(2016-2018)三年高考数学文科真题分类专题5【函数图像与方程】解析卷
(2016-2018)三年高考数学(文)真题分类汇编(含解析):专题04-函数性质与应用
2018年高考全景展示1.【2018年全国卷Ⅲ文】下列函数中,其图像与函数的图像关于直线对称的是A.B.C.D.2.【2018年全国卷Ⅲ文】已知函数,,则________. 2017年高考全景展示1.【2017天津,文6】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 2.【2017课标1,文9】已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称3.【2017山东,文10】若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A . ()2xf x -= B. ()2f x x = C. ()3xf x -= D. ()cos f x x =4.【2017课标II ,文14】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+, 则(2)f = ________.5.【2017山东,文14】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈-时,()6xf x -=,则f (919)= .2016年高考全景展示1.【2016高考北京文数】下列函数中,在区间(1,1)-上为减函数的是() A.11y x=- B.cos y x = C.ln(1)y x =+ D.2x y -=2.【2016高考上海文科】设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是()A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题3.【2016高考山东文数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是() (A )sin y x =(B )ln y x =(C )e x y =(D )3y x =4.【2016高考山东文数】已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= () (A )-2 (B )-1 (C )0 (D )25. 【2016高考四川文科】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4x f x =,则5()(1)2f f -+=.考纲解读明方向分析解读1.考查函数的单调区间的求法及单调性的应用,如应用单调性求值域、比较大小或证明不等式,运用定义或导数判断或证明函数的单调性等.2.借助数形结合的思想解题.函数的单调性、周期性、奇偶性的综合性问题是高考热点,应引起足够的重视.3.本节内容在高考中分值为5分左右,属于中档题.命题探究练扩展1.【2018年全国卷Ⅲ文】下列函数中,其图像与函数的图像关于直线对称的是A. B. C. D.【答案】B【解析】分析:确定函数过定点(1,0)关于x=1对称点,代入选项验证即可。
2018-2016三年高考真题文科数学专题分类汇编:参数方程和极坐标与不等式(解析附后)
2018-2016三年高考专题文科数学专题分类汇编:参数方程和极坐标与不等式(解析附后)考纲解读明方向法.2.绝对值不等式及不等式的证明均为高考的常考点.本章在高考中以解答题为主,往往涉及含有两个绝对值的问题,考查分类讨论、等价转化和数形结合等思想方法,分值约为10分,难度中等.2018年高考全景展示1.【2018C为参数)与该圆相交于A ,B ___________.2.【2018a =__________.3.【2018年江苏卷】在极坐标系中,直线l C 的方程为l 被曲线C 截得的弦长.4.【2018年文新课标I(1(25.【2018(1(26.【2018年文数全国卷II.(1(27.【2018年江苏卷】若x,y,z为实数,且x+2y+2z=68.【2018年文新课标I(1(29.【2018(1(210.【2018年文数全国卷II(1(22017年高考全景展示1.【2017天津,文11】在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________.2.【2017北京,文11】在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0),则|AP |的最小值为___________.3. 【2016年高考北京文数】在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于A ,B 两点,则||AB =______.4.【2017课标1,文22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l a.5.【2017课标1,文】已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.6. 【2017课标II ,文22】在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=。
三年高考(2016-2018)(文)真题分类解析:专题05-函数图象与方程
考纲解读明方向分析解读1、高考主要考查由函数解析式画出函数图象,两个函数图象交点出现情况、近几年考查了用图象表示函数、2、在数学中,由“形”到“数”比较明显,由“数”到“形”需要意识,而试题中主要是由“数”到“形”、在解答题中,要注意推理论证严密性,避免出现以图代证现象,利用图象研究函数性质,特别是在判断非常规方程根个数时,此法有时“妙不可言”,这是数形结合思想在“数”中重要体现、分析解读函数与方程思想是中学数学最重要思想方法之一,由于函数图象与x轴交点横坐标就是函数零点,所以可以结合常见二次函数、对数函数、三角函数等内容进行研究、本节内容在高考中分值为5分左右,属于难度较大题、在备考时,注意以下几个问题:1、结合函数与方程关系,求函数零点;2、结合零点存在性定理或函数图象,对函数是否存在零点进行判断;3、利用零点(方程实根)存在性求有关参数取值或范围是高考中热点问题、命题探究练扩展2018年高考全景展示1.【2018年浙江卷】函数y=sin2x图象可能是A、B、C、D、【答案】D【解析】分析:先研究函数奇偶性,再研究函数在上符号,即可判断选择、点睛:有关函数图象识别问题常见题型及解题思路:(1)由函数定义域,判断图象左、右位置,由函数值域,判断图象上、下位置;(2)由函数单调性,判断图象变化趋势;(3)由函数奇偶性,判断图象对称性;(4)由函数周期性,判断图象循环往复.2.【2018年全国卷Ⅲ文】函数图像大致为A、AB、BC、CD、D【答案】D【解析】分析:由特殊值排除即可详解:当时,,排除A,B、,当时,,排除C故正确答案选D 、点睛:本题考查函数图像,考查了特殊值排除法,导数与函数图像关系,属于中档题。
2017年高考全景展示1.【2017课标1,文8】函数sin21cos x y x=-部分图像大致为A .B .C .D .【答案】C【解析】【考点】函数图象【名师点睛】函数图像问题首先关注定义域,从图象对称性,分析函数奇偶性,根据函数奇偶性排除部分选择支,从图象最高点、最低点,分析函数最值、极值利用特值检验,较难需要研究单调性、极值等,从图象走向趋势,分析函数单调性、周期性等确定图象.2、【2017课标3,文7】函数2sin 1x y x x =++部分图像大致为( )ABD .C D【答案】D【考点】函数图像【名师点睛】(1)运用函数性质研究函数图像时,先要正确理解和把握函数相关性质本身含义及其应用方向、(2)在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件相互关系,结合特征进行等价转化研究、如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去f “”,即将函数值大小转化自变量大小关系3、【2017天津,文8】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于x 不等式()||2x f x a ≥+在R 上恒成立,则a 取值范围是(A )[2,2]-(B)[-(C)[-(D)[-【答案】A【解析】试题分析:首先画出函数()f x 图象,当0a >时,()2x g x a =+零点是20x a =-<,零点左边直线斜率时112->-,不会和函数()f x 有交点,满足不等式恒成立,零点右边()2x g x a =+,函数斜率12k =,根据图象分析,当0x =时,2a ≤,即02a <≤成立,同理,若0a < ,函数()2x g x a =+零点是20x a =->,零点右边()()2x g x a f x =+<恒成立,零点左边()2x g x a =--,根据图象分析当0x =时,22a a -≤⇒≥-,即20a -≤< ,当0a =时,()()f x g x ≥恒成立,所以22a -≤≤,故选A 、【考点】1、分段函数;2、函数图形应用;3、不等式恒成立、【名师点睛】一般不等式恒成立求参数1、可以选择参变分离方法,转化为求函数最值问题; 2、也可以画出两边函数图象,根据临界值求参数取值范围;3、也可转化为()0F x >问题,转化讨论求函数最值求参数取值范围、 2016年高考全景展示1、【2016高考新课标1文数】函数22xy x e =-在[]2,2-图像大致为( )(A )(B )(C )(D )【答案】D【解析】 试题分析:函数f (x )=2x 2–e |x |在[–2,2]上是偶函数,其图象关于y 轴对称,因为22(2)8,081f e e =-<-<,所以排除,A B 选项;当[]0,2x ∈时,4x y x e '=-有一零点,设为0x ,当0(0,)x x ∈时,()f x 为减函数,当0(,2)x x ∈时,()f x 为增函数.故选D 、考点:函数图像与性质【名师点睛】函数中识图题多次出现在高考试题中,也可以说是高考热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中难点,解决这类问题方法一般是利用间接法,即由函数性质排除不符合条件选项、2、【2016高考新课标2文数】已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3| 与y =f (x ) 图像交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mii x =∑( ) (A)0 (B)m (C) 2m (D) 4m【答案】B【解析】考点: 函数奇偶性,对称性、【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数图象有对称轴2a b x +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数图象有对称中心、3、【2016高考浙江文数】函数y =sin x 2图象是( )【答案】D【解析】试题分析:因为2sin =y x 为偶函数,所以它图象关于y 轴对称,排除A 、C 选项;当22x π=,即x =时,1max y =,排除B 选项,故选D 、考点:三角函数图象、【方法点睛】给定函数解析式识别图象,一般从五个方面排除、筛选错误或正确选项:(1)从函数定义域,判断图象左右位置,从函数值域,判断图象上下位置;(2)从函数单调性,判断图象变化趋势;(3)从函数奇偶性,判断图象对称性;(4)从函数周期性,判断函数循环往复;(5)从特殊点出发,排除不符合要求选项、4、【2016高考山东文数】已知函数2||,()24,x x m f x x mx m x m≤⎧=⎨-+>⎩ 其中0m >,若存在实数b ,使得关于x 方程f (x )=b 有三个不同根,则m 取值范围是________________、【答案】()3,+∞【解析】试题分析:画出函数图象如下图所示:由图所示,要()f x b =有三个不同根,需要红色部分图像在深蓝色图像下方,即2224,30m m m m m m m >-⋅+->,解得3m >考点:1、函数图象与性质;2、函数与方程;3、分段函数【名师点睛】本题主要考查二次函数函数图象与性质、函数与方程、分段函数概念、解答本题,关键在于能利用数形结合思想,通过对函数图象分析,转化得到代数不等式、本题能较好考查考生数形结合思想、转化与化归思想、基本运算求解能力等、5、 【2016高考浙江文数】设函数f (x )=x 3+3x 2+1.已知a≠0,且f (x )–f (a )=(x –b )(x –a )2,x ∈R ,则实数a =_____,b =______.【答案】-2;1.【解析】考点:函数解析式、【思路点睛】先计算()()f x f a -,再将()()2x b x a --展开,进而对照系数可得含有a ,b 方程组,解方程组可得a 和b 值.。
