BC,又∵AB=3cm,BC=1cm,∴AC=3+1=4cm.故线段AC=2cm或4cm.故选:D.【点睛】考查了两点间的距离,在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.8.(2019春•岱岳区期末)如图,点C是AB的中点,点D是BC的中点,现给出下列等式:①CD=AC﹣DB,②CD AB,③CD=AD﹣BC,④BD=2AD﹣AB.其中正确的等式编号是()A.①②③④B.①②③C.②③④D.②③【解析】解:①点C是AB的中点,AC=CB.②点C是AB的中点,∴,又∵点D是BC的中点,∴CD.故②正确;③点C是AB的中点,AC=CB.CD=AD﹣AC=AD﹣BC,故③正确;④2AD﹣AB=2AC+2CD﹣AB=2CD=BC,故④错误.故正确的有①②③.故选:B.【点睛】此题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.9.(2019春•开福区校级期末)嘉淇乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(最小圆的半径是1km),下列关于小艇A,B的位置描述,正确的是()A.小艇A在游船的北偏东60°方向上,且与游船的距离是3kmB.游船在小艇A的南偏西60°方向上,且与小艇A的距离是3kmC.小艇B在游船的北偏西30°方向上;且与游船的距离是2kmD.游船在小艇B的南偏东60°方向上,且与小艇B的距离是2km【解析】解:A、小艇A在游船的北偏东30°,且距游船3km,故本选项不符合题意;B、游船在小艇A的南偏西30°方向上,且与小艇A的距离是3km,故本选项不符合题意;C、小艇B在游船的北偏西60°,且距游船2km,故本选项不符合题意;D、游船在小艇B的南偏东60°方向上,且与小艇B的距离是2km,故本选项符合题意.故选:D.【点睛】本题考查了方向角.熟练掌握平面内特殊位置的点的坐标特征.理解方向角的表示方法.10.(2018秋•嘉祥县期末)观察下列图形,并阅读相关文字那么20条直线相交,最多交点的个数是()A.190 B.210 C.380 D.420【解析】解:设直线有n条,交点有m个.有以下规律:直线n条交点m个2 13 1+24 1+2+3…n m=1+2+3+…+(n﹣1),20条直线相交有190个.故选:A.【点睛】此题主要考查了相交线,关键是找出直线条数与交点个数的计算公式.二.填空题(共6小题,满分24分,每小题4分)11.(2018秋•番禺区期末)如图,将甲,乙两个尺子拼在一起,两端重合.若甲尺经校订是直的,那么乙尺就一定不是直的;用数学知识解释这种生活现象为两点确定一条直线.【解析】解:∵甲尺是直的,两尺拼在一起两端重合,∴甲尺经校订是直的,那么乙尺就一定不是直的,用数学知识解释这种生活现象为:两点确定一条直线.故答案为:两点确定一条直线.【点睛】本题考查的是直线的性质,熟知两点确定一条直线是解答此题的关键.12.(2019春•莱州市期末)如图,把一条绳子折成3折,用剪刀从中剪断,得到几条绳子4.【解析】解:如图折成3折,有两个拐点,而不是折叠三次,故能得到4条绳子.【点睛】解题的关键是看清图中折的方式,从而作出判断.注意结合图形解题的思想.13.(2019春•浦东新区期末)计算:48°59′+67°31′﹣21°12′=95°18′.【解析】解:48°59′+67°31′﹣21°12′=116°30′﹣21°12′=95°18′.故答案为:95°18′【点睛】本题主要考查了度、分、秒的四则混合运算,是角度计算中的一个难点,注意以60为进制即可,难度适中.14.(2019春•浦东新区期末)在直线MN上取A、B两点,使AB=10cm,再在线段AB上取一点C,使AC =2cm,P、Q分别是AB、AC的中点,则PQ=4cm.【解析】解:如图,∵AB=10cm,P为AB的中点∴AP=PB=5cm∵AC=2cm,∴CP=3cm∵Q为AC的中点∴QC=AQ=1cm∴PQ=QC+CP=1+3=4cm故答案为:4【点睛】此题主要考查两点间的距离(线段长度)计算,此类题目,通常利用图形结合进行解题.15.(2018秋•福田区校级期末)当时间为3点30分时,时钟上时针与分针所成夹角的度数是75°.【解析】解:时针从数3开始30分转了30×0.5°=15°,分针从数字12开始30分转了30×6°=180°,所以3点30分,时针与分针所成夹角的度数=180°﹣90°﹣15°=75°.故答案为:75°.【点睛】本题考查了钟面角:钟面被分成12大格,每大格30°;分针每分钟转6°,时针每分钟转0.5°.16.(2018秋•孝义市期末)已知∠AOB=60°,以点O为端点作射线OC,使∠BOC=20°,再作∠AOC 的平分线OD,则∠AOD的度数为20°或40°.【解析】解:(1)当OC在∠AOB的内部时,如图1所示:∵∠BOC=20°,∠AOB=60°,∠AOB=∠AOC+∠BOC,∴∠AOC=60°﹣20°=40°,又∵OD是∠AOC的平分线,∴∠AOD=∠COD20°;(2)当OC在∠AOB的外部时,如图2所示:∵∠AOC=∠AOB+∠BOC,∠AOB=60°,∠BOC=20°,∴AOC=80°,又∵OD是∠AOC的平分线,∴∠AOD=∠COD40°;综合所述∠AOD的度数有两个,故答案为20°或40°.【点睛】本题综合了角平分线定义和角的和差知识,重点掌握角的计算,难点是用分类计算角的大小,易掉角的外部这一种情况.三.解答题(共6小题,满分46分)17.(6分)(2018秋•龙岩期末)根据语句画出图形:如图,已知A、B、C三点.