高中数学第三章不等式3.4.1基本不等式练习(含解析)新人教A版必修5

合集下载

2015-2016学年高二数学练习第三章《不等式》章末归纳总结新人教A版必修5

2015-2016学年高二数学练习第三章《不等式》章末归纳总结新人教A版必修5

【成才之路】2015-2016学年高中数学 第三章 不等式章末归纳总结新人A 教版必修5一、选择题1.(2015·四川理,1)设集合A ={x |(x +1)(x -2)<0},集合B ={x |1<x <3},则A ∪B =( )A .{x |-1<x <3}B .{x |-1<x <1}C .{x |1<x <2}D .{x |2<x <3}[分析] 考查集合的基本运算和一元二次不等式的解法.解答本题先解不等式求出A ,再按并集的意义求解.[答案] A[解析] A ={x |-1<x <2},B ={x |1<x <3}, ∴A ∪B ={x |-1<x <3},选A .2.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系为( ) A .a >b >-b >-a B .a >-b >-a >b C .a >-b >b >-a D .a >b >-a >-b[答案] C [解析]⎭⎪⎬⎪⎫a +b >0⇒a >-b b <0⇒-b >0⇒a >-b >0⇒-a <b <0.∴选C .另解:可取特值检验.∵a +b >0,b <0,∴可取a =2,b =-1,∴-a =-2,-b =1,∴-a <b <-b <a ,排除A 、B 、D ,∴选C .3.不等式(x +5)(3-2x )≥6的解集是( )A .⎩⎨⎧⎭⎬⎫x |x ≤-1,或x ≥92B .⎩⎨⎧⎭⎬⎫x |-1≤x ≤92C .⎩⎨⎧⎭⎬⎫x |x ≤-92或x ≥1 D .⎩⎨⎧⎭⎬⎫x |-92≤x ≤1 [答案] D[解析] 解法1:取x =1检验,满足排除A ;取x =4检验,不满足排除B ,C ;∴选D . 解法2:化为:2x 2+7x -9≤0, 即(x -1)(2x +9)≤0,∴-92≤x ≤1.4.若2x+2y=1,则x +y 的取值范围是( ) A .[0,2]B .[-2,0]C .[-2,+∞)D .(-∞,-2][答案] D[解析] ∵2x+2y≥22x +y,∴22x +y≤1,∴2x +y≤14=2-2,∴x +y ≤-2,故选D . 5.(2014·安徽理,5)x , y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A .12或-1 B .2或12C .2或1D .2或-1[答案] D[解析] 本题考查线性规划问题.如图,z =y -ax 的最大值的最优解不唯一,即直线y =ax +z 与直线2x -y +2=0或x +y -2=0重合,∴a =2或-1.画出可行域,平移直线是线性规划问题的根本解法.6.当x ∈R 时,不等式kx 2-kx +1>0恒成立,则k 的取值范围是( ) A .(0,+∞) B .[0,+∞) C .[0,4) D .(0,4)[答案] C[解析] k =0时满足排除A 、D ;k =4时,不等为4x 2-4x +1>0,即(2x -1)2>0,显然当x =12时不成立.排除B ,选C .二、填空题7.已知函数f (x )=4x +a x(x >0,a >0)在x =3时取得最小值,则a =________. [答案] 36[解析] 由基本不等式可得4x +a x≥24x ·ax =4a ,当且仅当4x =a x,即x =a2时等号成立.故a2=3,a =36.8.已知:a 、b 、x 、y 都是正实数,且1a +1b=1,x 2+y 2=8,则ab 与xy 的大小关系是________.[答案] ab ≥xy[解析] ab =ab ·(1a +1b)=a +b ≥2ab ,∴ab ≥4,等号在a =2,b =2时成立,xy ≤x 2+y 22=4,等号在x =y =2时成立,∴ab ≥xy .三、解答题9.(1)设a 、b 、c 为△ABC 的三条边,求证:a 2+b 2+c 2<2(ab +bc +ca ); (2)若正数a ,b 满足ab =a +b +3,求ab 的取值范围.[分析] (1)三角形两边之和大于第三边,两边之差小于第三边,各边长均为正数.再结合轮换对称关系设法构造三个不等式相加.(2)由ab =a +b +3出发,求ab 的范围,关键是寻找ab 与a +b 之间的联系,由此联想到基本不等式a +b ≥2ab .[解析] (1)∵a 、b 、c 是△ABC 的三边, 不妨设a ≥b ≥c >0则a >b -c ≥0,b >a -c ≥0,c >a -b ≥0.平方得:a 2>b 2+c 2-2bc ,b 2>a 2+c 2-2ac ,c 2>a 2+b 2-2ab ,三式相加得:0>a 2+b 2+c 2-2bc -2ac -2ab . ∴2ab +2bc +2ac >a 2+b 2+c 2. (2)令ab =t (t >0). ∵a ,b 均为正数,∴ab =a +b +3≥2ab +3, 即得t 2≥2t +3,解得t ≥3或t ≤-1(舍去), ∴ab ≥3, 故ab ≥9,∴ab 的取值范围是[9,+∞).10.m 为何值时,关于x 的方程8x 2-(m -1)x +m -7=0的两根: (1)都大于1;(2)一根大于2,一根小于2. [解析] 设方程的两根分别为x 1、x 2. (1)由题意,得⎩⎪⎨⎪⎧Δ≥0x 1+x 2>2x 1-x 2-,即⎩⎪⎨⎪⎧m -2-m -m -18>2m -78-m -18+1>0,∴⎩⎪⎨⎪⎧m ≤9或m ≥25m >17m ∈R,∴m ≥25.(2)由题意,得⎩⎪⎨⎪⎧Δ>0x 1-x 2-,即⎩⎪⎨⎪⎧m -2-m -m -78-m -8+4<0,∴⎩⎪⎨⎪⎧m <9或m >25m >27,∴m >27.一、选择题11.若集合A ={x |-1≤2x +1≤3},B ={x |x -2x≤0},则A ∩B =( ) A .{x |-1≤x <0} B .{x |0<x ≤1} C .{x |0≤x ≤2} D .{x |0≤x ≤1}[答案] B[解析] 因为集合A ={x |-1≤x ≤1},B ={x |0<x ≤2},所以A ∩B ={x |0<x ≤1},选B . 12.设0<b <a <1,则下列不等式成立的是( ) A .ab <b 2<1 B .log 12b <log 12a <0C .2b<2a <2 D .a 2<ab <1[答案] C[解析] 取a =12,b =13验证可知选C .13.小王从甲地到乙地的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ) A .a <v <abB .v =abC .ab <v <a +b2D .v =a +b2[答案] A[解析] 设甲、乙两地之间的距离为s . ∵a <b ,∴v =2ss a +s b=2ab a +b <2ab2ab=ab . 又v -a =2ab a +b -a =ab -a 2a +b >a 2-a2a +b=0,∴v >a .14.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥0x -y ≥02x -y -2≥0,则ω=y -1x +1的取值范围是( ) A .[-1,13]B .[-12,13]C .[-12,+∞)D .[-12,1)[答案] D[解析] 作出可行域如右图所示,由于ω=y -1x +1可理解为经过点P (-1,1)与点(x ,y )的直线的斜率,而k PA =0-11--=-12,另一直线斜率趋向1,因此ω的取值范围为[-12,1).二、填空题15.某公司一年需购买某种货物200吨,平均分成若干次进行购买,每次购买的运费为2万元,一年的总存储费用数值(单位:万元)恰好为每次的购买吨数数值,要使一年的总运费与总存储费用之和最小,则每次购买该种货物的吨数是________.[答案] 20[解析] 设每次购买该种货物x 吨,则需要购买200x 次,则一年的总运费为200x ×2=400x,一年的总存储费用为x ,所以一年的总运费与总存储费用为400x+x ≥2400x ·x =40,当且仅当400x=x ,即x =20时等号成立.故要使一年的总运费与总存储费用之和最小,每次应购买该种货物20吨.16.(2014·苏州调研)若m 2x -1mx +1<0(m ≠0)对一切x ≥4恒成立,则实数m 的取值范围是________.[答案] (-∞,-12)[解析] 依题意,对任意的x ∈[4,+∞),有f (x )=(mx +1)(m 2x -1)<0恒成立,结合图象分析可知⎩⎪⎨⎪⎧m <0,-1m<4,1m 2<4,由此解得m <-12,即实数m 的取值范围是(-∞,-12).三、解答题17.已知a ∈R ,试比较11-a 与1+a 的大小.[解析] 11-a -(1+a )=a21-a .①当a =0时,a 21-a =0,∴11-a=1+a . ②当a <1且a ≠0时,a 21-a >0,∴11-a >1+a .③当a >1时,a 21-a <0,∴11-a<1+a . 综上所述,当a =0时,11-a =1+a ;当a <1且a ≠0时,11-a >1+a ;当a >1时,11-a<1+a . 18.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.[解析] (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ), 当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a,∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m .。

高中数学 第三章 不等式 3.4 基本不等式:ab≤a+b2课时作业(含解析)新人教A版必修5-新人

高中数学 第三章 不等式 3.4 基本不等式:ab≤a+b2课时作业(含解析)新人教A版必修5-新人

课时作业24 基本不等式:ab ≤a +b 2时间:45分钟——基础巩固类——一、选择题1.下列不等式中正确的是( D )A .a +4a≥4 B .a 2+b 2≥4ab C.ab ≥a +b 2D .x 2+3x 2≥2 3 解析:a <0,则a +4a≥4不成立,故A 错;a =1,b =1,a 2+b 2<4ab ,故B 错;a =4,b =16,则ab <a +b 2,故C 错;由基本不等式可知D 项正确. 2.若lg x +lg y =2,则1x +1y的最小值为( D ) A .10 B.110C .5 D.15解析:∵lg x +lg y =2,∴xy =100.且x >0,y >0.1x +1y ≥21xy =15. 3.已知f (x )=x +1x-2(x <0),则f (x )有( C ) A .最大值为0 B .最小值为0C .最大值为-4D .最小值为-4解析:∵x <0,∴-x >0.∴x +1x -2=-[(-x )+1(-x )]-2≤-2·(-x )·1(-x )-2=-4,等号成立的条件是-x =1-x ,即x =-1.4.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m 、n 的大小关系是( A ) A .m >n B .m <nC .m =nD .不确定解析:∵a >2,∴a -2>0,又∵m =a +1a -2=(a -2)+1a -2+2≥2(a -2)·1a -2+2=4, 当且仅当a -2=1a -2,即a =3时取等号. ∴m ≥4.∵b ≠0,∴b 2>0,∵2-b 2<2,∴22-b 2<4,即n <4,∴m >n .5.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( A )A .5 km 处B .4 km 处C .3 km 处D .2 km 处 解析:设仓库建在离车站x km 处,则土地费用y 1=k 1x(k 1≠0),运输费用y 2=k 2x (k 2≠0),把x =10,y 1=2代入得k 1=20,把x =10,y 2=8代入得k 2=45,故总费用y =20x +45x ≥220x ·45x =8,当且仅当20x =45x ,即x =5时等号成立. 6.已知x >1,y >1且xy =16,则log 2x ·log 2y ( D )A .有最大值2B .等于4C .有最小值3D .有最大值4解析:因为x >1,y >1,所以log 2x >0,log 2y >0.所以log 2x ·log 2y ≤⎝ ⎛⎭⎪⎫log 2x +log 2y 22=⎣⎡⎦⎤log 2(xy )22=4,当且仅当x =y =4时取等号.故选D.二、填空题7.已知x 、y 都是正数,(1)如果xy =15,则x +y 的最小值是215;(2)如果x +y =15,则xy 的最大值是2254. 解析:(1)x +y ≥2xy =215,即x +y 的最小值是215;当且仅当x =y =15时取最小值.(2)xy ≤⎝ ⎛⎭⎪⎫x +y 22=⎝⎛⎭⎫1522=2254, 即xy 的最大值是2254. 当且仅当x =y =152时xy 取最大值. 8.若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值X 围是⎣⎡⎭⎫15,+∞. 解析:因为x >0,所以x +1x≥2. 当且仅当x =1时取等号,所以有xx 2+3x +1=1x +1x+3≤12+3=15即x x 2+3x +1的最大值为15,故a ≥15. 9.若a >0,b >0,a +b =2,则下列不等式①ab ≤1;②a +b ≤2;③a 2+b 2≥2;④1a +1b≥2,对满足条件的a ,b 恒成立的是①③④.(填序号) 解析:因为ab ≤⎝ ⎛⎭⎪⎫a +b 22=1,所以①正确;因为(a +b )2=a +b +2ab =2+2ab ≤2+a +b =4,故②不正确;a 2+b 2≥(a +b )22=2,所以③正确;1a +1b =a +b ab =2ab ≥2,所以④正确.三、解答题10.(1)已知0<x <12,求y =12x (1-2x )的最大值. (2)已知x <3,求f (x )=4x -3+x 的最大值. (3)已知x ,y ∈R +,且x +y =4,求1x +3y的最小值; 解:(1)∵0<x <12,∴1-2x >0. y =14·2x ·(1-2x )≤14⎝ ⎛⎭⎪⎫2x +1-2x 22 =14×14=116. ∴当且仅当2x =1-2x ,即x =14时,y 最大值=116. (2)∵x <3,∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3 ≤-243-x ·(3-x )+3=-1, 当且仅当43-x=3-x ,即x =1时取等号, ∴f (x )的最大值为-1.(3)法一:∵x ,y ∈R +,∴(x +y )⎝⎛⎭⎫1x +3y=4+⎝⎛⎭⎫y x +3x y ≥4+2 3.当且仅当y x =3x y ,即x =2(3-1), y =2(3-3)时取“=”号.又x +y =4,∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32. 法二:∵x ,y ∈R +,且x +y =4, ∴1x +3y =x +y 4x +3(x +y )4y=1+⎝⎛⎭⎫y 4x +3x 4y ≥1+2y 4x ·3x 4y=1+32. 当且仅当y 4x =3x 4y, 即x =2(3-1),y =2(3-3)时取“=”号.∴1x +3y 的最小值为1+32. 11.设a ,b ,c ∈R +.求证:(1)ab (a +b )+bc (b +c )+ca (c +a )≥6abc ;(2)(a +b +c )⎝⎛⎭⎫1a +1b +c ≥4. 证明:(1)∵a ,b ,c ∈R +,∴左边=a 2b +ab 2+b 2c +bc 2+c 2a +ca 2=(a 2b +bc 2)+(b 2c +ca 2)+(c 2a +ab 2)≥2a 2b 2c 2+2a 2b 2c 2+2a 2b 2c 2=6abc =右边,当且仅当a =b =c 时,等号成立.(2)∵a ,b ,c ∈R +,∴左边=[a +(b +c )]⎝ ⎛⎭⎪⎫1a +1b +c≥2a (b +c )·21a (b +c )=4=右边, 当且仅当a =b +c 时,等号成立.——能力提升类——12.若f (x )=⎝⎛⎭⎫12x ,a ,b 均为正数,P =f ⎝⎛⎭⎫a +b 2,G =f (ab ),H =f ⎝⎛⎭⎫2ab a +b ,则( A ) A .P ≤G ≤H B .P ≤H ≤GC .G ≤H ≤PD .H ≤G ≤P解析:因为a ,b 均为正数,所以a +b 2≥ab =ab ab ≥ab a +b 2=2ab a +b,当且仅当a =b 时等号成立.又因为f (x )=⎝⎛⎭⎫12x 为减函数,所以f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b ,所以P ≤G ≤H . 13.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( C ) A .8 B .7C .6D .5解析:由已知,可得6⎝⎛⎭⎫2a +1b =1,所以2a +b =6⎝⎛⎭⎫2a +1b ·(2a +b )=6⎝⎛⎭⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a时等号成立,所以9m ≤54,即m ≤6,故选C.14.设a ,b >0,a +b =5,则a +1+b +3的最大值为3 2. 解析:令t =a +1+b +3,则t 2=a +1+b +3+2(a +1)(b +3)=9+2(a +1)(b +3)≤9+a +1+b +3=13+a +b =13+5=18,当且仅当a +1=b +3时取等号,此时a =72,b =32.∴t max =18=3 2. 15.如图,如在公园建一块面积为144平方米的矩形草地,一边靠墙,另外三边用铁丝网围住,现有44米铁丝网可供使用(铁丝网可以剩余),若利用x 米墙,(1)求x 的取值X 围;(2)求最少需要多少米铁丝网(精确到0.1米).解:(1)由于矩形草地的面积是144平方米,一边长是x 米,则另一边长为144x米, 则矩形草地所需铁丝网长度为y =x +2×144x. 令y =x +2×144x≤44(x >0), 解得8≤x ≤36,则x 的取值X 围是[8,36].(2)由基本不等式,得y =x +288x≥24 2. 当且仅当x =288x,即x ≈17.0时,等号成立, 则y 最小值=242≈34.0,即最少需要34.0米铁丝网.。