2016-2018年三年高考数学(文)真题分类专题10 三角函数图象与性质含解析
考纲解读明方向分析解读三角函数的图象和性质一直是高考中的热点,往往结合三角公式进行化简和变形来研究函数的单调性、奇偶性、对称性及最值问题,且常以解答题的形式考查,其考查内容及形式仍是近几年高考对该部分内容考查的重点.分值为10~12分,属于中低档题.2018年高考全景展示1.【2018年新课标I 卷文】已知函数,则A. 的最小正周期为π,最大值为3B. 的最小正周期为π,最大值为4C.的最小正周期为,最大值为3 D.的最小正周期为,最大值为4【答案】B【解析】分析:首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为,之后应用余弦型函数的性质得到相关的量,从而得到正确选项.点睛:该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.2.【2018年天津卷文】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增 B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:首先确定平移之后的对应函数的解析式,然后逐一考查所给的选项是否符合题意即可.点睛:本题主要考查三角函数的平移变换,三角函数的单调区间等知识,意在考查学生的转化能力和计算求解能力.3.【2018年江苏卷】已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.2017年高考全景展示1.【2017课标II,文13】函数的最大值为.【答案】【考点】三角函数有界性【名师点睛】通过配角公式把三角函数化为的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一般可利用求最值.2.【2017课标II,文3】函数的最小正周期为A. B. C. D.【答案】C【解析】由题意,故选C.【考点】正弦函数周期【名师点睛】函数的性质(1).(2)周期(3)由求对称轴(4)由求增区间; 由求减区间;3.【2017天津,文7】设函数,其中.若且的最小正周期大于,则(A)(B)(C)(D)【答案】【解析】试题分析:因为条件给出周期大于,,,再根据,因为,所以当时,成立,故选A.【考点】三角函数的性质【名师点睛】本题考查了的解析式,和三角函数的图象和性质,本题叙述方式新颖,是一道考查能力的好题,本题可以直接求解,也可代入选项,逐一考查所给选项:当时,,满足题意,,不合题意,B选项错误;,不合题意,C选项错误;,满足题意;当时,,满足题意;,不合题意,D 选项错误.本题选择A 选项. 4.【2017山东,文7】函数最小正周期为A. B. C. D.【答案】C 【解析】【考点】三角变换及三角函数的性质【名师点睛】求三角函数周期的方法:①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为|ω|2π,y =tan(ωx +φ)的最小正周期为|ω|π.③对于形如的函数,一般先把其化为的形式再求周期.5.【2017浙江,18】(本题满分14分)已知函数f (x )=sin 2x –cos 2x –sin x cos x (x R ).(Ⅰ)求的值.(Ⅱ)求的最小正周期及单调递增区间.【答案】(Ⅰ)2;(Ⅱ)最小正周期为,单调递增区间为.【解析】试题分析:(Ⅰ)由函数概念,分别计算可得;(Ⅱ)化简函数关系式得,结合可得周期,利用正弦函数的性质求函数的单调递增区间.【考点】三角函数求值、三角函数的性质【名师点睛】本题主要考查了三角函数的化简,以及函数的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即,然后利用三角函数的性质求解.2016年高考全景展示1.【2016高考新课标2文数】函数的部分图像如图所示,则()(A)(B)(C)(D)【答案】A【解析】试题分析:由图知,,周期,所以,所以,因为图象过点,所以,所以,所以,令得,,所以,故选A.考点:三角函数图像的性质【名师点睛】根据图像求解析式问题的一般方法是:先根据函数图像的最高点、最低点确定A,h的值,函数的周期确定ω的值,再根据函数图像上的一个特殊点确定φ值.2.【2016高考天津文数】已知函数,.若在区间内没有零点,则的取值范围是()(A)(B)(C)(D)【答案】D【解析】考点:解简单三角方程【名师点睛】对于三角函数来说,常常是先化为y =Asin(ωx +φ)+k 的形式,再利用三角函数的性质求解.三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的体现;降次是一种三角变换的常用技巧,要灵活运用降次公式. 3.【2016高考新课标1文数】若将函数y =2sin (2x +6π)的图像向右平移41个周期后,所得图像对应的函数为()(A )y =2sin(2x +4π) (B )y =2sin(2x +3π) (C )y =2sin(2x –4π) (D )y =2sin(2x –3π) 【答案】D 【解析】试题分析:函数的周期为,将函数的图像向右平移个周期即个单位,所得函数为,故选D.考点:三角函数图像的平移【名师点睛】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减“,二是平移多少个单位是对x 而言的,不用忘记乘以系数. 4.[2016高考新课标Ⅲ文数]函数的图像可由函数的图像至少向右平移_____________个单位长度得到.【答案】【解析】考点:1、三角函数图象的平移变换;2、两角差的正弦函数.【误区警示】在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.5.【2016高考山东文数】(本小题满分12分)设.(I)求得单调递增区间;(II)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数的图象,求的值.【答案】()的单调递增区间是(或)()【解析】试题分析:()化简得由即得写出的单调递增区间()由平移后得进一步可得()由()知把的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到的图象,再把得到的图象向左平移个单位,得到的图象,即所以2016-2018年三年高考数学真题分类专题含解析考点:1.和差倍半的三角函数;2.三角函数的图象和性质;3.三角函数图象的变换.【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质、三角函数图象的变换.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,利用“左加右减、上加下减”变换原则,得出新的函数解析式并求值.本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.11。
三年高考(2016-2018)数学(文)真题分项版解析——专题04 函数性质与应用(原卷版)
考纲解读明方向分析解读1.考查函数的单调区间的求法及单调性的应用,如应用单调性求值域、比较大小或证明不等式,运用定义或导数判断或证明函数的单调性等.2.借助数形结合的思想解题.函数的单调性、周期性、奇偶性的综合性问题是高考热点,应引起足够的重视.3.本节内容在高考中分值为5分左右,属于中档题.命题探究练扩展2018年高考全景展示1.【2018的图像关于直线 )A.B.C.D.2.【2018. 2017年高考全景展示1.【2017天津,文6】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为( )(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 2.【2017课标1,文9】已知函数()ln ln(2)f x x x =+-,则( ) A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称3.【2017山东,文10】若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是( )A . ()2xf x -= B. ()2f x x = C. ()3xf x -= D. ()cos f x x =4.【2017课标II ,文14】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+, 则(2)f = ________.5.【2017山东,文14】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈- 时,()6x f x -=,则f (919)= .2016年高考全景展示1.【2016高考北京文数】下列函数中,在区间(1,1)- 上为减函数的是( ) A.11y x=- B.cos y x = C.ln(1)y x =+ D.2x y -= 2.【2016高考上海文科】设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( )A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题3.【2016高考山东文数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) (A )sin y x =(B )ln y x =(C )e x y =(D )3y x =4.【2016高考山东文数】已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= ( ) (A )-2 (B )-1 (C )0 (D )25.【2016高考四川文科】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4x f x =,则5()(1)2f f -+= .。
2016-2018年全国卷高考文科数学试题解析(三年高考)
3
点睛: 该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图, 要会从图中读出 相应的信息即可得结果.