①画线段AB;②画射线AC;③画直线BC;④取AB的中点P,连接PC.【解析】解:如图.【点睛】本题考查了直线、射线、线段,正确区分直线、线段、射线是解题关键.18.(6分)(2018秋•天心区校级期末)角度计算题:如图,已知O为AD上一点,∠AOB与∠AOC互补,ON平分∠AOB,OM平分∠AOC,若是∠MON=42°,求∠AOB与∠AOC的度数.【解析】解:设∠AOB=x°,因为∠AOC与∠AOB互补,则∠AOC=180°﹣x°.由题意,得42.∴180﹣x﹣x=84,∴﹣2x=﹣96,解得x=48,故∠AOB=48°,∠AOC=132°.【点睛】本题考查补角的定义,角平分线的定义,及角的运算.在图形中,找补角关系时,除了借助图形外,还需考虑等量关系即有没有相等的角.19.(8分)(2018秋•宁德期末)图1所示的三棱柱,高为7cm,底面是一个边长为5cm的等边三角形.(1)这个三棱柱有9条棱,有5个面;(2)图2方框中的图形是该三棱柱的表面展开图的一部分,请将它补全;(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,需剪开5条棱,需剪开棱的棱长的和的最大值为31cm.【解析】解:(1)这个三棱柱有条9棱,有个5面;故答案为:9,5;(2)如图;(3)由图形可知:没有剪开的棱的条数是4条,则至少需要剪开的棱的条数是:9﹣4=5(条).故至少需要剪开的棱的条数是5条.需剪开棱的棱长的和的最大值为:7×3+5×2=31(cm).故答案为:5,31.【点睛】本题主要考查的是认识立体图形,明确n棱柱有n个侧面,2个底面,3n条棱,2n个顶点;能够数出三棱柱没有剪开的棱的条数是解答此题的关键.20.(8分)(2018秋•龙泉驿区期末)如图,已知∠AOB内部有三条射线,其中OE平分角∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=120°,∠AOC=50°,求∠EOF的度数;(2)如图2,若∠AOB=α,∠AOC=β,求∠EOF的度数.【解析】解:(1)∵OF平分∠AOC,∴∠COF∠AOC30°=15°,∵∠BOC=∠AOB﹣∠AOC=120°﹣30°=90°,OE平分∠BOC,∴∠EOC∠BOC=45°,∴∠EOF=∠COF+∠EOC=60°;(2)∵OF平分∠AOC,∴∠COF∠AOC,同理,∠EOC∠BOC,∴∠EOF=∠COF+∠EOC∠AOC∠BOC(∠AOC+∠BOC)∠AOBα.【点睛】本题考查了角平分线的性质,以及角度的计算,正确理解角平分线的定义是关键.21.(8分)(2018秋•绍兴期末)如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC =a,BC=b.(1)若a=4 cm,b=6 cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.【解析】解:(1)∵M、N分别是AC、BC的中点,∴MC AC,CN BC,∴MN=MC+CNAC BC4 6=5cm,所以MN的长为5cm.(2)同(1),MN AC CB(AC+CB)(a+b).(3)图如右,MN(a﹣b).理由:由图知MN=MC﹣NCAC BCa b(a﹣b).【点睛】本题主要考查线段中点的定义,线段的中点把线段分成两条相等的线段.22.(10分)(2018秋•永新县期末)如图①,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一直角边OM在射线OB上,另一直角边ON在直线AB的下方,(1)将图①中的三角板绕点O逆时针方向旋转至图②,使边OM在∠BOC的内部,且恰好平分∠BOC,求∠BON大小;(2)将图①中的三角板绕点O逆时针方向旋转至图③.①如果ON恰好是∠AOC的角平分线,则∠AOM﹣∠NOC的度数为30°;②如果ON始终在∠AOC的内部,∠AOM﹣∠NOC的度数不会变化,请猜测出∠AOM﹣∠NOC的度数并说明理由.【解析】解:(1)∵OM平分∠BOC,∠BOC=120°,∴∠BOM=∠MON=60°,∵∠MON=90°,∴∠BON=∠MON﹣∠BOM=90°﹣60°=30°;(2)①∠AOM﹣∠NOC=30°;故答案为:30°②∠AOM﹣∠NOC=30°,理由如下:∵∠AOM=∠MON﹣∠AON=90°﹣∠AON,∠NOC=∠AOC﹣∠AON=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.【点睛】本题考查了角平分线的定义,应该认真审题并仔细观察图形,找到各个量之间的关系,是解题的关键.。
第4章 图形的初步认识 华东师大版七年级上册数学单元测试(含答案)