2020版高中数学第3章不等式3.4基本不等式第1课时基本不等式课件新人教A版必修5

2020版高中数学第3章不等式3.4基本不等式第1课时基本不等式课件新人教A版必修5

『规律总结』 在基本不等式应用过程中要注意“一正、二定、三相 等”.
一正,a,b均为正数; 二定,不等式一边为定值; 三相等,不等式中的等号能取到,即a=b有解.
〔跟踪练习 1〕 下列结论中正确的是( C ) A.若 a>0,则(a+1)(1a+1)≥2 B.若 x>0,则 lnx+ln1x≥2 C.若 a+b=1,则 a2+b2≥12 D.若 a+b=1,则 a2+b2≤12
新课标导学
数学
必修⑤ ·人教A版
第三章
不等式
3.4 基本不等式 ab≤a+2 b
第1课时 基本不等式
1
自主预习学案
2
互动探究学案
3
课时作业学案
自主预习学案
如图是第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的 弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民的热情好 客.那么你能在这个图中找出一些相等关系或不等关系吗?
〔跟踪练习 2〕
(1)已知 a>0,b>0,则1a+1b+2 ab的最小值是( C )
A.2
B.2 2
C.4
D.5
(2)已知 f(x)=x+1x-2(x<0),则 f(x)有( C )
A.最大值为 0
B.最小值为 0
C.最大值为-4
D.最小值为-4
[解析] (1)因为 a>0,b>0,
所以1a+1b+2 ab≥2 a1b+2 ab≥4
[解析] (1)∵m,n>0 且 m+n=16, 所以由基本不等式可得 mn≤(m+2 n)2=(126)2=64, 当且仅当 m=n=8 时,mn 取到最大值 64.∴12mn 的最大值为 32. (2)∵x>2,∴x-2>0, ∴x+x-4 2=x-2+x-4 2+2≥2 x-2·x-4 2+2=6, 当且仅当 x-2=x-4 2,即 x=4 时,等号成立.所以 x+x-4 2的最小值为 6.

新版高中数学人教A版必修5习题:第三章不等式 3.4.1

新版高中数学人教A版必修5习题:第三章不等式 3.4.1

3.4基本不等式:√ab≤a+b2第1课时基本不等式课时过关·能力提升基础巩固1若x>0,则x+4x的最小值为().A.2B.3C.2√2D.4答案:D2若x,y满足x+y=40,且x,y都是正数,则xy的最大值是().A.400B.100C.40D.20解析:xy≤(x+y2)2=400,当且仅当x=y=20时,等号成立.答案:A3若0<x<13,则x(1−3x)取最大值时x的值是().A.13B.16C.34D.23解析:∵0<x<13,∴0<1−3x<1.∴y=x(1-3x)=13×3x(1−3x)≤13×(3x+1-3x 2)2=112. 当且仅当3x=1-3x ,即x =16时取等号.答案:B 4设a ,b ∈R ,若a ≠b ,a+b=2,则必有( ).A.1≤ab ≤a 2+b 22B.ab <1<a 2+b22C.ab <a 2+b22<1D.a 2+b 22<ab <1解析:令a=-1,b=3,则ab=-3,a 2+b 22=5,则有ab<1<a 2+b22,所以排除选项A,C,D,故选B .答案:B5若M =a 2+4a (a ∈R ,a ≠0),则M 的取值范围为( ).A.(-∞,-4]∪[4,+∞)B.(-∞,-4]C.[4,+∞)D.[-4,4]解析:当a>0时,M =a 2+4a =a +4a ≥2√a ·4a =4,当且仅当a =4a,即a=2时取“=”; 当a<0时,M =a 2+4a=a +4a =−[(-a )+(-4a )]≤-2√(-a )·(-4a )=−4,当且仅当-a=−4a,即a=-2时取“=”.综上,M的取值范围为(-∞,-4]∪[4,+∞).答案:A6若a>b>1,P=√lgalgb,Q=lga+lgb2,R=lg a+b2,则下列结论正确的是().A.R<P<QB.P<Q<RC.Q<P<RD.P<R<Q 解析:∵a>b>1,∴lg a>0,lg b>0.∴R=lg a+b2>lg√ab=12lg(ab)=lga+lgb2=Q>√lgalgb=P.∴P<Q<R.答案:B7若a>0,b>0,则2ba +ab的最小值是.解析:2ba +ab≥2√2ba·ab=2√2,当且仅当2ba=ab,即a=√2b时取“=”.答案:2√28当函数y=x2(2-x2)取最大值时,x=. 解析:当−√2<x<√2时,y=x2(2-x2)≤(x 2+2-x22)2=1,当且仅当x2=2-x2,即x=±1时,等号成立,当x2≥2时,y=x2(2-x2)≤0,不可能取最大值.所以当x=±1时,y=x2(2-x2)有最大值为1.答案:±19已知2x +3y=2(x>0,y>0),求xy的最小值.解∵x>0,y>0,2x +3y=2,∴2=2x +3y≥2√6xy(当x=2,y=3时,等号成立),即1≥√6xy.∴√xy≥√6,从而xy≥6,即xy的最小值为6.10已知x>-1,试求函数y=x 2+7x+10x+1的最小值.解∵x>-1,∴x+1>0,∴y=x 2+7x+10x+1=(x+1)2+5(x+1)+4x+1=x+1+4x+1+5≥2√(x+1)·4x+1+5=9.当且仅当x+1=4x+1,即x=1时,等号成立.所以函数y=x 2+7x+10x+1的最小值为9.能力提升1若2a+b=1,a>0,b>0,则1a +1b的最小值是().A.2√2B.3−2√2C.3+2√2D.3+√2解析:1a +1b=2a+ba+2a+bb=2+1+ba +2ab=3+ba+2ab.∵a>0,b>0,∴1a +1b =3+b a +2a b ≥3+2√b a ·2a b =3+2√2,当且仅当b a =2a b ,即b =√2a =√2−1时“=”成立.∴1a +1b 的最小值为3+2√2.答案:C 2若x+3y-2=0,则函数z=3x +27y +3的最小值是( ).A.323B.3+2√2C.6D.9解析:z=3x +27y +3≥2√3x ·27y +3=2√3x+3y +3. ∵x+3y-2=0,∴x+3y=2.∴z ≥2√3x+3y +3=2√32+3=9,当且仅当3x =27y ,即x=3y=1时取“=”.答案:D3若a>0,b>0,a+b=2,则y =1a +4b 的最小值是( ).A .72B.4C.92D.5解析:依题意得1a +4b =12(1a +4b )(a +b)=12[5+(b a +4a b )]≥12(5+2√b a ·4a b )=92,当且仅当{a +b =2,b a =4a b ,a >0,b >0,即a =23,b =43时取等号,即1a +4b 的最小值是92. 答案:C4当x >12时,函数y =x +82x -1的最小值为( ).A .92B.4C.5D.9 解析:∵x >12,∴2x −1>0. ∴y=x +82x -1=x +4x -12=x −12+4x -12+12 ≥2√(x -12)·4x -12+12=4+12=92, 当且仅当x −12=4x -12,即x =52时取等号. 答案:A 5设a ,b>0,a+b=5,则√a +1+√b +3的最大值为 .解析:因为a ,b>0,a+b=5,所以(a+1)+(b+3)=9.令x=a+1,y=b+3,则x+y=9(x>1,y>3),于是√a +1+√b +3=√x +√y,而(√x +√y)2=x +y +2√xy ≤x+y+(x+y )=18,所以√x +√y ≤3√2.此时x=y ,即a+1=b+3,结合a+b=5可得a=3.5,b=1.5,故当a=3.5,b=1.5时,√a +1+√b +3的最大值为3√2. 答案:3√2★6函数y=log a (x-1)+1(a>0,且a ≠1)的图象恒过定点A ,若点A 在一次函数y=mx+n 的图象上,其中m ,n>0,则1m +2n 的最小值为 .解析:由题意,得点A (2,1),则1=2m+n.又m ,n>0,所以1m +2n =2m+n m +2(2m+n )n =4+n m +4m n ≥4+2√4=8.当且仅当n m =4m n ,即m =14,n =12时取等号,则1m+2n的最小值为8.答案:8★7若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是.解析:因为x>0,所以x+1x≥2,当且仅当x=1时取等号,所以有xx2+3x+1=1x+1x+3≤12+3=15,即xx2+3x+1的最大值为15,故a≥15.答案:[15,+∞)★8已知f(x)=a x(a>0,且a≠1),当x1≠x2时,比较f(x1+x22)与f(x1)+f(x2)2的大小.解∵f(x)=a x,∴f(x1+x22)=ax1+x22,∴12[f(x1)+f(x2)]=12(a x1+a x2).∵a>0,且a≠1,x1≠x2,∴a x1>0,a x2>0,且a x1≠a x2,∴12(a x1+a x2)>√a x1·a x2=ax1+x22,即f(x1+x22)<f(x1)+f(x2)2.9若正实数x,y满足2x+y+6=xy,求xy与2x+y的最小值.解∵2x+y+6=xy,x>0,y>0,∴xy=2x+y+6≥2√2·√xy +6, 即xy-2√2√xy −6≥0,当且仅当{2x =y ,2x +y +6=xy时,等号成立. ∴(√xy −3√2)(√xy +√2)≥0. ∵√xy +√2>0,∴√xy ≥3√2,xy ≥18.又2x+y+6=12×2xy ≤12·(2x+y 2)2, ∴(2x+y )2-8(2x+y )-48≥0,∴(2x+y-12)(2x+y+4)≥0.∵2x+y+4>0,∴2x+y ≥12.∴xy 的最小值为18,2x+y 的最小值为12.。