4. 已知椭圆 :
的一个焦点为
,则 的离心率为
A.
B.
C.
D.
【答案】C 【解析】分析:首先根据题中所给的条件椭圆的一个焦点为 题中所给的方程中系数,可以得到 用椭圆离心率的公式求得结果. 详解:根据题意,可知 所以 ,即 ,因为 , ,故选 C. , ,利用椭圆中对应 ,从而求得 的关系,求得 ,再根据 ,最后利
点睛: 该题考查的是有关复数的运算以及复数模的概念及求解公式, 利用复数的除法及加法 运算法则求得结果,属于简单题目. 3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解 该地区农村的经济收入变化情况, 统计了该地区新农村建设前后农村的经济收入构成比例. 得 到如下饼图:
点睛:该题考查的是有关曲线
中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函 数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得 意义,结合直线方程的点斜式求得结果. 7. 在△ A. C. 【答案】A 【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得 , 中, B. D. 为 边上的中线, 为 的中点,则 ,借助于导数的几何
2016-2018 全国卷文数
2018/2017/2016 全国 I 卷
2018/2017/2016 全国 II 卷
2018/2017/2016 全国 III 卷
1
2018 年全国卷 1 文科数学解析
1. 已知集合 A. 【答案】A 【解析】 分析: 利用集合的交集中元素的特征, 结合题中所给的集合中的元素, 求得集合 中的元素,最后求得结果. 详解:根据集合交集中元素的特征,可以求得 ,故选 A. B. , C. D. ,则
三年高考2016_2018高考数学试题分项版解析专题05函数图象与方程理含解析word格式
专题05 函数图像与方程考纲解读明方向1.高考主要考查由函数解析式画出函数的图象,两个函数图象的交点出现的情况.近几年考查了用图象表示函数.2.在数学中,由“形”到“数”比较明显,由“数”到“形”需要意识,而试题中主要是由“数”到“形”.在解答题中,要注意推理论证的严密性,避免出现以图代证的现象,利用图象研究函数的性质,特别是在判断非常规方程根的个数时,此法有时“妙不可言”,这是数形结合思想在“数”中的重要体现.分析解读函数与方程思想是中学数学最重要的思想方法之一,由于函数图象与x轴的交点的横坐标就是函数的零点,所以可以结合常见的二次函数、对数函数、三角函数等内容进行研究.本节内容在高考中分值为5分左右,属于难度较大题.在备考时,注意以下几个问题:1.结合函数与方程的关系,求函数的零点;2.结合零点存在性定理或函数的图象,对函数是否存在零点进行判断;3.利用零点(方程实根)的存在性求有关参数的取值或范围是高考中的热点问题.命题探究练扩展2018年高考全景展示1.【2018年浙江卷】函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.2.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.3.【2018年理数全国卷II】函数的图像大致为A. AB. BC. CD. D【答案】B点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4.【2018年理数天津卷】已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是______________.【答案】【解析】分析:由题意分类讨论和两种情况,然后绘制函数图像,数形结合即可求得最终结果.详解:分类讨论:当时,方程即,整理可得:,很明显不是方程的实数解,则,当时,方程即,整理可得:,很明显不是方程的实数解,则,令,其中,,原问题等价于函数与函数有两个不同的交点,求的取值范围.结合对勾函数和函数图象平移的规律绘制函数的图象,同时绘制函数的图象如图所示,考查临界条件,结合观察可得,实数的取值范围是.点睛:本题的核心在考查函数的零点问题,函数零点的求解与判断方法包括:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.5.【2018年江苏卷】若函数在内有且只有一个零点,则【答案】–3【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.6.【2018年全国卷Ⅲ理】函数在的零点个数为________.【答案】【解析】分析:求出的范围,再由函数值为零,得到的取值可得零点个数。
三年高考(2016-2018)数学(文)真题分项版解析——专题04 函数性质与应用(解析版)
考纲解读明方向考点内容解读要求常考题型预测热度1.函数的单调性及最值理解函数的单调性、最大(小)值及其几何意义Ⅲ选择题、填空题、★★★2.函数的奇偶性了解函数奇偶性的含义,会判断简单的函数的奇偶性3.函数的周期性了解函数周期性的含义分析解读1.考查函数的单调区间的求法及单调性的应用,如应用单调性求值域、比较大小或证明不等式,运用定义或导数判断或证明函数的单调性等.2.借助数形结合的思想解题.函数的单调性、周期性、奇偶性的综合性问题是高考热点,应引起足够的重视.3.本节内容在高考中分值为5分左右,属于中档题.命题探究练扩展2018年高考全景展示1.【2018年全国卷Ⅲ文】下列函数中,其图像与函数的图像关于直线对称的是A. B. C. D.【答案】B【解析】分析:确定函数过定点(1,0)关于x=1对称点,代入选项验证即可。
详解:函数过定点(1,0),(1,0)关于x=1对称的点还是(1,0),只有过此点。
故选项B正确.点睛:本题主要考查函数的对称性和函数的图像,属于中档题。
2.【2018年全国卷Ⅲ文】已知函数,,则________.【答案】点睛:本题主要考查函数的性质,由函数解析式,计算发现和关键,属于中档题。
2017年高考全景展示1.【2017天津,文6】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 【答案】C 【解析】试题分析:由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且:0.822log 5log 4.12,122>><<, 据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<,本题选择C 选项. 【考点】1.指数,对数;2.函数性质的应用【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,()2log 5a f =,再比较0.822log 5,log 4.1,2比较大小.2.【2017课标1,文9】已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【答案】C 【解析】【考点】函数性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 3.【2017山东,文10】若函数()e xf x (e=2.71828L ,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A . ()2xf x -= B. ()2f x x = C. ()3xf x -= D. ()cos f x x =【答案】A【解析】由A,令()e 2xxg x -=⋅,11'()e (22ln )e 2(1ln )022x xx x x g x ---=+=+>,则()g x 在R 上单调递增,()f x 具有M 性质,故选A. 【考点】导数的应用【名师点睛】(1)确定函数单调区间的步骤:① 确定函数f (x )的定义域;②求f ′(x );③解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;④解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.(2)根据函数单调性确定参数范围的方法:①利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.②转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.4.【2017课标II ,文14】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = ________. 【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+= 【考点】函数奇偶性【名师点睛】(1)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的值或解析式.(2)已知函数的奇偶性求参数,一般采用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.5.