第4章图形的初步认识(单元测试)华东师大新版七年级上册数学一.选择题(共7小题)1.时钟的时针由4点转到5点45分,时针转过的角度是( )A.52030'B.50045'C.5405'D.10045'2.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB 的大小为( )A.69°B.111°C.141°D.159°3.如图,点A,O,B在同一条直线上,OC平分∠DOB,已知,∠AOE=30°30',∠DOC=65°15',则∠DOE的度数是( )A.70°B.78°C.80°D.84°4.如图所示,下列说法错误的是( )A.∠DAO可用∠DAC表示B.∠COB也可用∠O表示C.∠2也可用∠OBC表示D.∠CDB也可用∠1表示5.用3个同样的小正方体摆出的几何体,从三个方向看到的图形分别如图:....=∠A.∠AOC=∠BOCB.∠AOC<∠AOBC.∠AOC=∠BOC或∠.如图所示,图(表面上),请根据要求回答问题:,求的值;运动秒后都停止运动,此时恰有=BD第4章图形的初步认识(单元测试)华东师大新版七年级上册数学参考答案与试题解析一.选择题(共7小题)1.时钟的时针由4点转到5点45分,时针转过的角度是( )A.52030'B.50045'C.5405'D.10045'【答案】A【解答】解:钟表12个数字,每相邻两个数字之间的夹角为30°,每相邻两个数字之间有5个格,每格之间的度数为6°,时钟的时针由4点转到5点45分,时针转过的5+5×格,时针转过的度数=6°×(5+5×)=52°30′.故选:A.2.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB 的大小为( )A.69°B.111°C.141°D.159°【答案】C【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.3.如图,点A,O,B在同一条直线上,OC平分∠DOB,已知,∠AOE=30°30',∠DOC=65°15',则∠DOE的度数是( )A.70°B.78°C.80°D.84°【答案】C【解答】解:∵OC平分∠DOB,∠DOC=65°15',∴∠BOD=2∠DOC=130°30′,∴∠AOD=180°﹣130°30′=49°30′,∴∠DOE=∠AOD+∠AOE=49°30′+30°30′=80°.故选:C.4.如图所示,下列说法错误的是( )A.∠DAO可用∠DAC表示B.∠COB也可用∠O表示C.∠2也可用∠OBC表示D.∠CDB也可用∠1表示【答案】B【解答】解:A、∠DAO可用∠DAC表示,本选项说法正确;B、∠COB不能用∠O表示,本选项说法错误;C、∠2也可用∠OBC表示,本选项说法正确;D、∠CDB也可用∠1表示,本选项说法正确;故选:B.5.用3个同样的小正方体摆出的几何体,从三个方向看到的图形分别如图:这个几何体是( )A.B.C.D.【答案】B【解答】解:由俯视图可知,小正方体摆出的几何体为:,故选:B.6.如图是由几个相同的小正方体组成的几何体,则下列说法正确的是( )A.左视图面积最大B.俯视图面积最小C.左视图面积和正视图面积相等D.俯视图面积和正视图面积相等【答案】D【解答】解:观察图形可知,几何体的主视图由4个正方形组成,俯视图由4个正方形组成,左视图由3个正方形组成,所以左视图的面积最小,俯视图面积和正视图面积相等.故选:D.=∠A.∠AOC=∠BOCB.∠AOC<∠AOBC.∠AOC=∠BOC或∠=∠=∠===×【答案】(1(2)图形见解答.【解答】解:的距离为×∴△ABM的面积=×10×5=25.或△ABM′的面积=×10×21=105.19.如图甲,点O是线段AB上一点,C、D两点分别从O、B同时出发,以2cm/s、4cm/s的速度在直线AB上运动,点C在线段OA之间,点D在线段OB之间.(1)设C、D两点同时沿直线AB向左运动t秒时,AC:OD=1:2,求的值;(2)在(1)的条件下,若C、D运动秒后都停止运动,此时恰有OD﹣AC=BD,求CD的长;(3)在(2)的条件下,将线段CD在线段AB上左右滑动如图乙(点C在OA之间,点D在OB 之间),若M、N分别为AC、BD的中点,试说明线段MN的长度总不发生变化.【答案】见试题解答内容【解答】解:(1)设AC=x,则OD=2x,又∵OC=2t,DB=4t∴OA=x+2t,OB=2x+4t,∴;(2)设AC=x,OD=2x,又OC=×2=5(cm),BD=×4=10(cm),由OD﹣AC=BD,得2x﹣x=×10,x=5,OD=2x=2×5=10(cm),=AC=×=BC=×=acm=AC=BC=AC+BC=AB=acm=AC=BC=AC﹣BC=()=bcm(2)数轴上表示a和﹣5的两点A和B之间的距离是 |a+5| ;(3)若数轴上三个有理数a、b、c满足|a﹣b|=1,|a﹣c|=7,则|b﹣c|的值为 6或8 ;(4)当a= 1 时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是 7 .【答案】见试题解答内容【解答】解:(1)2﹣(﹣3)=5,故答案为:5;(2)|AB|=|a﹣(﹣5)|=|a+5|,故答案为:|a+5|;(3)当a>b>c时,|b﹣c|=|a﹣c|﹣|a﹣b|=7﹣1=6;当b>a>c时,|b﹣c|=|a﹣c|+|a﹣b|=7+1=8;C点在A,B两点之间时不符合题意,综上|b﹣c|的值为6或8,故答案为:6或8;(4)∵当﹣3≤a≤4时,|a+3|+|a﹣4|的最小值为7,∴只需要|a﹣1|的值最小即可,此时a=1,|a﹣1|=0,∴当a=1时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是7.故答案为:1;7.。
人教版七年级上学期数学《几何图形初步》单元综合检测题(含答案)
A.连接两点的线段叫做两点间的距离
B.过一点有且只有一条直线与已知直线垂直
C.对顶角相等
D.线段A B的延长线与射线B A是同一条射线
7.如图,A B是一条直线,OC是∠AOD的平分线,OE在∠BOD内,∠DOE= ∠BOD,∠COE=72°,则∠EOB=()
A36°B. 72°
[答案]C
[解析]
[分析]
分别利用直线的性质以及射线的定义和垂线定义分析得出即可.