高中数学 第三章 不等式 3.4 基本不等式:ab≤a+b2学案(含解析)新人教A版必修5-新人教A

高中数学 第三章 不等式 3.4 基本不等式:ab≤a+b2学案(含解析)新人教A版必修5-新人教A

3.4 基本不等式:ab≤a+b 2[目标] 1.了解基本不等式的代数式和几何背景;2.会用基本不等式进行代数式大小的比较及证明不等式;3.会用基本不等式求最值和解决简单的实际问题.[重点] 基本不等式的简单应用.[难点] 基本不等式的理解与应用.知识点一 两个不等式[填一填]1.重要不等式:对于任意实数a ,b ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式:如果a ,b ∈R +,那么ab ≤a +b2,当且仅当a =b 时,等号成立.其中a +b2为a ,b 的算术平均数,ab 为a ,b 的几何平均数.所以两个正数的算术平均数不小于它们的几何平均数.[答一答]1.不等式a 2+b 2≥2ab 和基本不等式ab ≤a +b2成立的条件有什么不同?提示:不等式a 2+b 2≥2ab对任意实数a ,b 都成立;ab ≤a +b2中要求a ,b 都是正实数.知识点二 基本不等式与最值[填一填]已知x ,y 都是正数,(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值.(2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值.[答一答]2.利用基本不等式求最值时,我们应注意哪些问题?提示:(1)在利用基本不等式具体求最值时,必须满足三个条件:①各项均为正数;②含变数的各项的和(或积)必须是常数;③当含变数的各项均相等时取得最值.三个条件可简记为:一正、二定、三相等.这三个条件极易遗漏而导致解题失误,应引起足够的重视.(2)记忆口诀:和定积最大,积定和最小.3.在多次使用基本不等式求最值时,我们应注意什么问题?提示:在连续多次应用基本不等式时,我们要注意各次应用时不等式取等号的条件是否一致,若不能同时取等号,则需换用其他方法求出最值.4.两个正数的积为定值,它们的和一定有最小值吗?提示:不一定.应用基本不等式求最值时还要求等号能取到.如sin x 与4sin x ,x ∈(0,π2),两个都是正数,乘积为定值.但是由0<sin x <1,且sin x +4sin x 在(0,1)上为减函数,所以sin x +4sin x >1+41=5,等号不成立,取不到最小值.类型一 利用基本不等式证明不等式[例1] (1)已知a ,b ,c 为不全相等的正实数,求证:a +b +c >ab +bc +ca . (2)已知a ,b ,c 为正实数,且a +b +c =1, 求证:⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1≥8.[分析] (1)左边是和式,右边是带根号的积式之和,所以用基本不等式,将和变积,并证得不等式.(2)不等式右边数字为8,使我们联想到左边因式分别使用基本不等式,可得三个“2”连乘,又1a -1=1-a a =b +c a ≥2bc a,可由此变形入手.[证明] (1)∵a >0,b >0,c >0,∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ca >0. ∴2(a +b +c )≥2(ab +bc +ca ),即a +b +c ≥ab +bc +ca .由于a ,b ,c 为不全相等的正实数,故等号不成立. ∴a +b +c >ab +bc +ca .(2)∵a ,b ,c 为正实数,且a +b +c =1, ∴1a -1=1-a a =b +c a ≥2bc a , 同理1b -1≥2ac b ,1c -1≥2ab c.由上述三个不等式两边均为正,分别相乘,得⎝⎛⎭⎫1a -1⎝⎛⎭⎫1b -1⎝⎛⎭⎫1c -1 ≥2bc a ·2ac b ·2ab c=8.当且仅当a =b =c =13时,等号成立.1.利用基本不等式证明不等式,关键是所证不等式中必须有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,从而达到放缩的效果.2.注意多次运用基本不等式时等号能否取到.3.解题时要注意技巧,当不能直接利用不等式时,可将原不等式进行组合、构造,以满足能使用基本不等式的形式.[变式训练1] 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1c≥9.证明:因为a >0,b >0,c >0,且a +b +c =1, 所以1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +c a +a b +c b +a c +b c=3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,取等号. 类型二 利用基本不等式求最值[例2] (1)若x >0,求f (x )=4x +9x 的最小值;(2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >2,求x +4x -2的最小值;(4)已知x >0,y >0,且1x +9y=1,求x +y 的最小值.[分析] 利用基本不等式求最值,当积或和不是定值时,通过变形使其和或积为定值,再利用基本不等式求解.[解] (1)∵x >0,∴由基本不等式得 f (x )=4x +9x≥24x ·9x=236=12, 当且仅当4x =9x,即x =32时,f (x )=4x +9x 取最小值12.(2)∵0<x <32,∴3-2x >0,∴y =4x (3-2x )=2[2x (3-2x )] ≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92. 当且仅当2x =3-2x ,即x =34时取“=”.∴y 的最大值为92.(3)∵x >2,∴x -2>0,∴x +4x -2=(x -2)+4x -2+2≥2(x -2)·4x -2+2=6.当且仅当x -2=4x -2,即x =4时,x +4x -2取最小值6.(4)∵x >0,y >0,1x +9y =1,∴x +y =(x +y )⎝⎛⎭⎫1x +9y =10+y x +9x y ≥10+29=16.当且仅当y x =9x y 且1x +9y =1时等号成立.即x =4,y =12时等号成立.∴当x =4,y =12时,x +y 有最小值16.求最值问题第一步就是“找”定值,观察、分析、构造定值是问题的突破口.找到定值后还要看“=”是否成立,不管题目是否要求写出符号成立的条件,都要验证“=”是否成立.[变式训练2] (1)已知lg a +lg b =2,求a +b 的最小值; (2)已知x >0,y >0,且2x +3y =6,求xy 的最大值. 解:(1)由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100=20, 当且仅当a =b =10时,a +b 取到最小值20.(2)∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝ ⎛⎭⎪⎫2x +3y 22=16·⎝⎛⎭⎫622=32, 当且仅当2x =3y ,且2x +3y =6时等号成立, 即x =32,y =1时,xy 取到最大值32.类型三 基本不等式的实际应用[例3] 特殊运货卡车以每小时x 千米的速度匀速行驶130千米,按规定限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升6元,而送货卡车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时140元.(1)求这次行车总费用y 关于x 的表达式.(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. [解] (1)设所用时间为t =130x(小时),y =130x ×6×⎝⎛⎭⎫2+x 2360+140×130x,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×152x +13x 6,x ∈[50,100].(2)y =130×152x +13x 6≥525703,当且仅当130×152x =13x6,即x =4570∈[50,100]时,等号成立.故当x =4570千米/时,这次行车的总费用最低,最低费用的值为525703元.解实际问题时,首先审清题意,然后将实际问题转化为数学问题,再利用数学知识(函数及不等式性质等)解决问题.用基本不等式解决此类问题时,应按如下步骤进行:(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数. (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题. (3)在定义域内,求出函数的最大值或最小值. (4)正确写出答案.[变式训练3] 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是160(单位:元).解析:设该长方体容器的长为x m ,则宽为4x m .又设该容器的总造价为y 元,则y =20×4+2⎝⎛⎭⎫x +4x ×10,即y =80+20⎝⎛⎭⎫x +4x (x >0).因为x +4x≥2x ·4x=4⎝⎛⎭⎫当且仅当x =4x ,即x =2时取“=”,所以y min =80+20×4=160(元).1.给出下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0,其中能使b a +ab ≥2成立的条件有( C )A .1个B .2个C .3个D .4个解析:当b a ,a b 均为正数时,b a +ab ≥2,故只须a 、b 同号即可.所以①、③、④均可以.2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( D ) A .a 2+b 2>2ab B .a +b ≥2ab C .1a +1b >2abD .b a +ab≥2解析:∵a ,b ∈R ,且ab >0, ∴b a >0,ab>0,∴b a +a b ≥2b a ×a b=2. 当且仅当b a =ab,即a =b 时取等号.3.设a ,b 为实数,且a +b =3,则2a +2b 的最小值为( B ) A .6 B .4 2 C .2 2 D .8解析:2a +2b ≥22a +b =223=4 2.4.已知0<x <1,则当x =12时,x (3-3x )取最大值为34.解析:3x (1-x )≤3(x +1-x 2)2=34,当且仅当x =1-x 即x =12时等号成立.5.已知a >0,b >0,c >0,求证: (1)b +c a +c +a b +a +b c ≥6;(2)b +c a ·c +a b ·a +b c≥8.证明:(1)b +c a +a +c b +a +b c =b a +c a +c b +a b +a c +b c =(b a +a b )+(c a +a c )+(c b +b c )≥2+2+2=6(当且仅当a =b =c 时取“=”).(2)b +c a ·c +a b ·a +b c ≥2bc a ·2ac b ·2abc=8abc abc=8(当且仅当a =b =c 时取“=”).——本课须掌握的两大问题1.基本不等式成立的条件:a >0且b >0;其中等号成立的条件:当且仅当a =b 时取等号,即若a ≠b 时,则ab ≠a +b 2,即只能有ab <a +b2. 2.利用基本不等式求最值,必须按照“一正,二定,三相等”的原则,即(1)一正:符合基本不等式a +b2≥ab 成立的前提条件,a >0,b >0;(2)二定:化不等式的一边为定值;(3)三相等:必须存在取“=”号的条件,即“=”号成立. 以上三点缺一不可.若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,其解答技巧是恰当变形,合理拆分项或配凑因式.。

高中数学第三章不等式3.4.2基本不等式的应用素养评价检测含解析5

高中数学第三章不等式3.4.2基本不等式的应用素养评价检测含解析5

基本不等式的应用(20分钟35分)1。

某车间分批生产某种产品,每批的生产准备费用为800元。

若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A。

60件B。

80件 C.100件D。

120件【解析】选B.设每件产品的平均费用为y元,由题意得y=+≥2=20.当且仅当=(x>0),即x=80时“="成立.2.若xy是正数,则+的最小值是()A.3 B。

C.4 D。

【解析】选C.+=x2+y2+++=+++≥1+1+2=4。

当且仅当x=y=或x=y=-时取等号.3。

已知m〉0,n〉0,+=1,若不等式m+n≥—x2+2x+a对已知的m,n及任意实数x恒成立,则实数a的取值范围是()A.[8,+∞)B。

[3,+∞)C。

(—∞,3] D.(—∞,8]【解析】选D。

因为m+n=(m+n)=5++≥5+2=9,当且仅当=,即m=3,n=6时等号成立,所以—x2+2x+a≤9,即a≤x2-2x+9=(x-1)2+8,所以a≤8。

4。

已知x>0,y>0,且+=1,则3x+4y的最小值是.【解析】因为x〉0,y〉0,+=1,所以3x+4y=(3x+4y)=13++≥13+3×2=25(当且仅当x=2y=5时取等号),所以(3x+4y)min=25。

答案:255.若a,b均为正实数,且满足a+2b=1,则的最小值为.【解析】a+2b=1,则===+,则(a+2b)=4+3++≥7+2=7+4,当且仅当=,即a=b时取等号.答案:4+76。

共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用.据市场分析,每辆单车的营运累计收入f(x)(单位:元)与营运天数x(x∈N*)满足f(x)=—x2+60x—800.(1)要使营运累计收入高于800元,求营运天数的取值范围;(2)每辆单车营运多少天时,才能使每天的平均营运收入最大?【解析】(1)要使营运累计收入高于800元,则f(x)>800⇒-x2+60x—800>800⇒(x—40)(x—80)<0⇒40〈x〈80,所以要使营运累计收入高于800元,营运天数应该在(40,80)内取值.(2)每辆单车每天的平均营运收入为y===—x—+60≤-2+60=20,当且仅当x=时等号成立,解得x=40,即每辆单车营运40天,可使每天的平均营运收入最大。

人教新课标版数学高一必修5练习 3.4.1基本不等式

人教新课标版数学高一必修5练习 3.4.1基本不等式

第三章 3.4 第1课时一、选择题1.函数f (x )=xx +1的最大值为( )A.25 B .12C.22D .1[答案] B[解析] 令t =x (t ≥0),则x =t 2, ∴f (x )=x x +1=tt 2+1.当t =0时,f (x )=0; 当t >0时,f (x )=1t 2+1t =1t +1t.∵t +1t ≥2,∴0<1t +1t ≤12.∴f (x )的最大值为12.2.若a ≥0,b ≥0,且a +b =2,则( )A .ab ≤12B .ab ≥12C .a 2+b 2≥2D .a 2+b 2≤3[答案] C[解析] ∵a ≥0,b ≥0,且a +b =2, ∴b =2-a (0≤a ≤2),∴ab =a (2-a )=-a 2+2a =-(a -1)2+1. ∵0≤a ≤2,∴0≤ab ≤1,故A 、B 错误; a 2+b 2=a 2+(2-a )2=2a 2-4a +4 =2(a -1)2+2.∵0≤a ≤2,∴2≤a 2+b 2≤4.故选C.3.设0<a <b ,且a +b =1,则下列四个数中最大的是 ( )A.12 B .a 2+b 2 C .2ab D .a[答案] B[解析] 解法一:∵0<a <b ,∴1=a +b >2a ,∴a <12,又∵a 2+b 2≥2ab ,∴最大数一定不是a 和2ab , ∵1=a +b >2ab , ∴ab <14,∴a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12,即a 2+b 2>12.故选B.解法二:特值检验法:取a =13,b =23,则2ab =49,a 2+b 2=59,∵59>12>49>13,∴a 2+b 2最大. 4.(2013·湖南师大附中高二期中)设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为( )A .8B .4C .1D .14[答案] B[解析] 根据题意得3a ·3b =3,∴a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b ≥4. 当a =b =12时“=”成立.故选B.5.设a 、b ∈R +,若a +b =2,则1a +1b 的最小值等于( )A .1B .3C .2D .4[答案] C[解析] 1a +1b =12⎝⎛⎭⎫1a +1b (a +b ) =1+12⎝⎛⎭⎫b a +a b ≥2,等号在a =b =1时成立. 6.已知x >0,y >0,x 、a 、b 、y 成等差数列,x 、c 、d 、y 成等比数列,则(a +b )2cd 的最小值是( ) A .0 B .1 C .2 D .4[答案] D[解析] 由等差、等比数列的性质得 (a +b )2cd =(x +y )2xy =x y +yx +2≥2y x ·xy+2=4.当且仅当x =y 时取等号,∴所求最小值为4. 二、填空题7.若0<x <1,则x (1-x )的最大值为________. [答案] 14[解析] ∵0<x <1,∴1-x >0, ∴x (1-x )≤[x +(1-x )2]2=14,等号在x =1-x ,即x =12时成立,∴所求最大值为14.8.已知t >0,则函数y =t 2-4t +1t 的最小值是________.[答案] -2[解析] ∵t >0,∴y =t 2-4t +14=t +1t -4≥2t ·1t -4=-2,当且仅当t =1t,即t =1时,等号成立.三、解答题 9.已知x >0,y >0.(1)若2x +5y =20,求u =lg x +lg y 的最大值; (2)若lg x +lg y =2,求5x +2y 的最小值.[解析] (1)∵x >0,y >0,由基本不等式,得2x +5y ≥22x ·5y =210·xy . 又∵2x +5y =20, ∴20≥210·xy , ∴xy ≤10,∴xy ≤10, 当且仅当2x =5y 时,等号成立.由⎩⎪⎨⎪⎧2x =5y 2x +5y =20, 解得⎩⎪⎨⎪⎧x =5y =2.∴当x =5,y =2时,xy 有最大值10. 这样u =lg x +lg y =lg(xy )≤lg10=1. ∴当x =5,y =2时,u max =1. (2)由已知,得x ·y =100, 5x +2y ≥210xy =2103=2010.∴当且仅当5x =2y =103,即当x =210, y =510时,等号成立. 所以5x +2y 的最小值为2010.10.求函数y =x 2+a +1x 2+a 的最小值,其中a >0.[解析] 当0<a ≤1时, y =x 2+a +1x 2+a≥2,当且仅当x =±1-a 时,y min =2. 当a >1时,令x 2+a =t (t ≥a ),则有y =f (t )=t +1t.设t 2>t 1≥a >1,则f (t 2)-f (t 1)=(t 2-t 1)(t 1t 2-1)t 1t 2>0,∴f (t )在[a ,+∞)上是增函数. ∴y min =f (a )=a +1a,此时x =0. 综上,当0<a ≤1,x =±1-a 时,y min =2;当a >1,x =0时,y min =a +1a.一、选择题1.设a 、b ∈R ,且ab >0.则下列不等式中,恒成立的是 ( )A .a 2+b 2>2abB .a +b ≥2ab C.1a +1b >2ab D .b a +a b≥2[答案] D[解析] a =b 时,A 不成立;a 、b <0时,B 、C 都不成立,故选D.2.若0<a <1,0<b <1,且a ≠b ,则a +b,2ab ,2ab ,a 2+b 2中最大的一个是 ( ) A .a 2+b 2 B .2ab C .2ab D .a +b [答案] D[解析] 解法一:∵0<a <1,0<b <1, ∴a 2+b 2>2ab ,a +b >2ab ,a >a 2,b >b 2, ∴a +b >a 2+b 2,故选D.解法二:取a =12,b =13,则a 2+b 2=1336,2ab =63,2ab =13,a +b =56,显然56最大.3.某工厂第一年产量为A ,第二年的增长率为a, 第三年的增长率为b ,这两年的平均增长率为x ,则( )A .x =a +b2B .x ≤a +b2C .x >a +b2D .x ≥a +b2[答案] B[解析] ∵这两年的平均增长率为x ∴A (1+x )2=A (1+a )(1+b ),∴(1+x )2=(1+a )(1+b ),由题设a >0,b >0. ∴1+x =(1+a )(1+b )≤(1+a )+(1+b )2=1+a +b 2,∴x ≤a +b 2,等号在1+a =1+b 即a =b 时成立.∴选B.4.(2013·山西忻州一中高二期中)a =(x -1,2),b =(4,y )(x 、y 为正数),若a ⊥b ,则xy 的最大值是( )A.12 B .-12C .1D .-1[答案] A[解析] 由已知得4(x -1)+2y =0,即2x +y =2.∴xy =x (2-2x )=2x (2-2x )2≤12×(2x +2-2x 2)2=12,等号成立时2x =2-2x ,即x =12,y =1,∴xy的最大值为12.二、填空题5.已知2x +3y =2(x >0,y >0),则xy 的最小值是________.[答案] 6 [解析] 2x +3y≥26xy,∴26xy≤2,∴xy ≥6. 6.已知x <54,则函数y =4x -2+14x -5的最大值是________.[答案] 1[解析] ∵x <54,∴4x -5<0,y =4x -2+14x -5=4x -5+14x -5+3=3-⎣⎢⎡⎦⎥⎤(5-4x )+15-4x≤3-2=1,等号在5-4x =15-4x,即x =1时成立. 三、解答题7.已知直角三角形两条直角边的和等于10 cm ,求面积最大时斜边的长. [解析] 设一条直角边长为x cm ,(0<x <10),则另一条直角边长为(10-x )cm , 面积s =12x (10-x )≤12[x +(10-x )2]2=252(cm 2)等号在x =10-x 即x =5时成立, ∴面积最大时斜边长L =x 2+(10-x )2=52+52=52(cm).8.某商场预计全年分批购入每台2 000元的电视机共3 600台.每批都购入x 台(x 是自然数)且每批均需付运费400元.贮存购入的电视机全年所需付的保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运输和保管总费用43 600元.现在全年只有24 000元资金可以支付这笔费用,请问,能否恰当安排每批进货数量,使资金够用?写出你的结论,并说明理由.[解析] 设总费用为y 元(y >0),且将题中正比例函数的比例系数设为k ,则y =3 600x ×400+k (2000x ),依条件,当x =400时,y =43 600,可得k =5%,故有y =1 440 000x +100x≥21 440 000x·100x =24 000(元). 当且仅当1 440 000x =100x ,即x =120时取等号.所以只需每批购入120台,可使资金够用.。