【2017山东,文14】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈- 时,()6xf x -=,则f (919)= . 【答案】6 【解析】【考点】函数奇偶性与周期性【名师点睛】与函数奇偶性有关问题的解决方法 ①已知函数的奇偶性,求函数值将待求值利用奇偶性转化为已知区间上的函数值求解. ②已知函数的奇偶性求解析式将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.③已知函数的奇偶性,求函数解析式中参数的值常常利用待定系数法:利用f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解.④应用奇偶性画图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2016年高考全景展示1.【2016高考北京文数】下列函数中,在区间(1,1)- 上为减函数的是( ) A.11y x=- B.cos y x = C.ln(1)y x =+ D.2x y -= 【答案】D 【解析】试题分析:由12()2x x y -==在R 上单调递减可知D 符合题意,故选D. 考点:函数单调性【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法. (2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;(3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性.2.【2016高考上海文科】设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( )A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题【答案】D 【解析】故选D.考点:1.抽象函数;2.函数的单调性;3.函数的周期性.【名师点睛】本题主要考查抽象函数下函数的单调性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于灵活选择方法,如结合选项应用“排除法”,通过举反例应用“排除法”等. 本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.3.【2016高考山东文数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) (A )sin y x =(B )ln y x = (C )e x y = (D )3y x =【答案】A 【解析】考点:1.导数的计算;2.导数的几何意义.【名师点睛】本题主要考查导数的计算、导数的几何意义及两直线的位置关系,本题给出常见的三角函数、指数函数、对数函数、幂函数,突出了高考命题注重基础的原则.解答本题,关键在于将直线的位置关系与直线的斜率、切点处的导数值相联系,使问题加以转化,利用特殊化思想解题,降低难度.本题能较好的考查考生分析问题解决问题的能力、基本计算能力及转化与化归思想的应用等.4.【2016高考山东文数】已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= ( ) (A )-2 (B )-1 (C )0 (D )2 【答案】D 【解析】 试题分析: 当12x >时,11()()22f x f x +=-,所以当12x >时,函数()f x 是周期为1的周期函数,所以(6)(1)f f =,又因为当11x -≤≤时,()()f x f x -=-,所以()3(1)(1)112f f ⎡⎤=--=---=⎣⎦,故选D.考点:1.函数的奇偶性与周期性;2.分段函数.【名师点睛】本题主要考查分段函数的概念、函数的奇偶性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于利用分段函数的概念,发现周期函数特征,进行函数值的转化.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.5. 【2016高考四川文科】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4xf x =,则5()(1)2f f -+= . 【答案】-2 【解析】考点:1.函数的奇偶性;2.函数的周期性.【名师点睛】本题考查函数的奇偶性与周期性.属于基础题,在涉及函数求值问题中,可利用周期性=+,化函数值的自变量到已知区间或相邻区间,如果是相邻区间再利用奇偶性转化到已知区f x f x T()()间上,再由函数式求值即可.。
2016至2018近三年年高考试题 文科数学 Word版含答案
2016 文科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合,,则(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} (2)设的实部与虚部相等,其中a 为实数,则a=(A )-3 (B )-2 (C )2 (D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A ) (B ) (C ) (D )(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知,,,则b= (A )(B )(C )2 (D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到的l 距离为其短轴长的41,则该椭圆的离心率为 (A )31 (B )21 (C )32 (D )43 (6)若将函数y =2sin (2x +6π)的图像向右平移41个周期后,所得图像对应的函数为 (A )y =2sin(2x +4π) (B )y =2sin(2x +3π) (C )y =2sin(2x –4π) (D )y =2sin(2x –3π) ) (7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是(A)17π (B)18π (C)20π (D)28π(8)若a>b>0,0<c<1,则(A)log a c<log b c (B)log c a<log c b (C)a c<b c (D)c a>c b(9)函数y=2x2–e|x|在[–2,2]的图像大致为(A)(B)(C)(D)(10)执行右面的程序框图,如果输入的n=1,则输出的值满足(A)(B)(C)(D)(11)平面过正方体ABCD—A1B1C1D1的顶点A,,,,则m,n所成角的正弦值为(A)(B)(C)(D)(12)若函数在单调递增,则a的取值范围是(A ) (B ) (C ) (D )第II 卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且ab ,则x =(14)已知θ是第四象限角,且sin(θ+)=,则tan(θ–)=.(15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若32AB ,则圆C 的面积为(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
(2016-2018)三年高考数学文科真题分类专题3【基本初等函数】解析卷
分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满 足相应段自变量的取值范围. 7.【2018 年江苏卷】函数 【答案】[2,+∞) 【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域. 详解:要使函数 有意义,则log
log
ƺ 的定义域为________.
5. 【2018 年天津卷文】 已知 a∈R, 函数 恒成立,则 a 的取值范围是__________. 【答案】[ ,2] 【解析】分析:由题意分类讨论 结果.
若对任意 x∈ [–3, + ) , f(x)≤
ǁ 和
鈮 两种情况,结合恒成立的条件整理计算即可求得最终
点睛:对于恒成立问题,常用到以下两个结论:(1)a≥f(x)恒成立⇔a≥f(x)max;(2)a≤f(x)恒成立⇔a≤f(x)min. 有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向; ②对称轴位置;③判别式;④端点函数值符号四个方面分析. 6.【2018 年江苏卷】函数 满足
2.分段函数
Ⅱ
分析解读 1.考查映射与函数的定义域、分段函数的解析式和求函数值. 2.求函数的解析式和定义域具有综合性,有时渗透在解答题中,特别是结合函数图象考查数形结合能 力. 3.本节内容在高考中分值为 5 分左右,属于中低档题. 2018 年高考全景展示 1.【2018 年天津卷文】已知 A.