[详解]A.连接两点的线段的长度叫做两点间的距离,错误;
B.在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;
C.对顶角相等,正确;
D.线段A B的延长线与射线B A不是同一条射线,错误.
故选C.
[点睛]本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题的关键.
二.填空题
11.青青同学把一张长方形纸折了两次,如图,使点A,B都落在DG上,折痕分别是DE,DF,则∠EDF的度数为_____.
[答案]90°
[解析]
[分析]
结合轴对称的特点以及图形的特点进行解题.
[详解]∵长方形的纸片折叠了两次,使A、B两点都落DG上,折痕分别是DE、DF,∴∠GDF=∠B DF,∠GDE=∠A DE,∴∠GDF+∠GDE= (∠GD B+∠GD A)= ×180°=90°,即∠EDF=90°.故答案为90°.
20.如图,直线A B、C D相交于O,∠BOC=70°,OE是∠BOC的角平分线,OF是OE的反向延长线.
(1)求∠1,∠2,∠3的度数;
(2)判断OF是否平分∠AOD,并说明理由.
21.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°.求∠COD的度数.
第四章 图形认识初步单元测试卷(含答案)-
第四章图形认识初步单元测试卷(总分:120分时间:120分钟)一、填空题(每题3分,共30分)1.写出三个常见的几何体名称_____,_______,_______.2.小明用一个钉子把木条钉在墙上时,发现木条会转动,然后再钉一个钉子时,•木条就被固定了,这是根据___________原理.3.8点整,时针与分针的夹角为_______度.4.已知角α为28°15°21″,则它的补角为_______.5.如图所示,O是直线AB上一点,∠AOD=∠BOF=120°,∠AOC=90°,OE•平分∠BOD,则图中与∠COD相等的角有_______个.6.从七边形的某一顶点出发,连接其余各顶点,•可以把这个七边形分割成_____个三角形.7.若∠AOB=40°,∠BOC=60°,则∠AOC=_______.8.如图点M是线段AB的三等分点,E是AB的中点,如果AM=2,那么ME=______.9.如图各几何体中,三棱柱是_______.(1) (2) (3) (4)10.如图所示,要把角钢(1)弯成120°的钢架(2),则在角钢(1)上截去的缺口是____________度.(1) (2)二、选择题(每题3分,共30分) 11.下列语句中,正确的是( )A .直线比射线长B .射线比线段长C .无数条直线不可能相交于一点D .两条直线相交,只有一个交点 12.已知线段AB ,延长AB 到C ,使BC=13AB ,D 为AC 的中点,若DC=4cm ,则AB 的长是( ) A .3cm B .6cm C .8cm D .10cm 13.如图图形中不可以拼成正方体的图形是( )14.如图平面展开图是下面名称几何体的展形图,•立体图形与平面展开图不相符的是( )15.平面上有三点A ,B ,C 如果AB=8,AC=5,BC=3,则( ) A .点C 在线段AB 上 B .点B 在线段AB 的延长线上C .点C 在直线AB 外D .点C 可能在直线AB 上,也可能在直线AB 外 16.若∠α和∠β互为余角,∠α和∠γ互为补角,∠β与∠γ的和等于周角的13,则这三个角分别为( )A .75°,15°,105°B .60°,30°,120°C .50°,40°,130°D .70°,20°,110°17.某物体从不同方向看得到图4-7所示的三个图形,那么该物体形状是( )A .长方形B .圆锥形C .正方体D .圆柱体 18.如图所示,以A ,B ,C ,D ,E 为线段的端点,图中共有线段( )A .8条B .10条C .12条D .14条19.(经典题)如图所示,B ,C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 的中点,若BC=a ,MN=b ,则AD 的长度是( )A .b-aB .a+bC .2b-aD .以上都不对20.如图所示,下列说法正确的是( )A .CA 为东偏北30°B .OB 为东偏南20°C .OC 为北偏西50°D .以上都不正确三、解答题(共60分)21.(8分)已知∠α和∠β互余,且∠α比∠β小25°,求∠α-15∠β的度数.22.(8分)如图,B ,C 两点把线段AD 分成2:3:4三部分,M 是AD 中点,CD=8cm ,求MC 的长.23.(8分)如图所示,已知点C在线段AB上,且AC=6cm,BC=23AC,点M,N分别是AC,BC的中点,求线段MN+BN的长度.24.(8分)如图所示,已知∠AOB=120°,∠AOC是直角,OD平分∠BOC,OE•平分∠AOC,求∠DOE的度数.25.