高中数学第三章不等式31不等关系与不等式课件新人教A版必修5

高中数学第三章不等式31不等关系与不等式课件新人教A版必修5

D.5
【解题探究】判断不等关系的真假,要紧扣不等的性
质,应注意条件与结论之间的联系. 【答案】C
【解析】①c 的范围未知,因而判断 ac 与 bc 的大小缺乏 依据,故该结论错误.
②由 ac2>bc2 知 c≠0,则 c2>0,
∴a>b,∴②是正确的.
③a<b, ⇒a2>ab,a<b, ⇒ab>b2,
【答案】M>N
【解析】M-N=a1a2-(a1+a2-1)=a1a2-a1-a2+1= a1(a2 - 1) - (a2 - 1) = (a1 - 1)(a2 - 1) , 又 ∵ a1∈(0,1) , a2∈(0,1) , ∴ a1 - 1<0 , a2 - 1<0.∴(a1 - 1)(a2 - 1)>0 , 即 M - N>0.∴M>N.
用不等式表示不等关系
【例1】 某钢铁厂要把长度为4 000 mm的钢管截成 500 mm 和600 mm两种规格,按照生产的要求,600 mm 钢管 的数量不能超过500 mm钢管的3倍.试写出满足上述所有不等 关系的不等式.
【解题探究】应先设出相应变量,找出其中的不等关 系,即①两种钢管的总长度不能超过4 000 mm;②截得600 mm钢管的数量不能超过500 mm钢管数量的3倍;③两种钢管 的数量都不能为负.于是可列不等式组表示上述不等关系.
比较大小要注重分类讨论
【示例】设 x∈R 且 x≠-1,比较1+1 x与 1-x 的大小. 【错解】∵1+1 x-(1-x)=1-1+1-x x2=1+x2 x,而 x2≥0,∴ 当 x>-1 时,x+1>0,1+x2 x≥0,即1+1 x≥1-x; 当 x<-1 时,x+1<0,1+x2 x≤0,即1+1 x≤1-x.

高中数学《 3.4 基本不等式 》评估训练 新人教A版必修5

高中数学《 3.4 基本不等式 》评估训练 新人教A版必修5

3.4 基本不等式:ab ≤a +b2双基达标 限时20分钟1.若x >0,y >0,且x +y =4,则下列不等式中恒成立的是( ).A.1x +y ≤14B.1x +1y≥1C.xy ≥2D.1xy≥1解析 若x >0,y >0,由x +y =4,得x +y4=1,∴1x +1y =14(x +y )⎝ ⎛⎭⎪⎫1x +1y =14⎝ ⎛⎭⎪⎫2+y x +x y ≥14(2+2)=1. 答案 B2.下列各函数中,最小值为2的是( ).A .y =x +1xB .y =sin x +1sin x ,x ∈⎝⎛⎭⎪⎫0,π2C .y =x 2+3x 2+2D .y =x +1x解析 对于A :不能保证x >0, 对于B :不能保证sin x =1sin x ,对于C :不能保证x 2+2=1x 2+2,对于D :y =x +1x≥2.答案 D3.若0<a <b 且a +b =1,则下列四个数中最大的是( ).A.12B .a 2+b 2C .2abD .a解析 a 2+b 2=(a +b )2-2ab ≥(a +b )2-2·⎝⎛⎭⎪⎫a +b 22=12.a 2+b 2-2ab =(a -b )2≥0,∴a 2+b 2≥2ab .∵0<a <b 且a +b =1,∴a <12.∴a 2+b 2最大. 答案 B 4.设a >2,则a +1a -2的最小值是________. 解析 ∵a >2,∴a -2>0. ∴a +1a -2=(a -2)+1a -2+2≥2+2=4. 当且仅当a -2=1a -2,即a =3时,等号成立. 答案 45.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是________. 解析 ab =a +b +3≥2ab +3,∴ab ≥3,即ab ≥9. 答案 [9,+∞)6.已知x >0,y >0,lg x +lg y =1,求2x +5y的最小值.解 法一 由已知条件lg x +lg y =1可得:x >0,y >0,且xy =10. 则2x +5y =2y +5x 10≥210xy 10=2, 所以⎝ ⎛⎭⎪⎫2x +5y min =2,当且仅当⎩⎪⎨⎪⎧2y =5x ,xy =10.即⎩⎪⎨⎪⎧x =2,y =5时等号成立.法二 由已知条件lg x +lg y =1可得:x >0,y >0,且xy =10,2x +5y ≥22x ·5y=21010=2(当且仅当⎩⎪⎨⎪⎧2x =5y ,xy =10.即⎩⎪⎨⎪⎧x =2,y =5.时取等号).综合提高 限时25分钟7.设a >0,b >0.若3是3a 与3b的等比中项,则1a +1b的最小值为( ).A .8B .4C .1D.14解析 因为3a ·3b=3,所以a +b =1, 1a +1b=(a +b )⎝ ⎛⎭⎪⎫1a +1b=2+b a +a b ≥2+2 b a ·a b=4,当且仅当b a =a b ,即a =b =12时,“=”成立,故选B.答案 B8.将一根铁丝切割成三段做一个面积为2 m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ).A .6.5 mB .6.8 mC .7 mD .7.2 m解析 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l=a +b +a 2+b 2≥2ab +2ab =4+22≈6.828(m).因为要求够用且浪费最少,故选C. 答案 C9.(2011·潍坊高二检测)在4×□+9×□=60的两个□中,分别填入两个自然数,使它们的倒数和最小,应分别填上________和________. 解析 设两数为x ,y ,即4x +9y =60, 又1x +1y =⎝ ⎛⎭⎪⎫1x +1y 4x +9y 60=160⎝ ⎛⎭⎪⎫13+4x y +9y x ≥160×(13+12)=512,当且仅当4x y =9y x,且4x +9y =60,即x =6,y =4时,等号成立. 答案 6 410.函数y =log a (x +3)-1(a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中m ,n >0,则1m +2n的最小值为________.解析 函数y =log a (x +3)-1(a >0,a ≠1)的图象恒过定点A (-2,-1),(-2)·m +(-1)·n +1=0, 2m +n =1,m ,n >0, 1m +2n =⎝ ⎛⎭⎪⎫1m +2n ·(2m +n )=4+n m+4m n≥4+2n m ·4mn=8,当且仅当⎩⎪⎨⎪⎧2m +n =1n m=4mn,即⎩⎪⎨⎪⎧m =14n =12时等号成立.答案 811.求函数y =x 2+6x +1x 2+1的值域.解 函数的定义域为R , y =x 2+1+6x x 2+1=1+6x x 2+1. (1)当x =0时,y =1; (2)当x >0时,y =1+6x +1x≤1+62=4. 当且仅当x =1x时,即x =1时,y max =4;(3)当x <0时,y =1+6x +1x=1-6-x +1-x ≥1-62=-2.当且仅当-x =-1x时,即x =-1时,y min =-2.综上所述:-2≤y ≤4,即函数的值域是[-2,4].12.(创新拓展)(2012·济宁高二检测)某建筑公司用8 000万元购得一块空地,计划在该地块上建造一栋至少12层、每层4 000平方米的楼房.经初步估计得知,如果将楼房建为x (x ≥12)层,则每平方米的平均建筑费用为Q (x )=3 000+50x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费最小值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)解 设楼房每平方米的平均综合费用为f (x )元,依题意得f (x )=Q (x )+8 000×10 0004 000x=50x +20 000x+3 000(x ≥12,x ∈N ),f (x )=50x +20 000x+3 000≥250x ·20 000x+3 000=5 000(元).当且仅当50x =20 000x,即x =20时上式取“=”因此,当x =20时,f (x )取得最小值5 000(元).所以为了使楼房每平方米的平均综合费用最少,该楼房应建为20层,每平方米的平均综合费用最小值为5 000元.。

高中数学第三章不等式3.4基本不等式(第2课时)课件新人教A版必修5

高中数学第三章不等式3.4基本不等式(第2课时)课件新人教A版必修5

4 1 9 ( 2)已 知a b 0, a b 1, 则 的最小值为 ___ a b 2b
方法点拨:常数“1”的代换
例题讲解
1 4 例3.对 任 意 的 (0, ),不 等 式 2 2x 1 2 2 sin cos 恒成立 ,则 实 数 x的 取 值 范 围 是 ( D ) A. 3,4 B.0,2 3 5 C . , 2 2 D. 4,5
a7 a6 2a5 , 若 存 在 两 项 am , an , 使 得 am an 4a1 , 1 4 3 5 9 25 则 的最小值为 ( A ) A. B. C . D. m n 2 3 4 6
变题
改条件 am an 2a1,则最小值在计算时有 何不同?
课堂小结
基本不等式
ab 若a , b 0, 则 ab (当 且 仅 当 a b时, 等 号 成 立 ) 2
基本不等式及其应用的运用的原则: (1)结构为王 (2)配凑变形为辅(3)成立条件 保障
(备用例题)
1.设已知实数a, b R, 若a 2 ab b 2 3, 则 (1 ab) 2 的值域为_______ 2 2 a b 1
作业:
配套练习
例题讲解 例1. 试着构造一个最小值为2的函数, “□”内 可填入常数或是x相关的式子
f ( x)

x 2
2
x 1
( x 1)
x 1 2 f ( x) ( x 1) 2 x 1 x f ( x) x 2 ( x 1) x 1 x2 f ( x) 2( x 1) x 1

例题讲解
例4.关 于x的 二 次 不 等 式 ax2 2 x b 0的 解 集 为 1 a 2 b2 2 2 的最小值为 ________ x x , 且a b, 则 a ab