D. 8
A. 2
B. 4
C. 6
7
(2016-2018)三年高考数学文科真题分类专题 3【基本初等函数】解析卷
【答案】C 【解析】 试题分析:由 x 1时 f x 2 x 1 是增函数可知,若 a 1 ,则 f a f a 1 ,所以 0 a 1,由
三年高考(2016-2018)数学(文)真题分类解析:专题04-函数性质与应用
考纲解读明方向1.考查函数的单调区间的求法及单调性的应用,如应用单调性求值域、比较大小或证明不等式,运用定义或导数判断或证明函数的单调性等.2.借助数形结合的思想解题.函数的单调性、周期性、奇偶性的综合性问题是高考热点,应引起足够的重视.3.本节内容在高考中分值为5分左右,属于中档题.命题探究练扩展2018年高考全景展示1.【2018年全国卷Ⅲ文】下列函数中,其图像与函数的图像关于直线对称的是A. B. C. D.【答案】B【解析】分析:确定函数过定点(1,0)关于x=1对称点,代入选项验证即可。
详解:函数过定点(1,0),(1,0)关于x=1对称的点还是(1,0),只有过此点。
故选项B 正确.点睛:本题主要考查函数的对称性和函数的图像,属于中档题。
2.【2018年全国卷Ⅲ文】已知函数,,则________.【答案】点睛:本题主要考查函数的性质,由函数解析式,计算发现和关键,属于中档题。
2017年高考全景展示1.【2017天津,文6】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << 【答案】C 【解析】试题分析:由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭,且:0.822log 5log 4.12,122>><<, 据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<,本题选择C 选项. 【考点】1.指数,对数;2.函数性质的应用【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,()2log 5a f =,再比较0.822log 5,log 4.1,2比较大小. 2.【2017课标1,文9】已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称【答案】C 【解析】【考点】函数性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 3.【2017山东,文10】若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A . ()2xf x -= B. ()2f x x = C. ()3xf x -= D. ()cos f x x =【答案】A【解析】由A,令()e 2x x g x -=⋅,11'()e (22ln )e 2(1ln )022x x x x xg x ---=+=+>,则()g x 在R 上单调递增,()f x 具有M 性质,故选A. 【考点】导数的应用【名师点睛】(1)确定函数单调区间的步骤:①确定函数f (x )的定义域;②求f ′(x );③解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;④解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间. (2)根据函数单调性确定参数范围的方法:①利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.②转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.4.【2017课标II ,文14】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+, 则(2)f = ________. 【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+= 【考点】函数奇偶性【名师点睛】(1)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的值或解析式.(2)已知函数的奇偶性求参数,一般采用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.5.【2017山东,文14】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈-时,()6x f x -=,则f (919)= . 【答案】6 【解析】【考点】函数奇偶性与周期性【名师点睛】与函数奇偶性有关问题的解决方法 ①已知函数的奇偶性,求函数值将待求值利用奇偶性转化为已知区间上的函数值求解. ②已知函数的奇偶性求解析式将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.③已知函数的奇偶性,求函数解析式中参数的值常常利用待定系数法:利用f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解.④应用奇偶性画图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2016年高考全景展示1.【2016高考北京文数】下列函数中,在区间(1,1)-上为减函数的是() A.11y x=- B.cos y x = C.ln(1)y x =+ D.2x y -= 【答案】D 【解析】试题分析:由12()2xx y -==在R 上单调递减可知D 符合题意,故选D. 考点:函数单调性【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法. (2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数; (3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性.2.【2016高考上海文科】设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是()A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题【答案】D 【解析】故选D.考点:1.抽象函数;2.函数的单调性;3.函数的周期性.【名师点睛】本题主要考查抽象函数下函数的单调性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于灵活选择方法,如结合选项应用“排除法”,通过举反例应用“排除法”等.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.3.【2016高考山东文数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是() (A )sin y x =(B )ln y x = (C )e x y = (D )3y x =【答案】A 【解析】考点:1.导数的计算;2.导数的几何意义.【名师点睛】本题主要考查导数的计算、导数的几何意义及两直线的位置关系,本题给出常见的三角函数、指数函数、对数函数、幂函数,突出了高考命题注重基础的原则.解答本题,关键在于将直线的位置关系与直线的斜率、切点处的导数值相联系,使问题加以转化,利用特殊化思想解题,降低难度.本题能较好的考查考生分析问题解决问题的能力、基本计算能力及转化与化归思想的应用等.4.【2016高考山东文数】已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= () (A )-2 (B )-1 (C )0 (D )2 【答案】D 【解析】 试题分析: 当12x >时,11()()22f x f x +=-,所以当12x >时,函数()f x 是周期为1的周期函数,所以(6)(1)f f =,又因为当11x -≤≤时,()()f x f x -=-,所以()3(1)(1)112f f ⎡⎤=--=---=⎣⎦,故选D.考点:1.函数的奇偶性与周期性;2.分段函数.【名师点睛】本题主要考查分段函数的概念、函数的奇偶性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于利用分段函数的概念,发现周期函数特征,进行函数值的转化.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.5. 【2016高考四川文科】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4x f x =,则5()(1)2f f -+=. 【答案】-2 【解析】考点:1.函数的奇偶性;2.函数的周期性.【名师点睛】本题考查函数的奇偶性与周期性.属于基础题,在涉及函数求值问题中,可利用周期性=+,化函数值的自变量到已知区间或相邻区间,如果是相邻区间再利用奇偶性转化到已()()f x f x T知区间上,再由函数式求值即可.。
2016-2018三年高考数学(文)真题分类专题汇编解析版