(8分)画出线段AB.(1)如图(1)所示,在线段AB上画出1个点,这时图中共有几条线段?(2)如图(2)所示,在线段AB上画出2个点,这时图中共有几条线段?(3)如图(3)所示,在线段AB上画出3个点,这时图中共有几条线段?(4)当在线段AB上画出n个点时,则共有几条线段?26.(10分)(探索题)如图所示,已知方格纸中的每个小方格是边长为1•的正方形,A,B两点在小方格的顶点上,位置如图所示,请在小方格的顶点上确定一点C,连接AB,AC,BC,使三角形ABC面积为2个平方单位,画出所有可能的图形.27.(10分)(应用题)如图所示,A,B,C是一条公路上的三个村庄,A,B•间路程为100km,A,C间路程为40km,现在A,B之间建一个车站,设P,C之间的路程为xkm.(1)用含x的代数式表示车站到三个村庄的路程之和;(2)若路程之和为102km,则车站应设在何处?(3)使路程和最小,车站应建在何处?答案:1.圆柱,正方体,棱柱 2.两点确定一条直线3.120° 4.151°44′39″ 5.3 6.57.100°或20° 8.1(点拨:AB=6,AE=12AB=3,3-2=1)9.(4) 10.60° 11.D 12.B 13.C 14.A 15.A 16.A 17.D 18.B19.C(点拨:BM+CN=b-a,AB+CD=2b-2a)20.C21.∠α=32.5°,∠β=57.5°,结果为21°22.1cm23.MN=102=5cm,BN=12×4=2cm,∴MN+BN=7cm.24.∠DOE=12∠BOC+45°=12(120°-90°)+45°=15°+45°=60°25.(1)三条线段(2)六条线段(3)十条线段(4)n+1+n+n-1+…+1或12(n+1)(n+2)条线段.26.如图所示.27.(1)路程之和为PA+PC+PB=(100+x)km.(2)100+x=102,x=2,车站在C两侧2km处.(3)当x=0时,x+100=100,小站建在C处路程和最小,路程和为100km.。
第四章 图形认识初步 单元检测试题(含答案)
图3图2图1E D CB A 第四章《图形认识初步》测验试卷一、填空题(每空1分,共29分)1.写出下列几何体的名称:2.圆柱的底面是 ,侧面是 ,展开后的侧面是 ; 3.如图是某些几何体的表面展开图,则这些几何体分别是 图1: 图2: 图3:4.若要使图中平面展开图按虚线折叠成正方体后,相对面上 两个数之和为6,x=_ ___,y=______.5.已知α∠与β∠互余,且40α=o ∠15’,则α∠的余角为_____,β∠的补角为_____. 6.如图,图中共有线段_____条,若是中点,是中点,⑴若,,_________; ⑵若,,_________。
7.俯视图为圆的立体图形可能是______________________。
(填两个即可)8.要在墙上固定一根木条,至少要 个钉子,根据的原理是 。
9.⑴° ; ⑵0.5°=______′=______″(3)900—43018'= ; (4)360°÷7≈ (精确到分) 10.不在同一直线上的四点最多能确定 条直线。
11.小明每天下午5:30回家,这时分针与时针所成的角的度数为___________。
二、选择题(每题3分,共36分) 1. 对于直线,线段,射线,在下列各图中能相交的是( )1 2 3x yA6502.如果与互补,与互余,则与的关系是( )(A )=(B )(C )(D )以上都不对3.下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个的是( ) 4.如图,,,点B 、O 、D 在同一直线上,则的度数为( )(A )(B )(C )(D )5.下列图中角的表示方法正确的个数有( )CBA∠ABCCBA∠CAB直线是平角∠AOB 是平角(A )1个 (B )2个 (C )3个 (D )4个 6.如图的几何体,左视图是 ( )7.下列叙述正确的是 ( )A .180°的角是补角B .110°和90°的角互为补角C .10°、20°、60°的角互为余角D .120°和60°的角互为补角 8.平面上有任意三点,过其中两点画直线,共可以画( )A .1条B .3条C .1条或3条D .无数条 9.下列语句正确的是 ( )DC B AA .在所有连接两点的线中,直线最短;B .线段AB 是点A 与点B 的距离;C .取直线AB 的中点;D .反向延长线段AB ,得到射线BA.10.如图,点A 位于点O的 方向上.(). (A )南偏东35° (B )北偏西65° (C )南偏东65° (D )南偏西65° 11. 将下列图形绕直线l 旋转一周, 可以得到右图所示的立体图形的是( )12. 下图中, 是正方体的展开图是( )A B C D三、作图题:(6分) 1.根据下列要求画图: (1)连接线段AB ;(2)画射线OA ,射线OB ;(3)在线段AB 上取一点C ,在射线OA 上取一点D(点C 、D 不与点A 重合),画直线CD ,使直线CD 与射线OB 交于点E 。