高中数学 第三章 不等式 3.1 不等关系与不等式(第1课时)练习(含解析)新人教A版必修5-新人教

高中数学 第三章 不等式 3.1 不等关系与不等式(第1课时)练习(含解析)新人教A版必修5-新人教

3.1《不等关系与不等式》(第1课时)一、选择题:1.设M =x 2,N =-x -1,则M 与N 的大小关系是( )A .M >NB .M =NC .M <ND .与x 有关 【答案】A【解析】 M -N =x 2+x +1=(x +12)2+34>0,∴M >N .2.若a <b <0,则下列不等式不能成立的是( )A .1a >1bB .2a >2bC .|a |>|b |D .(12)a >(12)b 【答案】B【解析】 ∵a <b ,y =2x 单调递增,∴2a <2b,故选B . 3.已知a <0,-1<b <0,则下列各式正确的是( )A .a >ab >ab 2B .ab >a >ab 2C .ab 2>ab >a D .ab >ab 2>a 【答案】D【解析】 ∵-1<b <0,∴1>b 2>0>b >-1,即b <b 2<1,两边同乘以a 得,∴ab >ab 2>a .故选D .4.如果a 、b 、c 满足c <b <a ,且ac <0,那么下列选项中不一定...成立的是( ) A .ab >ac B .bc >ac C .cb 2<ab 2D .ac (a -c )<0 【答案】C【解析】 ∵c <b <a ,且ac <0,∴a >0,c <0.∴ab -ac =a (b -c )>0,bc -ac =(b -a )c >0,ac (a -c )<0,∴A、B 、D 均正确.∵b 可能等于0,也可能不等于0. ∴cb 2<ab 2不一定成立.5.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( )A .若a >b ,c >b ,则a >cB .若a >-b ,则c -a <c +bC .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-b【答案】B【解析】 选项A ,若a =4,b =2,c =5,显然不成立;选项C 不满足倒数不等式的条件,如a >b >0,c <0<d时,不成立;选项D 只有a >b >0时才可以.否则如a =-1,b =0时不等成立,故选B .6.下列各式中,对任何实数x 都成立的一个式子是( )A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C .1x 2+1≤1 D.x +1x≥2 【答案】C【解析】 A 中x >0;B 中x =1时,x 2+1=2x ;C 中任意x ,x 2+1≥1,故1x 2+1≤1;D 中当x <0时,x +1x≤0.7.若a >b >0,c <d <0,则一定有( )A .a c >b dB .a c <b dC .a d >b cD .a d <b c【答案】D【解析】本题考查不等式的性质,a c -b d =ad -bccd,cd >0,而ad -bc 的符号不能确定,所以选项A 、B 不一定成立.a d -b c =ac -bddc,dc >0,由不等式的性质可知ac <bd ,所以选项D 成立.本题也可以对实数a 、b 、c 、d 进行适当的赋值逐一排查.8.设a =sin15°+cos15°,b =sin16°+cos16°,则下列各式正确的是( )A .a <a 2+b 22<b B .a <b <a 2+b 22C .b <a <a 2+b 22D .b <a 2+b 22<a【答案】B【解析】a =sin15°+cos15°=2sin60°,b =sin16°+cos16°=2sin61°,∴a <b ,排除C 、D 两项.又∵a ≠b ,∴a 2+b 22-ab =a -b22>0,∴a 2+b 22>ab =2sin60°×2sin61°=3sin61°>2sin61°=b ,故a <b <a 2+b 22成立.9.已知-1<a <0,A =1+a 2,B =1-a 2,C =11+a ,比较A 、B 、C 的大小结果为( ) A .A <B <C B .B <A <C C .A <C <B D .B <C <A【答案】B【解析】 不妨设a =-12,则A =54,B =34,C =2,由此得B <A <C ,排除A 、C 、D ,选B .具体比较过程如下:由-1<a <0得1+a >0,A -B =(1+a 2)-(1-a 2)=2a 2>0得A >B , C -A =11+a-(1+a 2)=-a a 2+a +11+a=-a ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +122+341+a>0,得C >A ,∴B <A <C .二、填空题:10.若x =(a +3)(a -5),y =(a +2)(a -4),则x 与y 的大小关系是________. 【答案】x <y【解析】x -y =(a +3)(a -5)-(a +2)(a -4)=(a 2-2a -15)-(a 2-2a -8)=-7<0,∴x <y . 11.给出四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推得1a <1b成立的是________.【答案】①、②、④【解析】 1a <1b ⇔b -aab<0,∴①、②、④能使它成立.12.a ≠2、b ≠-1、M =a 2+b 2、N =4a -2b -5,比较M 与N 大小的结果为________. 【答案】M >N【解析】 ∵a ≠2,b ≠-1,∴M -N =a 2+b 2-4a +2b +5=(a -2)2+(b +1)2>0,∴M >N . 三、解答题13.某矿山车队有4辆载重为10 t 的甲型卡车和7辆载重为6 t 的乙型卡车,有9名驾驶员.此车队每天至少要运360 t 矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式. 【答案】见解析【解析】 设每天派出甲型卡车x 辆,乙型卡车y 辆.根据题意,应有如下的不等关系:(1)甲型卡车和乙型卡车的总和不能超过驾驶员人数. (2)车队每天至少要运360 t 矿石.(3)甲型车不能超过4辆,乙型车不能超过7辆.要同时满足上述三个不等关系,可以用下面的不等式组来表示:⎩⎪⎨⎪⎧x +y ≤910×6x +6×8y ≥3600≤x ≤40≤y ≤7,即⎩⎪⎨⎪⎧x +y ≤95x +4y ≥300≤x ≤40≤y ≤7.14.有粮食和石油两种物质,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果如下表:关系的不等式. 【答案】见解析【解析】设需安排x 艘轮船和y 架飞机,则⎩⎪⎨⎪⎧300x +150y ≥2 000250 x +100 y ≥1 500x ≥0y ≥0,∴⎩⎪⎨⎪⎧6x +3y ≥405x +2y ≥30x ≥0y ≥0.15.设a >0,b >0且a ≠b ,试比较a a b b与a b b a的大小. 【答案】见解析【解析】 根据同底数幂的运算法则.a a b b a b b a =a a -b ·b b -a =(a b)a -b,当a >b >0时,ab >1,a -b >0,则(a b)a -b>1,于是a a b b>a b b a . 当b >a >0时,0<a b <1,a -b <0,则(a b)a -b>1,于是a a b b>a b b a.综上所述,对于不相等的正数a 、b ,都有a a b b>a b b a.。

高中数学 第三章 不等式 3.2.1 一元二次不等式的解法课时作业(含解析)新人教A版必修5-新人教

高中数学 第三章 不等式 3.2.1 一元二次不等式的解法课时作业(含解析)新人教A版必修5-新人教

课时作业20 一元二次不等式的解法时间:45分钟——基础巩固类——一、选择题1.下列不等式中是一元二次不等式的是(C)A.a2x2+2≥0 B.1x2+x<3 C.-x2+x-m≤0 D.x3-2x+1>0 解析:选项A中,a2=0时不符合;选项B是分式不等式;选项D中,最高次数为三次;只有选项C符合.故选C.2.不等式6-x-2x2<0的解集是(D)解析:不等式变形为2x2+x-6>0,又方程2x2+x-6=0的两根为x1=32,x2=-2,所以不等式的解集为.故选D.3.设关于x的不等式(ax-1)(x+1)<0(a∈R)的解集为{x|-1<x<1},则a的值是(D) A.-2 B.-1C.0 D.1解析:根据题意可得,-1,1是方程(ax-1)(x+1)=0的两根,代入解得a=1.4.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足:x ⊙(x -2)<0的实数x 的取值X 围为( B )A .(0,2)B .(-2,1)C .(-∞,-2)∪(1,+∞)D .(-1,2)解析:x ⊙(x -2)=x (x -2)+2x +x -2<0⇒x 2+x -2<0⇒-2<x <1. 5.不等式x 2-|x |-2<0的解集是( A ) A .{x |-2<x <2} B .{x |x <-2或x >2} C .{x |-1<x <1} D .{x |x <-1或x >1}解析:令t =|x |,则原不等式可化为t 2-t -2<0,即(t -2)(t +1)<0.∵t =|x |≥0.∴t -2<0.∴t <2. ∴|x |<2,得-2<x <2.6.已知方程2x 2-(m +1)x +m =0有两个不等正实根,则实数m 的取值X 围是( C ) A .{m |0<m ≤3-22或m ≥3+22} B .{m |m <3-22或m >3+22} C .{m |0<m <3-22或m >3+22} D .{m |m ≤3-22或m ≥3+22}解析:∵方程2x 2-(m +1)x +m =0有两个不等正实根,∴Δ=(-m -1)2-8m >0,即m 2-6m +1>0,解得m <3-22或m >3+2 2.再根据两根之和为m +12>0,且两根之积为m 2>0,解得m >0.综上可得,0<m <3-22或m >3+2 2.二、填空题7.函数f (x )=log 2(-x 2+x +12)的定义域为(-3,4).解析:由-x 2+x +12>0,得x 2-x -12<0,解得-3<x <4,所以定义域为(-3,4).8.不等式组⎩⎪⎨⎪⎧3x 2+x -2≥0,4x 2-15x +9>0的解集是{x |x >3或x ≤-1}.解析:由⎩⎪⎨⎪⎧3x 2+x -2≥0,4x 2-15x +9>0,得⎩⎨⎧x ≥23或x ≤-1,x >3或x <34,即x >3或x ≤-1,故不等式组的解集为{x |x >3或x ≤-1}.9.若关于x 的不等式组⎩⎪⎨⎪⎧x -1>a 2,x -4<2a 解集不是空集,则实数a 的取值X 围是-1<a <3.解析:依题意有⎩⎪⎨⎪⎧x >1+a 2,x <4+2a ,要使不等式组的解集不是空集,应有a 2+1<4+2a ,即a 2-2a -3<0,解得-1<a <3.三、解答题10.求下列不等式的解集. (1)-2x 2+x +12<0;(2)3x 2+5≤3x ; (3)9x 2-6x +1>0.解:(1)原不等式可以化为2x 2-x -12>0.∵方程2x 2-x -12=0的解是:x 1=1-54,x 2=1+54,∴原不等式的解集是{x |x <1-54或x >1+54}.(2)原不等式变形为3x 2-3x +5≤0. ∵Δ<0,∴方程3x 2-3x +5=0无解. ∴不等式3x 2-3x +5≤0的解集是∅.∴原不等式的解集是∅.(3)∵Δ=0,∴方程9x 2-6x +1=0有两个相等实根x 1=x 2=13,∴不等式9x 2-6x +1>0的解集为{x |x ≠13}.11.已知f (x )=x 2-⎝⎛⎭⎫a +1a x +1,(1)当a =12时,解不等式f (x )≤0;(2)若a >0,解关于x 的不等式f (x )≤0.解:(1)当a =12时,不等式为f (x )=x 2-52x +1≤0,∴⎝⎛⎭⎫x -12(x -2)≤0, ∴不等式的解集为(2)∵f (x )=⎝⎛⎭⎫x -1a (x -a )≤0, 当0<a <1时,有1a>a ,∴不等式的解集为当a >1时,有1a<a ,∴不等式的解集为当a =1时,不等式的解集为{x |x =1}.——能力提升类——12.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,则不等式f (a 2-4)>f (3a )的解集为( B )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)解析:作出函数f (x )的图象,如右图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4.所以不等式的解集为(-1,4).13.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( A ) A .52B .72C .154D .152解析:由条件知x 1,x 2为方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2. 由(x 2-x 1)2=(x 1+x 2)2-4x 1x 2=(2a )2-4×(-8a 2)=36a 2=152,解得a =52.14.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,则不等式f (x )>f (1)的解集是(-3,1)∪(3,+∞).解析:f (1)=12-4×1+6=3,不等式即为f (x )>3.①当x ≥0时,不等式即为⎩⎪⎨⎪⎧x 2-4x +6>3,x ≥0,解得⎩⎪⎨⎪⎧x >3或x <1,x ≥0,即x >3或0≤x <1;②当x <0时,不等式即为⎩⎪⎨⎪⎧x +6>3,x <0,解得-3<x <0.综上,原不等式的解集为(-3,1)∪(3,+∞). 15.已知函数y =ax 2+2ax +1的定义域为R . (1)求a 的取值X 围. (2)若函数的最小值为22,解关于x 的不等式x 2-x -a 2-a <0. 解:(1)因为函数y =ax 2+2ax +1的定义域为R ,所以ax 2+2ax +1≥0恒成立. 当a =0时,1≥0,不等式恒成立;当a ≠0时,则⎩⎪⎨⎪⎧a >0,Δ=4a 2-4a ≤0,解得0<a ≤1. 综上,0≤a ≤1. (2)因为函数的最小值为22, 所以y =ax 2+2ax +1的最小值为12,因此4a -4a 24a =12(a ≠0),解得a =12.于是不等式可化为x 2-x -34<0,即4x 2-4x -3<0,解得-12<x <32.故不等式x 2-x -a 2-a <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <32.。