考点1集合的概念与运算1.(E ,全国新课标,5 分)已知集合 A = {x | -1 < x < 2}, B = {x | 0 < x < 3}, 则 A B =( )A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)2.(D ,全国新课标,5 分)已知集合 M = {x | -1 < x < 3}, N = {x | -2 < x < 1}, 则 MN =A.(-2,1)B.(-1,1)C.(1,3)D.(-2,3)3.(E ,广东,5 分)若集合 M = {-1,1}, N = {-2,1, 0}, 则 MN =A.{0,-1}B.{1}C.{0}D.{-1,1}4.(E ,福建,5 分)若集合 M = {x | -2 ≤ x < 2}, N = {0,1,2}, 则 MA.{0}B.{1}C.{0,1,2}D.{0,1}N 等于 ()5.(E ,安徽,5 分)设全集U = {1,2,3,4,5,6}, A = {1, 2}, B = {2,3,4}, 则 AA.{1,2,5,6}B.{1}C.{2}D.{1,2,3,4}(C ⋃ B) =A .{1,4}B .{2,3}C.{9,16}D.{1,2}6.(C ,全国新课标,5 分)已知集合 A = {1,2,3,4}, B ={x | x = n 2, n ∈ A}, 则A B =( )A .{0}B .{-1,0}C .{0,1}D .{-1,0,1}7.(C ,北京,5 分)已知集合 A = {-1,0,1}, B = {x | -1 ≤ x < 1}, 则 A B =( )8.(E ,北京,5 分)若集合 A = {x | -5 < x < 2}, B = {x | -3 < x < 3}, 则 AB = ()A.{x | -3 < x < 2}B.{x | -5 < x < 2} c {x | -3 < x < 3} D.{x | -5 < x < 3}9.(C ,山东,5 分)已知集合 A ,B 均为全集U = {1,2, 3,4} 的子集,且¢ ( AB) = {4}, B = {1,2}, 则UA CB = ()UA.{3}B.{4}C.{3,4}D.∅10.(C ,江西,5 分)集合 A = {2,3}, B = {1,2,3}, 从 A,B 中各任意取一个数,则这两数之和等于 4 的概率是( )12.(B ,浙江,5 分)设全集U = {1,2,3,4,5,6}, 集合 P = {1,2,3,4}, Q = {3,4,5}, 则 P(C2 1 1 1 A.B.c. D.32 3 611.(B,辽宁,5 分)已知全集U = {0,1,2,3,4,5,6,7,8, 9}, 集合 A = {0,1,3,5,8}, 集合 B = {2,4,5,6,8}, 则(C A) (C B) = ()U UA.{5,8}B.{7,9}C.{0,1,3}D.{2,4,6}U Q) = (A.{1,2,3,4,6}B.{1,2,3,4,5}C.{1,2,5}D.{1,2})13. (B ,湖南,5 分)设集合 M = {-1,0,1}, N = {x | x 2 = x}, 则 MN =A.{-1,0,1}B .{0,1}c .{1}D .{0}14.(B ,陕西,5 分)集合 M = {x | kx > 0}, N = {x | x 2 ≤ 4}, 则 M N = A.(1,2) B.[1,2) C.(1,2] D.[1,2]A.{-1,0}B.{0,1}C.{-2,-1,0,1}D.{-1,0,1,2}15. (D ,四川,5 分)已知集合 A = {x | ( x +1)( x - 2) ≤ 0},集合 B 为整数集,则 AB = ()N=(16.(D,广东,5分)已知集合M={2,3,4},N={0,2,3,5},则M)A.{0,2}B.{2,3} c.{3,4} D.{3,5}B=()17.(E,山东,5分)已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0},则AA.(1,3)B.(1,4)C.(2,3)D.(2,4)18.(B,广东,5分)设集合U={1,2,3,4,5,6},M={1,3,5},则C M=()UAU1h.{1,2,4h c.{1,3,5} D.{2,4,6}B=R,则a 19.(C,上海,5分)设常数a∈R,集合A={x|(x-1).(x-a)≥0},B={x x≥a-1}.若A的取值范围为()A.(-∞,2)B.(-∞,2]C.(2,+∞)D.L2,+∞)Q等于()20.(D,福建,5分)若集合p={x|2≤x<4},Q={x|x≥3},则P.A.{x | 3 ≤ x < 4}B.{x | 3 < x < 4}C.{x | 2 ≤ x < 3}D.{x | 2 ≤ x ≤ 3}21. (E ,浙江,5 分)已知集合 p = {x {x 2 - 2 x ≥ 3}, Q = {x | 2 - 4}, 则 PQ =A.[3,4)B.(2,3]C.(-1,2) D(-1,3]22. (E ,天津,5 分)已知全集U = {1,2,3,4,5,6}, 集合 A = {2,3,5 }集合 B = {1,3,4,6}, 则集合 A C B =UA.{3}B.{2,5}C.(1,4,6)D.{2,3,5}23.(A ,福建,5 分)若集合 M = {-1,0,1}, N = {0,1, 2}, 则 MN 等于A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}24.(E ,四川,5 分)设集合 A = {x | -1 < x < 2}, 集合 B = {x |1 < x < 3}, AB =A.{x | -1 < x < 3}B.{x | -1 < x < 1}C.{x | 1 < x < 2}D.{x | 2 < x < 3}25.(C,辽宁,5 分)已知集合 A = {0,1,2,3,4}, B = {x || x |< 2}, 则 AB =A.{0}B.{0,1}C.{0,2}D.{0,1,2}26.(A ,湖北,5 分)已知U = {1,2,3,4,5,6,7,8}, A = {1,3,5,7}, B = {2,4,5}, 则 C ( AB) =UA.{6,8}B.{5,7} c.{4,6,7} D.{1,3,5,6,8}27.(A ,全国新课标,5 分)已知集合 M = {0,1,2,3, 4}, N = {1,3,5}, P = MN , 则 P 的子集共有(A2 个 B. 4 个 C .6 个 D .8 个)28.(A ,安徽,5 分)集合U = {1,2,3,4,5,6}, s = {1,4,5}, T = {2,3,4}1 则 S(CUT ) 等于 ( )A.{1,4,5,611B.{1.5} c.{4} D.{1,2,3.4,5}29. (A ,江西,5 分)若全集U = {1,2,3,4,5,6}, M = {2,3}, N = {1,4}, 则集合{5,6}等于()A.M NB.M NC.(C M ) (C N )D.(C M ) (C N )UULJU30.(A,浙江,5 分)若 p = {x | x < 1},∈ -{x | x > -1}, 则A.P ⊆ QBQ ⊆ PC.C P ⊆ QD.Q ⊆ C PRR31.(E ,重庆,5 分)已知集合 A = {1,2,3}, B = {1,3}, 则 AB =A.{2}B.{1,2}C.{1,3}D.{1,2.3}, B = x x < 1 ,32.(E ,陕西,5 分)设集合 M = {x | x = x}, N = {x | lg x ≤ 0}, 则 MN = ()A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]33.(D ,湖北,5 分)已知全集 U={l ,2,3,4,5,6,7),集合 A={1,3,5,6), C A =UA.{1,3,5,6}B.{2,3.7}C.{2,4,7}D.{2.5.7}34.(E,湖北,5 分)已知集合 A = {( x , y) | x 2 + y ≤ 1, x, y ∈ z}, B = {( x , y) x ≤ 2, y ≤ 2, x, y ∈ z},定义集合 A ⊕ B = {( x + x , y + y ) | ( x , y ) ∈ A, ( x , y ) ∈ B}, 则 A ⊕ B 中元素的个数为( )1 2121122A. 77B.49C.45D.3035.(E,江苏,5 分).已知集合 A = {1,2,3 }B = {2,4,5},则,则集合 AB 中元素的个数为36.(B ,上海,4 分)若集合 A = {x 2x - 1 > 0}{ }则A B =________37. (C ,江苏,5 分)集合{-1,O ,1}共有____个子集38. (A ,上海,4 分)若全集 U=R ,集合 A = {x x ≥ 1} ,则 C A =U39.(E,湖南,5 分)已知集合U = {1,2,3,4}, A = {1,3}B = {1,3,4}, 则 A40.(D ,江苏,5 分)已知集合 A = {-2, -1,3,4}, B = {-1,2,3 }则 AB =(C B) =U_______L41.(D,重庆,5 分)已知集合 A = {3,4,5,12,13} , B = {2,3,5,8,13}, 则 A B =________42.(E ,上海,4 分)设全集U = R. 若集合 A = {1,2,3,4}, B = x 2 ≤ x ≤ 3}, 则 A C B =U答案5 b c考点 2 逻辑联结词和四种命题l- (E ,湖北,5 分)命题 " ∃x ∈ (0, +∞),ln x = x - 1" 的否定是()0 0A.∃x ∈ (0, +∞), l nx =/ x - 1B.∃x ∉ (0,+∞), ln x = x - 10 0C.∀x ∈ (0,+∞), ln x =/ x - 1D.∀x ∉ (0,+∞), ln x = x - 12.(D ,安徽,5 分)命题 "∀x ∈ R,| x | + x 2 ≥ 0" 的否定是()A.∀x ∈ R,| x | + x 2 < 0B.∀x ∈ R,| x | + x 2 ≤ 0C.∃x ∈ R,| x | + x 2 < 0D.∃x ∈ R,| x | + x 2 ≥ 00 03.