第四章_图形的初步认识复习测试题(含答案)-
第四章图形的初步认识复习测试题一、精心选一选(每小题2分,共30分)1、下列说法正确的是()A、直线AB和直线BA是两条直线;B、射线AB和射线BA是两条射线;C、线段AB和线段BA是两条线段;D、直线AB和直线a不能是同一条直线2、下列图中角的表示方法正确的个数有()A、1个B、2个C、3个D、4个3、下面图形经过折叠可以围成一个棱柱的是()4、经过同一平面内任意三点中的两点共可以画出()A、一条直线B、两条直线C、一条或三条直线D、三条直线5、若∠A=20 o 18′,∠B=20 o 15′30〞,∠C= o,则()A、∠A>∠B>∠CB、∠B>∠A>∠CC、∠A>∠C >∠BD、∠C >∠A >∠B6、如图,每个图片都是6个相同的正方形组成的,不能折成正方形的是()7、如左图所示的正方体沿某些棱展开后,能得到的图形是()西东 AD8、下列语句正确的是()A.钝角与锐角的差不可能是钝角;B.两个锐角的和不可能是锐角;C.钝角的补角一定是锐角;D.∠α和∠β互补(∠α>∠β),则∠α是钝角或直角。
9、在时刻8:30,时钟上的时针和分针的夹角是为( ) A 、85 ° B 、75°C 、70 °D 、60°10、如果∠α=26°,那么∠α余角的补角等于 ( ) A 、20°B 、70 °C 、110 °D 、116°11、如果∠α+∠β=900,而∠β与∠γ互余,那么∠α与∠γ的关系为 ( ) A 、互余 B 、互补 C 、相等 D 、不能确定。
12、如图下列说法错误的是( )A 、OA 方向是北偏东40°B 、OB 方向是北偏西15 °C 、OC 方向是南偏西30°D 、OD 方向是东南方向。
13、下列说法中错误的有( ) (1)线段有两个端点,直线有一个端点; (2)角的大小与我们画出的角的两边的长短无关;(3)线段上有无数个点;(4)同角或等角的补角相等;(5)两个锐角的和一定大于直角 A .1个 B .2个 C .3个 D .4个 14、如图∠AOD -∠AOC =( )A 、∠ADCB 、∠BOC C 、∠BOD D 、∠COD15、如图把一个圆绕虚线旋转一周,得到的几何体是( )二、细心填一填(每空2分,共30分)16. 将下列几何体分类,柱体有:,锥体有(填序号)。
人教版七年级上册数学《几何图形初步》单元综合测试卷(带答案)
【解析】
【分析】
根据圆柱的特点:圆柱由一个曲面,两个平面(底面)围成的;圆柱两个面之间距离叫做高,圆柱的侧面打开,得到一个长方形,这个长方形的长就是圆柱的底周长观察所给图形,观察图形用排除法可做出判断.
【详解】A选项:有一个曲面,两个平面围成的,最接近圆柱,故本选项正确;
B选项:有两个平面,但圆柱的母线没有垂直于底面,故本选项错误;
A. S3<S1<S2B. S1<S2<S3C. S2<S1<S3D. S1=S2=S3
9.下列七个图形中是正方体的平面展开图的有( )
A.1个B.2个C.3个D.4个
10.如图是一个棱长为1 正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是( )
A.60°B.50°C.45°D.30°
【答案】2或8
【解析】
【分析】
由于线段BC与线段AB的位置关系不能确定,故应分C在线段AB内和AB外两种情况进行解答.
【详解】解:①如图1所示,
∵AB=10,BC=6,
∴AC=AB-BC=10-6=4,
∵D是线段AC的中点,
∴AD= AC= ×4=2;
②如图2所示,
∵AB=10,BC=6,
4.如图,图中共有线段( )
A. 7条B. 8条C. 9条D. 10条
【答案】B
【解析】
【分析】
根据线段的定义找出所有的线段即可解答.
【详解】由图可知,线段有AD,DB,BC,CE,EA,DE,AB,AC,一共八条,所以答案选择B.
【点睛】明白线段 定义是解题的关键.
5.如图,C为线段AB上一点,D为线段BC的中点,AB=20,AD=14,则AC的长为( )
人教版数学七年级上册《几何图形初步》单元检测卷附答案
故选D.
【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
4.与红砖、足球类似的图形是( )
A.长方形、圆B.长方体、圆
C.长方体、球D.长方形、球
16.天上一颗颗闪烁的星星给我们以“_____”的形象;中国武术中有“枪扎一条线,棍扫一大片”的说法,这句话给我们以“_____”的形象;宾馆里旋转的大门给我们以“_____”的形象.
17.定义:两个直角三角形,若一个三角形的两条直角边分别与另一个三角形的两条直角边相等,我们就说这两个直角三角形是“同胞直角三角形”.如图,在边长为10的正方形中有两个直角三角形,当直角三角形①和直角三角形②是同胞直角三角形时,a的值是_____.