高中数学 第三章 不等式章末复习课练习(含解析)新人教A版必修5-新人教A版高二必修5数学试题

高中数学 第三章 不等式章末复习课练习(含解析)新人教A版必修5-新人教A版高二必修5数学试题

第三章章末复习课[整合·网络构建][警示·易错提醒]1.不等式的基本性质不等式的性质是不等式这一章内容的理论基础,是不等式的证明和解不等式的主要依据.因此,要熟练掌握和运用不等式的八条性质.2.一元二次不等式的求解方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,共同确定出解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.当m<n时,若(x-m)(x-n)>0,则可得x>n或x<m;若(x-m)(x-n)<0,则可得m <x<n.有口诀如下:大于取两边,小于取中间.3.二元一次不等式(组)表示的平面区域(1)二元一次不等式(组)的几何意义:二元一次不等式(组)表示的平面区域.(2)二元一次不等式表示的平面区域的判定:对于任意的二元一次不等式Ax+By+C>0(或<0),无论B 为正值还是负值,我们都可以把y 项的系数变形为正数,当B >0时,①Ax +By +C >0表示直线Ax +By +C =0上方的区域;②Ax +By +C <0表示直线Ax +By +C =0下方的区域.4.求目标函数最优解的两种方法(1)平移直线法.平移法是一种最基本的方法,其基本原理是两平行直线中的一条上任意一点到另一条直线的距离相等;(2)代入检验法.通过平移法可以发现,取得最优解对应的点往往是可行域的顶点,其实这具有必然性.于是在选择题中关于线性规划的最值问题,可采用求解方程组代入检验的方法求解.5.运用基本不等式求最值,把握三个条件(易错点) (1)“一正”——各项为正数;(2)“二定”——“和”或“积”为定值; (3)“三相等”——等号一定能取到.专题一 不等关系与不等式的基本性质1.同向不等式可以相加,异向不等式可以相减;但异向不等式不可以相加,同向不等式不可以相减.(1)若a >b ,c >d ,则a +c >b +d ; (2)若a >b ,c <d ,则a -c >b -a .2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘.(1)若a >b >0,c >d >0,则ac >bd ; (2)若a >b >0,0<c <d ,则a c >bd.3.左右同正不等式,两边可以同时乘方或开方:若a >b >0,则a n >b n或n a >nb . 4.若ab >0,a >b ,则1a <1b ;若ab <0,a >b ,则1a >1b.[例1] 已知a >0,b >0,且a ≠b ,比较a 2b +b 2a 与a +b 的大小.解:因为⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )=a 2b -b +b 2a -a = a 2-b 2b +b 2-a 2a =(a 2-b 2)⎝ ⎛⎭⎪⎫1b -1a =(a 2-b 2)a -b ab =(a -b )2(a +b )ab,因为a >0,b >0,且a ≠b , 所以(a -b )2>0,a +b >0,ab >0,所以⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )>0,即a 2b +b 2a >a +b .归纳升华不等式比较大小的常用方法(1)作差比较法:作差后通过分解因式、配方等手段判断差的符号得出结果. (2)作商比较法:常用于分数指数幂的代数式. (3)乘方转化的方法:常用于根式比较大小. (4)分子分母有理化. (5)利用中间量.[变式训练] (1)已知0<x <2,求函数y =x (8-3x )的最大值; (2)设函数f (x )=x +2x +1,x ∈[0,+∞),求函数f (x )的最小值. 解:(1)因为0<x <2,所以0<3x <6,8-3x >0, 所以y =x (8-3x )=13×3x ·(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163,当且仅当3x =8-3x ,即x =43时,取等号,所以当x =43时,y =x (8-3x )有最大值为163.(2)f (x )=x +2x +1=(x +1)+2x +1-1,因为x ∈[0,+∞),所以x +1>0,2x +1>0, 所以x +1+2x +1≥2 2. 当且仅当x +1=2x +1, 即x =2-1时,f (x )取最小值. 此时f (x )min =22-1.专题二 一元二次不等式的解法 一元二次不等式的求解流程如下: 一化——化二次项系数为正数.二判——判断对应方程的根. 三求——求对应方程的根. 四画——画出对应函数的图象. 五解集——根据图象写出不等式的解集. [例2] (1)解不等式:-1<x 2+2x -1≤2; (2)解不等式a (x -1)x -2>1(a ≠1).解:(1)原不等式等价于⎩⎪⎨⎪⎧x 2+2x -1>-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x >0, ①x 2+2x -3≤0. ② 由①得x (x +2)>0,所以x <-2或x >0; 由②得(x +3)(x -1)≤0, 所以-3≤x ≤1.将①②的解集在数轴上表示出来,如图所示.求其交集得原不等式的解集为{x |-3≤x <-2或0<x ≤1}.(2)原不等式可化为a (x -1)x -2-1>0,即(a -1)⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0(*), ①当a >1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)>0,而a -2a -1-2=-a a -1<0,所以a -2a -1<2,此时x >2或x <a -2a -1. ②当a <1时,(*)式即为⎝⎛⎭⎪⎫x -a -2a -1(x -2)<0, 而2-a -2a -1=aa -1, 若0<a <1,则a -2a -1>2,此时2<x <a -2a -1; 若a =0,则(x -2)2<0,此时无解; 若a <0,则a -2a -1<2,此时a -2a -1<x <2. 综上所述,当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a -2a -1或x >2; 当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2<x <a -2a -1; 当a =0时,不等式的解集为∅; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a -2a -1<x <2.归纳升华含参数的一元二次不等式的分类讨论(1)对二次项系数含有参数的一元二次不等式,要注意对二次项系数是否为零进行讨论,特别当二次项系数为零时需转化为一元一次不等式问题来求解.(2)对含参数的一元二次不等式,在其解的情况不明确的情况下,需要对其判别式分Δ>0,Δ=0,Δ<0三种情况并加以讨论.(3)若含参数的一元二次不等式可以转化成用其根x 1,x 2表示的形如a (x -x 1)(x -x 2)的形式时,往往需要对其根分x 1>x 2、x 1=x 2,x 1<x 2三种情况进行讨论,或用根与系数的关系帮助求解.[变式训练] 定义在(-1,1)上的奇函数f (x )在整个定义域上是减函数,且f (1-a )+f (1-a 2)<0,某某数a 的取值X 围.解:因为f (x )的定义域为(-1,1),所以⎩⎪⎨⎪⎧-1<1-a <1,-1<1-a 2<1, 所以⎩⎨⎧0<a <2,-2<a <2且a ≠0,所以0<a <2,①原不等式变形为f (1-a )<-f (1-a 2). 由于f (x )为奇函数,有-f (1-a 2)=f (a 2-1), 所以f (1-a )<f (a 2-1). 又f (x )在(-1,1)上是减函数, 所以1-a >a 2-1,解得-2<a <1.② 由①②可得0<a <1, 所以a 的取值X 围是(0,1). 专题三 简单的线性规划问题 线性规划问题在实际中的类型主要有:(1)给定一定数量的人力、物力资源,求如何运用这些资源,使完成任务量最大,收到的效益最高;(2)给定一项任务,问怎样统筹安排,使得完成这项任务耗费的人力、物力资源最少. [例3] 某厂用甲、乙两种原料生产A ,B 两种产品,制造1 t A ,1 t B 产品需要的各种原料数、可得到利润以及工厂现有各种原料数如下表:原料 每种产品所需原料/t现有原料数/tAB甲 2 1 14 乙 1 3 18 利润/(万元/t)53____(1)在现有原料条件下,生产A ,B 两种产品各多少时,才能使利润最大?(2)每吨B 产品的利润在什么X 围变化时,原最优解不变?当超出这个X 围时,最优解有何变化?解:(1)生产A ,B 两种产品分别为x t ,y t ,则利润z =5x +3y ,x ,y 满足⎩⎪⎨⎪⎧2x +y ≤14.x +3y ≤18,x ≥0,y ≥0,作出可行域如图所示:当直线5x +3y =z 过点B ⎝ ⎛⎭⎪⎫245,225时,z 取最大值3715,即生产A 产品 245 t ,B 产品 225t 时,可得最大利润.(2)设每吨B 产品利润为m 万元,则目标函数是z =5x +my ,直线斜率k =-5m,又k AB =-2,k CB =-13,要使最优解仍为B 点,则-2≤-5m ≤-13,解得52≤m ≤15.归纳升华解答线性规划应用题的步骤(1)列:设出未知数,列出约束条件,确定目标函数. (2)画:画出线性约束条件所表示的可行域.(3)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.(4)求:通过解方程组求出最优解. (5)答:作出答案.[变式训练] 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:法一:依题意得,x +1>1,2y +1>1,易知(x +1)·(2y +1)=9,则(x +1)+(2y +1)≥2(x +1)(2y +1)=29=6,当且仅当x +1=2y +1=3,即x =2,y =1时,等号成立,因此有x +2y ≥4,所以x +2y 的最小值为4.法二:由题意得,x =8-2y 2y +1=-(2y +1)+92y +1=-1+92y +1, 所以x +2y =-1+92y +1+2y =-1+92y +1+2y +1-1,≥292y +1·(2y +1)-2=4,当且仅当2y +1=3,即y =1时,等号成立. 答案:B专题四 成立问题(恒成立、恰成立等)[例4] 已知函数f (x )=mx 2-mx -6+m ,若对于m ∈[1,3],f (x )<0恒成立,某某数x 的取值X 围.解:因为mx 2-mx -6+m <0, 所以m (x 2-x +1)-6<0, 对于m ∈[1,3],f (x )<0恒成立⇔⎩⎪⎨⎪⎧1×(x 2-x +1)-6<0,3×(x 2-x +1)-6<0, 即为⎩⎪⎨⎪⎧1-212<x <1+212,1-52<x <1+52,计算得出:1-52<x <1+52.所以实数x 的取值X 围:1-52<x <1+52.归纳升华不等式恒成立求参数X 围问题常见解法(1)变更主元法:根据实际情况的需要确定合适的主元,一般将知道取值X 围的变量看作主元. (2)分离参数法:若f (a )<g (x )恒成立,则f (a )<g (x )min ; 若f (a )>g (x )恒成立,则f (a )>g (x )max . (3)数形结合法:利用不等式与函数的关系将恒成立问题通过函数图象直观化.[变式训练] 已知函数y =2x 2-ax +10x 2+4x +6的最小值为1,某某数a 的取值集合.解:由y ≥1即2x 2-ax +10x 2+4x +6≥1⇒x 2-(a +4)x +4≥0恒成立,所以Δ=(a +4)2-16≤0,解得-8≤a ≤0(必要条件). 再由y =1有解,即2x 2-ax +10x 2+4x +6=1有解,即x 2-(a +4)x +4=0有解,所以Δ=(a +4)2-16≥0,解得a ≤-8或a ≥0. 综上即知a =-8或a =0时,y min =1, 故所某某数a 的取值集合是{-8,0}. 专题五 利用分类讨论思想解不等式 [例5] 解关于x 的不等式x -ax -a 2<0(a ∈R). 分析:首先将不等式转化为整式不等式(x -a )(x -a 2)<0,而方程(x -a )(x -a 2)=0的两根为x 1=a ,x 2=a 2,故应就两根a 和a 2的大小进行分类讨论.解:原不等式等价于(x -a )(x -a 2)<0.(1)若a =0,则a =a 2=0,不等式为x 2<0,解集为∅; (2)若a =1,则a 2=1,不等式为(x -1)2<0,解集为∅; (3)若0<a <1,则a 2<a ,故解集为{x |a 2<x <a }; (4)若a <0或a >1,则a 2>a ,故解集为{x |a <x <a 2}. 归纳升华分类讨论思想解含有字母的不等式时,往往要对其中所含的字母进行适当的分类讨论.分类讨论大致有以下三种:(1)对不等式作等价变换时,正确运用不等式的性质而引起的讨论. (2)对不等式(组)作等价变换时,由相应方程的根的大小比较而引起的讨论. (3)对不等式作等价变换时,由相应函数单调性的可能变化而引起的讨论.[变式训练] 已知奇函数f (x )在区间(-∞,+∞)上单调递减,α,β,γ∈R 且α+β>0,β+γ>0,γ+α>0.试判断f (α)+f (β)+f (γ)的值与0的关系.解:因为f(x)为R上的减函数,且α>-β,β>-γ,γ>-α,所以f(α)<(-β),f(β)<f(-γ),f(γ)<f(-α),又f(x)为奇函数,所以f(-β)=-f(β),f(-α)=-f(α),f(-γ)=-f(γ),所以f(α)+f(β)+f(γ)<f(-β)+f(-γ)+f(-α)=-[f(β)+f(γ)+f(α)],所以f(α)+f(β)+f(γ)<0.。

2019年高中数学第三章不等式3.4基本不等式(第2课时)基本不等式的应用巩固提升(含解析)新人教A版必修5

2019年高中数学第三章不等式3.4基本不等式(第2课时)基本不等式的应用巩固提升(含解析)新人教A版必修5

第2课时 基本不等式的应用[A 基础达标]1.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bc B.a +d2<bc C.a +d 2=bcD.a +d2≤bc解析:选A.因为a ,b ,c ,d 是不相等的正数且成等差数列, 所以a +d 2=b +c2>bc .2.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件解析:选B.设每件产品的平均费用为y 元, 由题意得y =800x +x8≥2800x ·x8=20. 当且仅当800x =x8(x >0),即x =80时“=”成立,故选B.3.若a ≥0,b ≥0且a +b =2,则( ) A .ab ≤12B .ab ≥12C .a 2+b 2≥2D .a 2+b 2≤3解析:选C.因为a 2+b 2≥2ab ,所以(a 2+b 2)+(a 2+b 2)≥(a 2+b 2)+2ab , 即2(a 2+b 2)≥(a +b )2=4,所以a 2+b 2≥2.4.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5解析:选C.由已知,可得6⎝⎛⎭⎪⎫2a +1b=1,所以2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝⎛⎭⎪⎫5+2a b+2b a ≥6×(5+4)=54,当且仅当2a b =2b a时等号成立,所以9m ≤54,即m ≤6,故选C.5.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) A.22B .2 2 C. 2D .2解析:选D.由x >0,y >0,且4xy -x -2y =4,得4xy -4=x +2y ≥22xy ,即2xy -2≥2xy .令2xy =t ,则t >0,所以t 2-t -2≥0,解得t ≥2或t ≤-1(舍去),即2xy ≥2,解得xy ≥2.故xy 的最小值为2.6.已知函数f (x )=4x +a x(x >0,a >0)在x =3时取得最小值,则a =________. 解析:f (x )=4x +a x≥2 4x ·a x =4a (x >0,a >0),当且仅当4x =a x,即x =a2时等号成立,此时f (x )取得最小值4a .又由已知x =3时,f (x )min =4a , 所以a2=3,即a =36.答案:367.若0<a <1,0<b <1,则log a b +log b a ≥________. 解析:因为0<a <1,0<b <1, 所以log a b >0,log b a >0, 所以log a b +log b a =log a b +1log a b≥2log a b ·1log a b=2.当且仅当log a b =log b a 即a =b 时取“=”. 答案:28.若a <1,则a +1a -1与-1的大小关系是________. 解析:因为a <1,即1-a >0, 所以-⎝⎛⎭⎪⎫a -1+1a -1=(1-a )+11-a≥2 (1-a )·11-a=2.即a +1a -1≤-1.答案:a +1a -1≤-1 9.已知x >0,y >0,z >0.求证:⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭⎪⎫x z +y z ≥8. 证明:因为x >0,y >0,z >0,所以y x +z x≥2yz x>0,x y +z y ≥2xz y >0, x z +y z ≥2xy z>0 所以⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭⎪⎫x z +y z ≥8yz ·xz ·xy xyz=8,当且仅当x =y =z 时等号成立. 10.已知a >b >c 且2a -b +1b -c ≥m a -c恒成立,求实数m 的最大值. 解:由题意,a -b >0,b -c >0,a -c >0, 又2a -b +1b -c ≥m a -c ,即2(a -c )a -b +a -c b -c≥m , 即2(a -b +b -c )a -b +a -b +b -c b -c≥m ,即2+2(b -c )a -b +1+a -bb -c ≥3+22(当且仅当a -b =2(b -c )时取等号).所以实数m 的最大值为3+2 2.[B 能力提升]11.已知a >0,b >0,若不等式2a +1b ≥m2a +b 恒成立,则m 的最大值等于( )A .10B .9C .8D .7解析:选B.因为a >0,b >0,所以2a +1b ≥m 2a +b ⇔2(2a +b )a +2a +b b =5+2b a +2a b ≥m ,由a >0,b >0得,2b a +2a b ≥22b a ·2ab=4(当且仅当a =b 时取“=”).所以5+2b a +2ab≥9,所以m ≤9.故选B.12.若x >1,则函数y =x +1x +16xx 2+1的最小值为________.解析:y =x +1x +16x x 2+1=x 2+1x +16xx 2+1≥2x 2+1x ·16x x 2+1=8,当且仅当x 2+1x =16xx 2+1,即x =2+3时等号成立.答案:813.已知k >16,若对任意正数x ,y ,不等式⎝ ⎛⎭⎪⎫3k -12x +ky ≥2xy 恒成立,求实数k 的取值范围.解:因为x >0,y >0,所以不等式⎝ ⎛⎭⎪⎫3k -12x +ky ≥2xy 恒成立等价于⎝ ⎛⎭⎪⎫3k -12xy +k yx≥2恒成立. 又k >16,所以⎝ ⎛⎭⎪⎫3k -12x y +k y x≥2k ⎝⎛⎭⎪⎫3k -12(当且仅当x =y 时,等号成立),所以2k ⎝⎛⎭⎪⎫3k -12≥2,解得k ≤-13(舍去)或k ≥12,所以实数k 的取值范围为⎣⎢⎡⎭⎪⎫12,+∞.14.(选做题)(2019·福建莆田八中期中考试)某品牌电脑体验店预计全年购入360台电脑,已知该品牌电脑的进价为3 000元/台,为节约资金决定分批购入,若每批都购入x (x ∈N *)台,且每批需付运费300元,储存购入的电脑全年所付保管费与每批购入电脑的总价值(不含运费)成正比(比例系数为k ),若每批购入20台,则全年需付运费和保管费7 800元.(1)记全年所付运费和保管费之和为y 元,求y 关于x 的函数;(2)若要使全年用于支付运费和保管费的资金最少,则每批应购入电脑多少台? 解:(1)由题意,得y =360x×300+k ×3 000x .当x =20时,y =7 800,解得k =0.04.所以y =360x ×300+0.04×3 000x =360x×300+120x (x ∈N *).(2)由(1),得y =360x×300+120x ≥2360×300x×120x =2×3 600=7 200.当且仅当360×300x=120x ,即x =30时,等号成立.所以要使全年用于支付运费和保管费的资金最少,每批应购入电脑30台.。

高中数学第三章不等式3.4.1基本不等式课件新人教A版必修5

高中数学第三章不等式3.4.1基本不等式课件新人教A版必修5

一二三
二、基本不等式
【问题思考】 1.填空: (1)基本不等式
①当 a>0,b>0 时,有������+2������ ≥ ������������,当且仅当 a=b 时,等号成立;
②对于正数 a,b,常把������+2������叫做 a,b 的算术平均数,把 ������������叫做 a,b 的几
解(1)由题意知 x>0,由基本不等式得 f(x)=3x+1������2≥2 3������·1������2=2 36=12. 当且仅当 3x=1������2,即 x=2 时,f(x)取得最小值 12.故 f(x)的最小值是 12. (2)由 lg a+lg b=2,得 lg ab=2,即 ab=100,且 a>0,b>0, 因此由基本不等式可得 a+b≥2 ������������=2 100=20, 当且仅当 a=b=10 时,a+b 取到最小值 20.故 a+b 的最小值是 20. (3)由于 x,y 是实数,所以 2x>0,2y>0,于是
提示填表略,(1)当 x+y 是定值时,xy 有最大值,且最大值等于
������+������ 2
2
;(2)当 xy 是定值时,x+y 有最小值,且最小值等于 2
������������.
2.填空: 基本不等式与最值 已知x,y都是正数. (1)若x+y=s(和为定值),则当x=y时,积xy取得最大值. (2)若xy=p(积为定值),则当x=y时,和x+y取得最小值.
变式训练 2(1)已知 a,b,c,d 都是正数,求证:(ab+cd)(ac+bd)≥4abcd.