(D ,辽宁, 分)设 a , , 是非零向量.已知命题 p:若 a ⋅ b = 0, b ⋅ c = 0, 则 a * C = 0; 命题 q: a // b , b // c,则 a // c. 则下列 命题中真命题是()A.P ∨ qB.P ∧ qC.(⌝p ) ∧ (⌝q )D. p ∨ (⌝q )4.(D ,天津,5 分)已知命题 P : ∀x > 0, 总有 ( x + 1)e x > 1, 则 B.P ∧ q 为()A.∃x ≤ 0, 使得 ( x + 1)e x 0 ≤ 1B.∃x > 0, 使得 ; ( x + 1)e x 0 ≤ 10 0C.∀x > 0, 总有 ( x + 1)e x ≤ 1D.∀ ≤ 0, 总有 ( x + 1)e x ≤ 15.(D ,重庆,5 分)已知命题p :对任意 x ∈ R, 总有 | x |≥ 0;q : x = 1是方程 x + 2 = 0 的根.则下列命题为真命题的是( )A. p ∧ ⌝qB.⌝p ∧ qC.⌝p ∧ ⌝qD. p ∧ q6.(D ,湖南,5 分)设命题 P : ∀x ∈ R, x 2 + 1 > 0, 则 ⌝p 为A.∃x ∈ R, x 2 + 1 > 0B.∃x ∈ R, x 2 + 1 ≤ 0C.∃xo ∈ R, x 2 + 1 < 0D.∀x ∈ R, x 2 + 1 ≤ 07.(E,山东,5 分)设 m ∈ R, 命题“若 m > 0, ,则方程 x 2 + x - m = 0 有实根”的逆否命题是()2 ; 命题 q :函数 y = cos x 的图象关于直线2对称,则下列判断正确的是(A.若方程 x 2 + x - m = 0 有实根,则 | m > 0B.若方程 x 2 + x - m = 0 有实根,则 m ≤ 0C .若方程 x 2 + x - m = 0 没有实根,则 m > 0D 若方程 x 2 + x - m = 0 没有实根,则 m ≤ 08.(C ,全国新课标,5 分)已知命题 P : ∀x ∈ R,2 x < 3 x ; 命题 q : ∃x ∈ R, x 3 = 1 - x 2 , 则下列命题中为真命题的是( )A.P ∧ qB.⌝P ∧ qC. p ∧ ⌝qD.⌝P ∧ ⌝q9.(C ,湖北,5 分)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题 p 是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 ( )A.(⌝P) ∨ (⌝q )B. p ∨ (⌝q )C.(⌝P) ∧ (⌝q )D. p ∨ q1O. (B ,湖北,5 分)命题“存在一个无理数,它的平方是有理数”的否定是 ()A 任意一个有理数,它的平方是有理数B 任意一个无理数,它的平方不是有理数C 存在一个有理数,它的平方是有理数D 存在一个无理数,它的平方不是有理数 11. (B ,山东,5 分)设命题 p :函数 y = sin 2 x 的最小正周期为πx =π)A.p 为真B.q 为假C. p ∧ q 为假D. p ∨ q 为真12.(A ,山东,5 分)已知 a, b , c ∈ R, 命题“若 a + b + c = 3. 则 a 2 + b 2 + c 2 ≥ 3,, 的否命题是()A.若 a + b + c =/ 3⋅, 则 a 2 + b 2 + c 2 < 3B.若 a + b + c = 3, 则 a 2 + b 2 + c 2 < 3C .若 a + b + c =/ 3, 则 a 2 + b 2 + C 2 ≥ 3D .若 a 2 + b 2 + c 2 ≥ 3, 则 a + b + c = 313.(A ,辽宁,5 分)已知命题 P : ∃n ∈ N ,2 n > 1000, 则 ⌝P 为()A.∀n ∈ N ,2 n ≤ 1000B.∀n ∈ N ,2 n > 1000C.∃n ∈ N ,2 n ≤ 10ωD.∃n ∈ N ,2 n < 100014.(C,广东,5分)设a是已知的平面向量且a=/0,关于向量a的分解,有如下四个命题:①给定向量b,总存在向量c,使a=b+c;②给定向量b和c,总存在实数λ和μ,使a=λb+∝;③给定单位向量b和正数μ,总存在单位向量c和实数λ,使a=λb+μe;④给定正数λ和μ,总存在单位向量b和单位向量c,使a=λb+μr.上述命题中的向量b,c和a在同一平面内且两两不共线,则真命题的个数是A.1B.2C.3D.415.(D,福建,5分)命题∀x∈[0,+∞),x s+x≥0,,的否定是()A.∀x∈(-∞,0),x3+x<0B.∀x∈(-∞,0),x3+x≥0()c.∃x∈[0,+∞),x3+x<0000D.∃x∈[0,+∞),x3+x≥0000答案8.(B ,天津,5 分)设 x ∈ R, 则“x > ”是“2 x 2 + x - 1 > 0”的( )考点 3 充要条件1.(E ,浙江,5 分)设 a ,b 是实数,则“a + b > 0”是 ab > 0,, 的A 充分不必要条件B 必要不充分条件C .充分必要条件D .既不充分也不必要条件2.(D ,北京,5 分)设 a ,b 是实数,则“a > b ”是“a 2 > b 2”的( )A 充分而不必要条件B 必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.(E ,湖南,5 分)设 x ∈ R, 则“x>l”是“x 3 > 1”的()A 充分不必要条件B 必要不充分条件C 充要条件D .既不充分也不必要条件4.(D ,广东,5 分△)在 ABC 中,角 A ,B ,C 所对应的边分别为 a ,b ,c ,则“a ≤ b ”是“≤ sin A ≤ sin B ”的 ()A 充分必要条件B 充分非必要条件C 必要非充分条件D .非充分非必要条件5.(C ,浙江,5 分)若 α ∈ R, 则“α = 0”是“sin α < cos α”的( )A 充分不必要条件B .必要不充分条件C 充分必要条件D.既不充分也不必要条件6. (B ,陕西,5 分)设 a, b ∈ R, i 是虚数单位,则“ab = 0”是“复数 a + b i为纯虚数”的 ( )A 充分不必要条件B 必要不充分条件C 充分必要条件D .既不充分也不必要条件7.(B ,浙江,5 分)设 a ∈ R, 则“a = 1”是“直线 l : ax + 2 y - 1 = 0 与直线 l : x + 2 y + 4 = 0 1 2平行”的( ) A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D .既不充分也不必要条件1 2A 充分而不必要条件B 必要而不充分条件C 充分必要条件D .既不充分也不必要条件9.(E ,安徽,5 分)设 P : x < 3, q : -1 < x < 3, 则 p 是 q 成立的()A 充分必要条件B 充分不必要条件C .必要不充分条件D .既不充分也不必要条件10. (A ,天津,5 分)设集合 A = {x ∈ R | x - 2 > 0}, B = {x ∈ R | x < 0}, C = {x ∈ R | x ( x - 2) > 0 则“x ∈A B ”是“x ∈ c ”的 ( )A 充分而不必要条件B 必要而不充分条件11. (A ,浙江,5 分)设 a ,b 为实数,则“0 < ab < 1”是“b < ”的()| 5bC 充分必要条件D .既不充分也不必要条件1aA 充分而不必要条件B .必要而不充分条件C 充分必要条件D .既不充分也不必要条件12.(E ,天津,5 分)设 x ∈ R, 则“1 < x < 2”是“ x - 2 |< 1”的( )A 充分而不必要条件B 必要而不充分条件C 充要条件D .既不充分也不必要条件13.(E,湖北,5 分) l , l 表示空间中的两条直线,若 P : l , l 是异面直线; q : l , l 不相交,则 ( )1 21212A.p 是 q 的充分条件,但不是 q 的必要条件B.P 是 q 的必要条件,但不是 q 的充分条件C.p 是 Q 的充分必要条件D.p 既不是 q 的充分条件,也不是 q 的必要条件14. (D ,江西,5 分)下列叙述中正确的是 ( )A.若 a, b , c ∈ R, 则 " a x 2 + bx + c ≥ 0" 的充分条件是 b 2 - 4ac ≤ 0,,B.若 a, b , c ∈ R, 则 ab 2 > cb 2 , , 的充要条件是 " a > c "C .命题“对任意 x ∈ R, 有 x 2 ≥ 0,, 的否定是“存在 x ∈ R, 有 x 2 ≥ 0,,D .L 是一条直线,α , β 是两个不同的平面,若 l ⊥ α , l ⊥ β , 则 α // β15.(C ,天津,5 分)设 a, b ∈ R, 则 (a - b ) ⋅ a 2 < 0,, 是 a < b ,, 的()A 充分而不必要条件B .必要而不充分条件C.充要条件D .既不充分也不必要条件16.(B ,湖北,5 分)设 a, b , c ∈ R +, 则 abc = 1, , 是1 a + 1 b + 1c ≤ a + b + c,, 的()A.充分不必要条件 B 必要不充分条件C.充分必要条件D .既不充分也不必要条件17. (C ,山东,5 分)给定两个命题 P , q ⋅ 若 ⌝P 是 q 的必要不充分条件,则 p 是 ⌝q 的A.充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件18.(E,陕西,5 分) sin α = cos α , , x cos 2α = 0, , 的()A 充分不必要条件B 必要不充分条件C 充分必要条件D .既不充分也不必要条件19.(A ,湖北, 分)若实数 a , 满足 a ≥ 0, b ≥ 0, 且 ab = 0, 则称 a 与 b 互补.