9.A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是( )
A.1cmB.9cmC.1cm或9cmD. 以上答案都不对
二、填空题
10.如图,有一个长方形纸片,减去相邻的两个角,使∠ABC=90°,如果∠1=152°,那么∠2=_____________°.
11.一个长方体形状的粉笔盒展开如图所示,相对的两个面上的数字之和等于6,则a+b+c=_____.
(1)数一下每一个多面体具有的顶点数 、棱数 和面数 .并且把结果记入表中.
多面体
顶点数
面数
棱数
正四面体
4
4
6
正方体
正八面体
正十二面体
正ห้องสมุดไป่ตู้十面体
12
20
30
(2)观察表中数据,猜想多面体的顶点数 、棱数 和面数 之间的关系.
第四章 图形认识初步单元检测题及答案
第四章 图形认识初步单元检测题班级 .姓名 .学号 .一、选择题(每题4分,共40分) 1.圆锥的侧面展开图是( )A .圆形B .长方形C .扇形D .半圆形 2. 下列说法错误的是( )A .线段AB 和线段BA 是同一条线段; B .射线AB 和射线BA 是同一条射线C .直线AB 和直线BA 是同一条直线;D .线段AB 是直线AB 的一部分 3.下面图形经过折叠可以围成一个棱柱的是( )A B C D 4.下列图形中是正方体的展开图的为( )A .B . C. D. 5. 如果点C 是线段AB 上的一点,M 、N 分别是AC 、BC 的中点,则下列结论正确的是( ) A .MN=21AB B .NC=21AB C .MC=21AB D .AM=21AB 6.直线上不同的四个点,能够得到不同的线段条数共有( )A .四条B .五条C .六条D .七条7. 2000年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点位置的是( )A .北纬31oB .东径103.5oC .金华的西北方向上D .北纬31o,东径103.5o8.在时刻8:30,时钟上的时针和分针之间的夹角为( )A .85°B .75°C .70°D .60° 9. 从点A 看B 的方向是北偏东35°,那么从B 到A 的方向是( )A .南偏东55°B .南偏西55°C .南偏东35°D .南偏西35° 10. 一个画家有14个边长为1cm 的正方体,他在地面上把它们摆成如图所示的形式,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积是( )A .19cm 2B .21cm 2C .33cm 2D .34cm 2二、填空题(每题4分,共20分)11.将下列几何体分类,柱体有:,锥体有(填序号).12.植树时只要先定两个树坑的位置,•就能确定一行树所在的位置,其根据是___________.13. ∠1和∠2互补,且∠2+∠3=180°,则∠1=_______.14. 已知:∠A=60°,那么∠A的补角是.15.如图所示,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB的度数为_______.三、解答题(共40分)16.(共10分)(1)175°16′30″-47°30′÷6+4°12′50″×3;(2)一个角的补角加上10°等于这个角的余角的3倍,求这个角.17.(共10分)已知:如图所示,从点O 引四条射线OA 、OB 、OC 、OD ,如果OA ⊥OC ,OB ⊥OD .(1)若∠BOC =35°,求∠AOB 与∠COD 的大小; (2)若∠BOC =50°,求∠AOB 与∠COD 的大小; (3)你发现∠AOB 与∠COD 的大小有什么关系?18.(共10分)如果一个锐角的补角比这个角的余角的2倍还多40°,那么这个角的余角是多少度?A CO DB19.(共10分)(1)如下图,已知点C 在线段AB 上,6cm AC =且,4cm BC =,点M N , 分别是AC ,BC 的中点,求线段MN 的的长度.(2)在(1)中,如果cm AC a =,cm BC b =,其它条件不变,你能猜出MN 的长度吗?请你用一句简洁的话表述你发现的规律. (3)对于(1)题,如果我们这样叙述它:“已知线段6cm AC =,4cm BC =,点C 在直线AB 上,点M N ,分别是AC BC ,的中点,求MN 的长度.”结果会有变化吗?如果有,求出结果.参考答案一、选择题1.C2.B3.C4.A5.A6.C7.D8.B•9.D 10.C二、填空题11.1、2、3 5、6 12.两点确定一条直线13.∠3, 14.120° 15. 180°三、解答题16.(1)180°(2)40°17.(1)∵OA⊥OC∴∠AOB+∠BOC=90°∵∠BOC=35°∴∠AOB+35°=90°∴∠AOB=55°∵OB⊥OD∴∠COD+∠BOC=90°∵∠BOC=35°∴∠COD+35°=90°∴∠COD=55°(2)∵OA⊥OC∴∠AOB+∠BOC=90°∵∠BOC=50°∴∠AOB+50°=90°∴∠AOB=40°∵OB⊥OD∴∠COD+∠BOC=90°∵∠BOC=50°∴∠COD+50°=90°∴∠COD=40°(3)从(1)、(2)的运算知道:∠AOB=∠COD18.解法一:设这个角为x°,则其余角为(90-x)°,补角为(180-x)°∴180-x=2(90-x)+40,∴x=40∴90-x=50°答:这个角的余角是50度.解法二:设这个角的余角为x°,则其补角为(90+x)°∴90+x=2x+40,∴x=50答:这个角的余角是50度.19.(1)5㎝(2)MN =(a㎝+b㎝)÷2 MN的长度为线段AC,BC长度的二分之一(3)解:有变化已知AC=6㎝,BC=4㎝当AB在点C左侧时CN=3㎝,CM=2㎝MN=1㎝所以,点C在直线AB上,点M,N分别是AC,BC的中点,MN的长度有变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章《图形认识初步》综合测试题