高中数学必修5(人教A版)第三章不等式3.5知识点总结含同步练习及答案

高中数学必修5(人教A版)第三章不等式3.5知识点总结含同步练习及答案
A.[
答案: A 解析: 只需
1 2
x
)
1 ] 4 7 D.(−∞, − ) 2
B.(−∞,
f (x) min ⩾ g(x) min 即可.
4. 三位同学合作学习,对问题"已知不等式 xy ⩽ ax2 + 2y 2 对于 x ∈ [1, 2] , y ∈ [2, 3] 恒成立,求 a 的 取值范围"提出了各自的解题思路. 甲说:"可视 x 为变量,y 为常量来分析". 乙说:"寻找 x 与 y 的关系,再作分析". 丙说:"把字母 a 单独放在一边,再作分析". 参考上述思路,或自已的其它解法,可求出实数 a 的取值范围是 ( A.[1, +∞)
1. 若关于 x 的方程 9 x + (4 + a) ⋅ 3 x + 4 = 0 有解,则实数 a 的取值范围是 ( A.(−∞, −8) C.[−8, +∞)
答案: B 解析:
)Hale Waihona Puke B.(−∞, −8]D.(−∞, +∞)
由 9 x + (4 + a) ⋅ 3 x + 4 = 0,得 a = −3 x −
答案: B 解析:
)
D.[−1, 6]
B.[−1, +∞)
C.[−1, 4)
y y y 2 − 2( ) ,由 x ∈ [1, 2] , y ∈ [2, 3] ,x 、 y 构成正方形区域, 表示过 x x x y y 原点直线与正方形区域相交时直线的斜率的取值范围,则有 ∈ [1, 3] ,当 = 1 时, x x y y 2 − 2( ) 有最大值为 −1,则 a 的取值范围是 [−1, +∞) x x

2020版数学人教A版必修5学案:第三章 3.4 第1课时 基本不等式 Word版含解析

2020版数学人教A版必修5学案:第三章 3.4 第1课时 基本不等式 Word版含解析

§3.4 基本不等式:ab ≤a +b2第1课时 基本不等式学习目标 1.理解基本不等式的内容及证明.2.能熟练运用基本不等式来比较两个实数的大小.3.能初步运用基本不等式证明简单的不等式.知识点一 算术平均数与几何平均数一般地,对于正数a ,b ,a +b2为a ,b 的算术平均数,ab 为a ,b 的几何平均数.两个正数的算术平均数不小于它们的几何平均数,即ab ≤a +b2. 几何解释 如图,AB 是圆O 的直径,点Q 是AB 上任一点,AQ =a ,BQ =b ,过点Q 作PQ 垂直于AB 且交圆O 于点P ,连接AP ,PB .则PO =AB 2=a +b2.易证Rt △APQ ∽Rt △PBQ ,那么PQ 2=AQ ·QB ,即PQ =ab .知识点二 基本不等式常见推论由公式a 2+b 2≥2ab (a ,b ∈R )和a +b2≥ab (a >0,b >0)可得以下结论:①a b +ba ≥2(a ,b 同号); ②21a +1b≤ab ≤a +b2≤a 2+b 22(a >0,b >0).1.对于任意a ,b ∈R ,a 2+b 2≥2ab .( √ ) 2.n ∈N *时,n +2n ≥2 2.( √ )3.x ≠0时,x +1x≥2.( × )4.a >0,b >0时,1a +1b ≥4a +b.( √ )题型一 常见推论的证明例1 证明不等式a 2+b 2≥2ab (a ,b ∈R ). 证明 ∵a 2+b 2-2ab =(a -b )2≥0, ∴a 2+b 2≥2ab . 引申探究1求证a +b 2≥ab (a >0,b >0).证明 方法一a +b 2-ab =12[(a )2+(b )2-2a ·b ]=12·(a -b )2≥0,当且仅当a =b ,即a =b 时,等号成立. 方法二 由例1知,a 2+b 2≥2ab .∴当a >0,b >0时有(a )2+(b )2≥2a b , 即a +b ≥2ab , a +b2≥ab . 引申探究2证明不等式⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R ). 证明 由例1,得a 2+b 2≥2ab , ∴2(a 2+b 2)≥a 2+b 2+2ab ,两边同除以4,即得⎝⎛⎭⎫a +b 22≤a 2+b 22,当且仅当a =b 时,取等号. 反思感悟 (1)作差法与不等式性质在证明中常用,注意培养应用意识.(2)不等式a 2+b 2≥2ab 和基本不等式ab ≤a +b 2成立的条件是不同的,前者要求a ,b 都是实数,后者要求a ,b 都是正数.跟踪训练1 当a >0,b >0时,求证:21a +1b ≤ab .证明 ∵a >0,b >0, ∴a +b ≥2ab >0, ∴1a +b ≤12ab,∴2ab a +b ≤2ab2ab=ab . 又∵2ab a +b =21a +1b ,∴21a +1b ≤ab (当且仅当a =b 时取等号). 题型二 用基本不等式证明不等式 例2 已知x ,y 都是正数. 求证:(1)y x +xy≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3. 证明 (1)∵x ,y 都是正数, ∴x y >0,yx >0, ∴y x +x y≥2 y x ·x y =2,即y x +xy≥2, 当且仅当x =y 时,等号成立. (2)∵x ,y 都是正数, ∴x +y ≥2xy >0,x 2+y 2≥2x 2y 2>0,x 3+y 3≥2x 3y 3>0, ∴(x +y )(x 2+y 2)(x 3+y 3) ≥2xy ·2x 2y 2·2x 3y 3=8x 3y 3, 即(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3, 当且仅当x =y 时,等号成立.反思感悟 利用基本不等式证明不等式的策略与注意事项(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”. (2)注意事项:①多次使用基本不等式时,要注意等号能否成立;②同向不等式相加是不等式证明中的一种常用方法,证明不等式时注意使用;③对不能直接使用基本不等式证明的可重新组合,形成基本不等式模型,再使用.跟踪训练2 已知a ,b ,c 都是正实数,求证:(a +b )(b +c )·(c +a )≥8abc . 证明 ∵a ,b ,c 都是正实数,∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ca >0, ∴(a +b )(b +c )(c +a )≥2ab ·2bc ·2ca =8abc ,即(a +b )(b +c )(c +a )≥8abc , 当且仅当a =b =c 时,等号成立. 题型三 用基本不等式比较大小例3 某工厂生产某种产品,第一年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x (a ,b ,x 均大于零),则( ) A .x =a +b2B .x ≤a +b2C .x >a +b2D .x ≥a +b2答案 B解析 第二年产量为A +A ·a =A (1+a ),第三年产量为A (1+a )+A (1+a )·b =A (1+a )(1+b ). 若平均增长率为x ,则第三年产量为A (1+x )2. 依题意有A (1+x )2=A (1+a )(1+b ), ∵a >0,b >0,x >0, ∴(1+x )2=(1+a )(1+b )≤⎣⎡⎦⎤(1+a )+(1+b )22,∴1+x ≤2+a +b 2=1+a +b 2,∴x ≤a +b2(当且仅当a =b 时,等号成立).反思感悟 基本不等式a +b2≥ab 一端为和,一端为积,使用基本不等式比较大小要擅于利用这个桥梁化和为积或者化积为和.跟踪训练3 设a >b >1,P =lg a ·lg b ,Q =lg a +lg b 2,R =lg a +b2,则P ,Q ,R 的大小关系是( ) A .R <P <Q B .P <Q <R C .Q <P <R D .P <R <Q答案 B解析 ∵a >b >1,∴lg a >lg b >0, ∴lg a +lg b2>lg a ·lg b ,即Q >P .① 又a +b2>ab >0, ∴lga +b 2>lg ab =12(lg a +lg b ),即R >Q .② 综合①②,有P <Q <R .演绎:条件不等式的证明典例 (1)当x >0,a >0时,证明x +ax ≥2a ;(2)当x >-1时,证明x 2+7x +10x +1≥9.证明 (1)∵x >0,a >0,∴ax >0.由基本不等式可知,x +ax≥2x ·ax=2a . 当且仅当x =a 时,等号成立. (2)x 2+7x +10x +1=(x +1)2+5(x +1)+4x +1=(x +1)+4x +1+5.∵x >-1,∴x +1>0. ∴(x +1)+4x +1≥24=4,∴(x +1)+4x +1+5≥9,即x 2+7x +10x +1≥9.当且仅当x =1时,等号成立.[素养评析] 逻辑推理主要有两类:从特殊到一般,从一般到特殊,演绎就是从一般到特殊的一种推理形式.在本例中,“一般”指基本不等式a +b 2≥ab .当我们对a ,b 赋予特殊值.如令a =x ,b =ax ,就有x +ax≥2a ;①再令①中的x =x +1,a =4,就有x +1+4x +1≥2 4.基本不等式的应用关键就是给a ,b 赋予什么样的值.1.若0<a <b ,则下列不等式一定成立的是( ) A .a >a +b 2>ab >bB .b >ab >a +b2>aC .b >a +b 2>ab >aD .b >a >a +b2>ab答案 C解析 ∵0<a <b ,∴2b >a +b ,∴b >a +b2>ab .∵b >a >0,∴ab >a 2,∴ab >a .故b >a +b2>ab >a .2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.2xx 2+1≤1 D .x +1x≥2答案 C解析 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立;对于C ,x 2+1≥2x ,∴2xx 2+1≤1恒成立.故选C. 3.若四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d 2>bcB.a +d2<bcC.a +d 2=bcD.a +d 2≤bc答案 A解析 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d 2=b +c2>bc .4.lg 9×lg 11与1的大小关系是( ) A .lg 9×lg 11>1 B .lg 9×lg 11=1 C .lg 9×lg 11<1 D .不能确定 答案 C解析 ∵lg 9>0,lg 11>0, ∴lg 9×lg 11<⎝⎛⎭⎫lg 9+lg 1122=⎣⎡⎦⎤lg (9×11)22=⎝⎛⎭⎫lg 9922<⎝⎛⎭⎫lg 10022=1, 即lg 9×lg 11<1.5.设a >0,b >0,给出下列不等式: ①a 2+1>a ;②⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥4; ③(a +b )⎝⎛⎭⎫1a +1b ≥4;④a 2+9>6a . 其中恒成立的是 .(填序号)答案 ①②③解析 由于a 2+1-a =⎝⎛⎭⎫a -122+34>0,故①恒成立; 由于a +1a ≥2,b +1b≥2,∴⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥4,当且仅当a =b =1时,等号成立,故②恒成立; 由于a +b ≥2ab ,1a +1b≥21ab, 故(a +b )⎝⎛⎭⎫1a +1b ≥4,当且仅当a =b 时,等号成立,故③恒成立; 当a =3时,a 2+9=6a ,故④不恒成立. 综上,恒成立的是①②③.1.两个不等式a 2+b 2≥2ab 与a +b 2≥ab 都是带有等号的不等式,对于“当且仅当…时,取等号”这句话的含义要有正确的理解.一方面:当a =b 时,a +b 2=ab ;另一方面:当a +b2=ab 时,也有a =b .2. 在利用基本不等式证明的过程中,常需要把数、式合理地拆成两项或多项或把恒等式变形配凑成适当的数、式,以便于利用基本不等式.一、选择题1.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( ) A .a 2+b 2≥2|ab | B .a 2+b 2=2|ab | C .a 2+b 2≤2|ab | D .a 2+b 2>2|ab |答案 A解析 ∵a 2+b 2-2|ab |=(|a |-|b |)2≥0,∴a 2+b 2≥2|ab |(当且仅当|a |=|b |时,等号成立). 2.若a ,b ∈R 且ab >0,则下列不等式中恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2ab D.b a +a b≥2 答案 D解析 ∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误; 对于B ,C ,当a <0,b <0时,显然错误;对于D ,∵ab >0,∴b a +ab ≥2b a ·ab=2, 当且仅当a =b 时,等号成立.3.已知m =a +1a -2(a >2),n =⎝⎛⎭⎫1222x - (x <0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =n D .m ≤n 答案 A解析 ∵m =(a -2)+1a -2+2≥2(a -2)·1a -2+2=4,n =222x -<22=4,∴m >n ,故选A.4.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( ) A .q =r <p B .p =r <q C .q =r >p D .p =r >q答案 B解析 因为0<a <b ,所以a +b2>ab .又因为f (x )=ln x 在(0,+∞)上单调递增, 所以f ⎝⎛⎭⎫a +b 2>f (ab ),即p <q .而r =12(f (a )+f (b ))=12(ln a +ln b )=12ln(ab )=ln ab , 所以r =p ,故p =r <q ,故选B.5.已知a ,b ∈(0,+∞),则下列不等式中不成立的是( ) A .a +b +1ab≥2 2 B .(a +b )⎝⎛⎭⎫1a +1b ≥4 C.a 2+b 2ab ≥2abD.2ab a +b>ab 答案 D 解析 a +b +1ab ≥2ab +1ab ≥ 22, 当且仅当a =b =22时,等号成立,A 成立; (a +b )⎝⎛⎭⎫1a +1b ≥2ab ·21ab=4, 当且仅当a =b 时,等号成立,B 成立; ∵a 2+b 2≥2ab >0,∴a 2+b 2ab ≥2ab ,当且仅当a =b 时,等号成立,C 成立;∵a +b ≥2ab ,且a ,b ∈(0,+∞), ∴2ab a +b ≤1,2aba +b≤ab , 当且仅当a =b 时,等号成立,D 不成立. 6.下列说法正确的是( )A .若x ≠k π,k ∈Z ,则⎝⎛⎭⎫sin 2x +4sin 2x min =4 B .若a <0,则a +4a≥-4C .若a >0,b >0,则lg a +lg b ≥2lg a ·lg bD .若a <0,b <0,则b a +a b ≥2答案 D解析 对于A ,x ≠k π,k ∈Z ,则sin 2x ∈(0,1].令t =sin 2x ,则y =t +4t ,函数y 在(0,1]上单调递减,所以y ≥5,即sin 2x +4sin 2x ≥5,当sin 2x =1时,等号成立.对于B ,若a <0,则-a >0,-4a >0.∴a +4a =-⎣⎡⎦⎤(-a )+⎝⎛⎭⎫-4a ≤-4, 当且仅当a =4a ,即a =-2时,等号成立.对于C ,若a ∈(0,1),b ∈(0,1), 则lg a <0,lg b <0,不等式不成立. 对于D ,a <0,b <0,则b a >0,ab >0,∴b a +ab≥2b a ·ab=2, 当且仅当b a =ab ,即a =b 时,等号成立.二、填空题7.设正数a ,使a 2+a -2>0成立,若t >0,则12log a t log a t +12.(填“>”“≥”“≤”或“<”) 答案 ≤解析 ∵a 2+a -2>0,∴a >1或a <-2(舍), ∴y =log a x 是增函数, 又t +12≥ t ,∴log a t +12≥log a t =12log a t . 8.设a ,b 为非零实数,给出不等式:①a 2+b 22≥ab ;②a 2+b 22≥⎝⎛⎭⎫a +b 22;③a +b 2≥ab a +b ;④a b +b a ≥2.其中恒成立的不等式是 . 答案 ①②解析 由重要不等式a 2+b 2≥2ab ,可知①正确;a 2+b 22=2(a 2+b 2)4=(a 2+b 2)+(a 2+b 2)4≥a 2+b 2+2ab 4=(a +b )24=⎝⎛⎭⎫a +b 22,可知②正确; 当a =b =-1时,不等式的左边为a +b 2=-1,右边为ab a +b =-12,可知③不正确;当a =1,b =-1时,可知④不正确.9.已知a >b >c ,则(a -b )(b -c )与a -c2的大小关系是 .答案(a -b )(b -c )≤a -c2解析 因为a >b >c ,所以a -b >0,b -c >0,所以a -c 2=(a -b )+(b -c )2≥(a -b )(b -c ),当且仅当a -b =b -c 时,等号成立.10.设a >1,m =log a (a 2+1),n =log a (a +1),p =log a (2a ),则m ,n ,p 的大小关系是 .(用“>”连接) 答案 m >p >n解析 ∵a >1,∴a 2+1>2a >a +1,∴log a (a 2+1)>log a (2a )>log a (a +1),故m >p >n . 三、解答题11.设a ,b ,c 都是正数,求证:bc a +ca b +abc ≥a +b +c .证明 ∵a ,b ,c 都是正数, ∴bc a ,ca b ,abc也都是正数, ∴bc a +ca b ≥2c ,ca b +ab c ≥2a ,bc a +abc ≥2b , 三式相加得2⎝⎛⎭⎫bc a +ca b +ab c ≥2(a +b +c ), 即bc a +ca b +abc≥a +b +c ,当且仅当a =b =c 时,等号成立.12.已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab≥8;(2)⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9. 证明 (1)1a +1b +1ab =1a +1b +a +b ab=2⎝⎛⎭⎫1a +1b , ∵a +b =1,a >0,b >0,∴1a +1b =a +b a +a +b b =2+a b +b a≥2+2=4, ∴1a +1b +1ab ≥8(当且仅当a =b =12时,等号成立). (2)方法一 ∵a >0,b >0,a +b =1,∴1+1a =1+a +b a =2+b a, 同理,1+1b =2+a b, ∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =⎝⎛⎭⎫2+b a ⎝⎛⎭⎫2+a b =5+2⎝⎛⎭⎫b a +a b ≥5+4=9,∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9(当且仅当a =b =12时,等号成立). 方法二 ⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab. 由(1)知,1a +1b +1ab≥8, 故⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1+1a +1b +1ab ≥9,当且仅当a =b =12时,等号成立.13.设0<a <1<b ,则一定有( )A .log a b +log b a ≥2B .log a b +log b a ≥-2C .log a b +log b a ≤-2D .log a b +log b a >2答案 C解析 ∵0<a <1<b ,∴log a b <0,log b a <0,-log a b >0,-log b a >0,∴(-log a b )+(-log b a )=(-log a b )+⎝⎛⎭⎫-1log a b ≥2,当且仅当ab =1时,等号成立,∴log a b +log b a ≤-2.14.设x ,y 为正实数,且xy -(x +y )=1,则( )A .x +y ≥2(2+1)B .xy ≤2+1C .x +y ≤(2+1)2D .xy ≥2(2+1) 答案 A解析 ∵x ,y 为正实数,且xy -(x +y )=1,xy ≤⎝⎛⎭⎫x +y 22,∴⎝⎛⎭⎫x +y 22-(x +y )-1≥0,解得x +y ≥2(2+1),当且仅当x =y =1+2时取等号.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学第三章不等式3.4.1基本不等式练习(含解析)新人教A版必修5知识点一 利用基本不等式比较大小1.下列不等式中正确的是( ) A .a +4a≥4 B.a 2+b 2≥4abC .ab ≥a +b2D .x 2+3x2≥2 3答案 D解析 当a <0时,则a +4a≥4不成立,故A 错;a =1,b =1,a 2+b 2<4ab ,故B 错;a=4,b =16,则ab <a +b2,故C 错;由基本不等式可知D 正确.2.已知两个不相等的正数a ,b ,设P =a +b2,Q =ab ,M =a 2+b 22,则有( )A .P >Q >MB .Q >P >MC .P >M >QD .M >P >Q 答案 D解析 由基本不等式得P >Q ,又M 2-P 2=a -b24>0,得M >P ,故M >P >Q .故选D .3.已知正数x ,y 满足xy =36,则x +y 与12的大小关系是________. 答案 x +y ≥12解析 由x ,y 为正数,得x +y ≥2xy =12.知识点二 利用基本不等式证明不等式4.(1)已知a ,b ,c ∈R +,求证:a 2b +b 2c +c 2a≥a +b +c .(2)已知a ,b ,c 为不全相等的正实数.求证:a +b +c >ab +bc +ca .证明 (1)∵a ,b ,c ∈R +,a 2b ,b 2c ,c 2a均大于0,又a 2b +b ≥2a 2b ·b =2a , b 2c +c ≥2b 2c·c =2b , c 2a+a ≥2c 2a·a =2c , 三式相加得a 2b +b +b 2c +c +c 2a +a ≥2a +2b +2c ,∴a 2b +b 2c +c 2a≥a +b +c . (2)∵a >0,b >0,c >0,∴a +b ≥2ab >0,b +c ≥2bc >0,c +a ≥2ca >0. ∴2(a +b +c )≥2(ab +bc +ca ), 即a +b +c ≥ab +bc +ca .由于a ,b ,c 为不全相等的正实数,故三个等号不能同时成立. ∴a +b +c >ab +bc +ca .5.已知a ,b ,c ∈R ,求证:a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c ). 证明 ∵a +b2≤a 2+b 22,∴a 2+b 2≥a +b2=22(a +b )(a ,b ∈R ,等号在a =b 时成立). 同理,b 2+c 2≥22(b +c )(等号在b =c 时成立). a 2+c 2≥22(a +c )(等号在a =c 时成立). 三式相加得a 2+b 2+b 2+c 2+a 2+c 2≥22(a +b )+22(b +c )+22(a +c ) =2(a +b +c )(等号在a =b =c 时成立).易错点一 忽视基本不等式适用条件6.给出下列结论: (1)若a >0,则a 2+1>a .(2)若a >0,b >0,则⎝ ⎛⎭⎪⎫1a+a ⎝⎛⎭⎪⎫b +1b ≥4.(3)若a >0,b >0,则(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4.(4)若a ∈R 且a ≠0,则9a+a ≥6.其中恒成立的是________.易错分析 易忽略不等式成立的前提是为正数而误认为(4)也正确. 答案 (1)(2)(3)解析 因为a >0,所以a 2+1≥2a 2=2a >a ,故(1)恒成立. 因为a >0,所以a +1a ≥2,因为b >0,所以b +1b≥2,所以当a >0,b >0时,⎝⎛⎭⎪⎫a +1a ⎝⎛⎭⎪⎫b +1b ≥4,故(2)恒成立.因为(a +b )⎝ ⎛⎭⎪⎫1a +1b=2+b a +a b,又因为a ,b ∈(0,+∞),所以b a +a b≥2,所以(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4,故(3)恒成立.因为a ∈R 且a ≠0,不符合基本不等式的条件, 故9a+a ≥6是错误的.易错点二 忽视定值的条件7.求函数f (x )=2x (5-3x ),x ∈⎝ ⎛⎭⎪⎫0,53的最大值. 易错分析 x ∈⎝ ⎛⎭⎪⎫0,53,∴2x >0,5-3x >0, ∴f (x )=2x (5-3x ) =2[x 5-3x ]2≤2⎝⎛⎭⎪⎫x +5-3x 22=5-2x 22.当且仅当x =5-3x ,即x =54∈⎝ ⎛⎭⎪⎫0,53时,等号成立,此时5-2x22=258.故f (x )的最大值为258.不符合基本不等式求最值的条件:和或积为定值.解 x ∈⎝ ⎛⎭⎪⎫0,53,∴2x >0,5-3x >0, f (x )=2x (5-3x )=23[3x ·5-3x ]2≤23⎝ ⎛⎭⎪⎫3x +5-3x 22=256. 当且仅当3x =5-3x ,即x =56∈⎝ ⎛⎭⎪⎫0,53时,等号成立,故所求函数的最大值为256.一、选择题1.设0<a <b ,且a +b =1,在下列四个数中最大的是( ) A .12 B .b C .2ab D .a 2+b 2答案 B 解析 ∵ab <a +b 22,∴ab <14,∴2ab <12.∵a 2+b 22>a +b2>0,∴a 2+b 22>12,∴a 2+b 2>12.∵b -(a 2+b 2)=(b -b 2)-a 2=b (1-b )-a 2=ab -a 2=a (b -a )>0,∴b >a 2+b 2,∴b 最大.2.下列不等式一定成立的是( ) A .x +1x ≥2(x ≠0) B.x 2+1x 2+1≥1(x ∈R )C .x 2+1≤2x (x ∈R ) D .x 2+5x +6≥0(x ∈R ) 答案 B解析 对于A ,当x >0时成立; 对于B ,x 2+1+1x 2+1≥2,当且仅当x =0时等号成立; 对于C ,应为x 2+1≥2x (x ∈R ); 对于D ,x 2+5x +6=x +522-14≥-14;综上所述,故选B .3.若a >b >0,则下列不等式一定成立的是( ) A .a -b >1b -1a B .c 2a <c2bC .ab >2ab a +b D .3a +b a +3b >ab答案 C解析 逐一考查所给的选项:当a =2,b =13时,a -b =123,1b -1a =212,不满足a -b >1b -1a ,A 错误;当c =0时,c2a=c 2b =0,不满足c 2a <c 2b ,B 错误;当a =2,b =1时,3a +b a +3b =75,a b =2,不满足3a +b a +3b >ab,D 错误;若a >b >0,则a +b >2ab ,即a +b >2abab,整理可得ab >2aba +b,C 正确.故选C . 4.设a ,b 是两个实数,且a ≠b ,①a 5+b 5>a 3b 2+a 2b 3,②a 2+b 2≥2(a -b -1),③a b +b a>2.上述三个式子恒成立的有( )A .0个B .1个C .2个D .3个 答案 B解析 ①a 5+b 5-(a 3b 2+a 2b 3)=a 3(a 2-b 2)+b 3(b 2-a 2)=(a 2-b 2)(a 3-b 3)=(a -b )2(a +b )(a 2+ab +b 2)=(a -b )2(a 3+b 3)>0不恒成立;(a 2+b 2)-2(a -b -1)=a 2-2a +b 2+2b +2=(a -1)2+(b +1)2≥0恒成立;a b +b a >2或a b +b a<-2.故选B .5.如果正数a ,b ,c ,d 满足a +b =cd =4,那么( ) A .ab ≤c +d ,且等号成立时,a ,b ,c ,d 的取值唯一 B .ab ≥c +d ,且等号成立时,a ,b ,c ,d 的取值唯一 C .ab ≤c +d ,且等号成立时,a ,b ,c ,d 的取值不唯一 D .ab ≥c +d ,且等号成立时,a ,b ,c ,d 的取值不唯一 答案 A解析 因为a +b =cd =4,所以由基本不等式得a +b ≥2ab ,故ab ≤4. 又因为cd ≤c +d24,所以c +d ≥4,所以ab ≤c +d ,当且仅当a =b =c =d =2时,等号成立.故选A . 二、填空题6.若a >b >c ,则a -c2与a -b b -c 的大小关系是________.答案a -c2≥a -bb -c解析 因为a >b >c , 所以a -c2=a -b +b -c2≥a -b b -c ,当且仅当a -b =b -c ,即2b =a +c 时,等号成立.7.若四个正数a ,b ,c ,d 成等差数列,x 是a 和d 的等差中项,y 是b 和c 的等比中项,则x 和y 的大小关系是________.答案 x ≥y 解析 ∵x =a +d 2=b +c2,y =bc ,又∵b ,c 都是正数, ∴b +c2≥bc (当且仅当b =c 时取“=”),∴x ≥y .8.设a ,b >0,a +b =5,则a +1+b +3的最大值为________. 答案 3 2解析 (a +1+b +3)2=a +b +4+2a +1·b +3≤9+a +1+b +3=9+a +b +4=18,当且仅当a +1=b +3且a +b =5,即a =72,b =32时等号成立,所以a +1+b +3≤32. 三、解答题9.已知a ,b ,c 均为正数,a ,b ,c 不全相等.求证:bc a +ac b +abc>a +b +c . 证明 ∵a >0,b >0,c >0,∴bc a +ac b ≥2abc 2ab =2c ,ac b +abc ≥2a 2bcbc=2a , bc a +ab c≥2acb 2ac=2b . 又a ,b ,c 不全相等, 故上述等号至少有一个不成立. ∴bc a +ac b +abc>a +b +c . 10.(1)已知m ,n >0,且m +n =16,求12mn 的最大值;(2)已知x >3,求f (x )=x +4x -3的最小值. 解 (1)∵m ,n >0且m +n =16, ∴由基本不等式可得mn ≤⎝⎛⎭⎪⎫m +n 22=⎝ ⎛⎭⎪⎫1622=64,当且仅当m =n =8时,mn 取到最大值64. ∴12mn 的最大值为32. (2)∵x >3,∴x -3>0,4x -3>0, 于是f (x )=x +4x -3=x -3+4x -3+3 ≥2x -3·4x -3+3=7, 当且仅当x -3=4x -3,即x =5时,f (x )取到最小值7.。

相关文档
最新文档