(满分120分时间 90分钟)
李其明
一、选择题(每题3分,共30分)
1. ①平角是一条直线;②射线是直线的一半;③射线AB 与射线BA 表示同一条射线;④用一个扩大2倍的放大镜去看一个角,这个角会扩大2倍;⑤两点之间,线段最短;⑥120.5°= 120°50׳. 以上说法正确的有( )
A .0个 B.1个 C.2个 D.3个
2.下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个角的是( )
3.下列叙述正确的是( )
A .180°是补角
B 120°和60°互为补角
C 120°和60°是补角
D 60°是30°的补角
4. 如图1表示一个用于防震的L 形的包装用泡沫塑料,当从上面看这一物体时看到的图形形状是( )
5.下列图形中,哪一个是正方体的展开图( )
6.甲看乙的方向为南偏西25°,那么乙看甲的方向是 ( )
A .北偏东75°
B .南偏东75°
C .北偏东25°
D .北偏西25°
7.若∠A 的余角是70°,则∠A 的补角是( )
A .70°
B .110°
C .20°
D .160°
8.如图,AOC ∠和BOD ∠都是直角,如果 ︒=∠150AOB ,那么=∠COD ( ) A 、︒30 B 、︒40 C 、︒50 D 、︒60
9.经过任意三点中的两点共可画出( )
A .1条直线
B .2条直线
C .1条或3条直线
D .3条直线
10.如图所示,从O 点出发的五条射线,可以组成角的个数是( ).
A
C
B
O
D A . B . C . D .
(图1)
A .10个
B .9个
C .8个
D .4个
二、填空题(每题3分,共30分)
11.橙子类似______体,菠萝类似_______体,角柜类似_______体,金字塔类似_______体,粉笔盒类似_______体。
12.圆柱的侧面展开图是_______形。
13.8点半时钟表上时针与分针所组成的角为_________度。
14.拿一个硬币,将其立在桌面上用力一转,它形成的是一个_______体,由此说明_______________________________________________。
15.如图, OC 平分∠AOB ,∠BOC =20°,则∠AOB =_______。
(第15题图) (第16题图)
16.如图,点C 是∠AOB 的边OA 上一点,D 、E 是OB 上两点,则图中共有_______条线段,________条
射线, ________个小于平角的角.
17.把33.28°化成度、分、秒得___________ 108°20′42″=________度
18.有四个点,每三个点都不在一条直线上,过其中每两个点画直线,可以画________条直线。
19.已知五角星的五个顶点在同一圆上,且均分布,五角星的中心是这个圆的圆心,则圆心与两个相邻顶点的连线,构成的角度为__ ____.
20.∠α的补角为125°,∠β的余角为37°,则α、β的大小关系为α______β.
三、解答题(共60分)
21.(本题5分)如图,∠AOB 为已知角,请用圆规和直尺准确地画一个角等于∠AOB (请保留作图痕迹)
22.(本题5分)如图,分别从正面、左面、上面观察这个图形,请画出你看到的平面图形。
23.(本题10分)如图,已知C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,求AD 的长度。
24.(本题10分)如图,DE//BC ,2∠是1∠的2倍,且B ∠与
A
B
A
B
ACB
∠互余,若︒
=
∠50
B,求4
∠的度数。
25.(本题10分)如图,OA的方向是北偏东15°,OB的方向是西偏北50°。
(1)若∠AOC=∠AOB,则OC的方向是___________;
(2)OD是OB的反向延长线,OD的方向是_________;
(3)∠BOD可看作是OB绕点O逆时针方向至OD,
作∠BOD的平分线OE,并用方位角表示OE的方向。
(4)在(1)、(2)、(3)的条件下,求∠COE。
26.(本题10分)作图,思考并回答问题:
如图,已知:∆ABC
(1)按下列要求作图:取边AB、AC的中点D、E,
连结线段DE;
(2)用刻度尺测量线段 DE、BC的长度分别为
____;
(3)用量角器得∠B与∠ADE的度数分别为____;
(4)通过(2)、(3)你发现DE与BC,∠B与∠ADE分别有什么关系?请写出你的猜想.27.(本题10分)在足球比赛场上,甲乙两名队员互相配合,向对方球门进攻,当甲带球冲到A点时,
什么?
参考答案
一、BDADC DDBCC
二、
11.球;圆锥;棱柱;棱锥;正方体;12.
长方形;13.750;14.球;15.400;16.6,5,
10;
17.33016‘48
’‘;18.6;19.720
; 20. >
三、
21.
作图(略);
C
22.如图:
23.7.5cm;
24.200;
25.作图(略);
26.作图(略);
27.因为∠B>∠A,所以甲将球传给乙,让乙射门好。