记 ϕ (a, b ) = a + b 2 - a - b ,那么 ϕ (a, b ) = 0 是 a 与 b 互补的( )2),k sin x cos x<x,,是"k<1"的A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件20.(E,福建,5分)“对任意x∈(0,πA.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件21.(D,浙江,5分)设四边形ABCD的两条对角线AC,BD.则“四边形ABCD为菱形”是"AC⊥BD"的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件22.(D,全国新课标,5分)函数f(x)在x=x处导数存在,若P:f/(x)=0;q:x=x是f(x)的极值点,000则()A.p是q的充分必要条件B.p是g的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件23.(E,上海,4分)设z,z∈C,则"z,z均为实数”是z-z是实数”的121212A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件24.(A,陕西,5分)设n∈N*,一元二次方程x2-4x+n=0有整数根的充要条件是n=_________答案⎩ - log ( x + 1), x > 1, 4B. - 3.(B ,江西,5 分)设函数 f ( x) = ⎨ 2 则 f ( f (3)) = ( )⎩ x , x > 1,5 B.3 ⎩ 2 x , x < 0, 则 f ( f (-2)) = (⎧ 4 C.. f ( x ) = ⎨1T 若 f ( f ( )) = 4, 则 b = ( )⎩ 8c. 6.(B ,福建,5 分)设 f ( x ) = ⎨0, x = 0, g ( x ) = ⎧1, xweiyoulishu, ⎪- 1, x < 0, ⎩ 0, xweiwulishu,考点 4 函数及函数的表示方法1.(D ,全国新课标,5 分)若函数 f ( x ) = kx - ln x 在区间 (1,+∞) 上单调递增,则 k 的取值范围是()A.(-∞,-2]B.(- ∝, -1]C.[2,+∞)D.[1,+∞)⎧ 2x -1 - 2,x ≤ 1,2.(E ,全国新课标,5 分)已知函数 f ( x ) = ⎨且 f (a) = -3, 则 f (6 - a) = ()2A. - 75 4 c. - 3 14 D. - 4⎧x 2 + 1, x ≤ 1, ⎪ ⎪ A. 1 C.2 133 D. 94.(E ,陕西,5 分)设 f ( x ) = ⎨1 -x , x ≥ 0,)A. - 1 .B. 1 1 32 D.25.(E ,山东,5 分)设函数⎧3x - b ,x < 1,⎪5 ⎪ 2 x , x ≥ 1. 6A.1B. 73 4 D. 12⎧1, x > 0,⎪⎩⎨ 则 f ( g (π )) 的值为 ( )A.1B.0C. - 1D.π7 . (D, 四 川 , 5 分 ) 设 f ( x ) 是 定 义 在 R 上 的 周 期 为 2 的 函 数 , 当 x ∈ [-1,1) 时 , f ( x ) =⎧- 4 x 2 + 2, - 1 ≤ x < 0, ⎨⎩x, 0 ≤ x < 1, 3则 f ( ) = 2 _________⎪ 9.(C ,福建,4 分)已知函数 f ( x ) = ⎨⎪ - tan x,0 ≤ x < ,11. (B ,陕西,5 分)设函数 f ( x) = ⎨ 1则 f ( f (-4)) = ________ ⎪( ) x , x < 0, 12.(B,江苏,5 分)设 f ( x ) 是定义在 R 上且周期为 2 的函数,在区间[-1,1]上, f ( x ) = ⎨ h x + 2其中 a, b ∈ R, 若 f ( ) = f ( ), 则 a + 3b 的值为_________1⎧ x 2, x ≤ 1,613.(E ,浙江,6 分)已知函数 f ( x ) = ⎨ ⎪⎩⎧e x -1 , x < 1,8.(D ,全国新课标,5 分)设函数 f ( x ) = ⎨1⎪⎩ x 3 ,x ≥ 1,则使得 f ( x ) ≤ 2 成立的 x 的取值范围是_____⎧2 x 3, x < 0,⎪π ⎩ 2π 则 f ( f ( )) =4 _________10. (E ,全国新课标,5 分)已知函数 f ( x) = ax 3 - 2 x 的图象过点(-1,4),则 a = _______⎧ x , x ≥ 0, ⎪ ⎩ 2⎧ax + 1,-1 - 0, ⎪⎪⎩ x + 1 , L1,⋅32 2⎪x + - 6, x > 1, x则 f ( f (-2)) = ______ f ( x) 的最小值是___14.(A,湖南,5 分)给定 k ∈ N *, 设函数 f : N * → N * 满足:对于任意大于 k 的正整数 n, f (n) = n - k.(1)设 k = 1, 则其中一个函数 f 在 n = 1处的函数值为_________(2)设 k = 4, 且当 n ≤ 4 时, 2 ≤ f (n) ≤ 3, 则不同的函数 f 的个数为________答案log x - 1 的定义域为(3-17.(成,北京,5 分)函数f ( x ) = ⎨ 的值域为_________考点 5 函数的定义域与值域1.(D ,山东,5 分)函数 f ( x ) =12A.(0,2)B.(0,2]C.(2,+∞)D.[2,+∞))2.(C ,山东,5 分)函数 f ( x ) = 1 - 2 x+1x + 3 的定义域为A.(-3,0]B.(-3,1]C.(-∞,-3) (-3,0]D.(-∞,-3) (-3,1]3.(E ,重庆,5 分)函数 f ( x ) = log ( x 2 + 2 x - 3) 的定义域是()2A.[-3,1]B.(-3,1)C.(-∞,-3]u[1,+∞)D.(-∞,-3) (1,+∞)4.(A ,江西,5 分)若 f ( x ) =1, 则 f ( x ) 的定义域为 (log (2 x + 1)1)21111A.(- ,0)B.(- ,+∞)C ⋅ (- ,0)u (0,+∞)D ⋅ (- ,2)22 22x 2 - 5x + 65.(E ,湖北,5 分)函数 f ( x ) =4 - x + lg的定义域为()x - 3A.(2,3)B.(2,4]C.(2,3) (3,4]D.(-1,3) (3,6]26.(D,上海,4 分) f ( x ) = x - x 2 , 则满足 f ( x ) < 0 的 x 的取值范周是________⎧log x, x ≥ 1,⎪1 2⎪⎩2x , x < 18.(B ,江苏,5 分)函数 f ( x ) = 1 - 2log x 的定义域为_________69.(B,广东,5 分)函数 y =x x + 1的定义域为________10.(A ,上海,4 分)设 g ( x ) 是定义在 R 上、以 1 为周期的函数,若 f ( x ) = x + g ( x ) 在[O ,1]上的值域为[-2,5],则 f ( x ) 在区间[0,3]上的值域为________答案A. y = cos 2 x , x ∈ RB. y = log | x |, x ∈ Rqiex =/ 0C. y = , x ∈ RD ⋅ y = x 3 + 1, x ∈ RA.B.C.D.1考点 6 函数的奇偶性与单调性1.(E ,福建,5 分)下列函数为奇函数的是( )A. y = xB ⋅ y = e xC ⋅ y = cos xD ⋅ y = e x - e - x2.(D ,全国新课标,5 分)设函数 f ( x ), g ( x ) 的定义域都为 R ,且 f ( x ) 是奇函数, g ( x ) 是偶函数,则下列结论中正确的是( )A. f ( x ) g ( x ) 是偶函数B.| f ( x ) g( x ) 是奇函数rC. f ( x ) g( x ) | 是奇函数D. | f ( x ) g ( x ) | 是奇函数3.(E ,安徽,5 分)下列函数中,既是偶函数又存在零点的是()A. y = ln xB. y = x 2 + 1C ⋅ y = sin xD ⋅ y = cos x4.(C ,北京,5 分)下列函数中,既是偶函数又在区间 (0,+∞ ) 上单调递减的是()A. y =1xB ⋅ y = e- xC ⋅ y = - x 2 + 1D ⋅ y = lg | x |5.(B ,天津,5 分)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()2e x - e - x26.(A ,全国新课标,5 分)下列函数中,既是偶函数又在 (0,+∞ ) 上单调递增的函数是()A. y = x 3B. y =| x | +1 C ⋅ y = - x 2 + 1 D ⋅ y = 2- | x7.(C ,湖南,5 分)已知 f ( x ) 是奇函数, g ( x ) 是偶函数,且 f (-1) + g (1) = 2, f (1) + g (-1) = 4, 则g (1) 等于( )A.4B.3 c.2 D.18.(A ,辽宁,5 分)若函数 f ( x ) =x(2 x + 1)( x - a)为奇函数,则 a = ( )1 2 3 23 49.(B ,广东,5 分)下列函数为偶函数的是()A. y = ln x 2 + 1B. y = x 3C ⋅ y = e xD ⋅ y = sin x10.(E ,湖南,5 分)设函数 f ( x ) = ln(1 + x) - ln < 1 - x), 则 f ( x ) 是()A 奇函数,且在(O ,1)上是增函数 B.奇函数,且在(O ,1)上是减函数5C 偶函数,且在(O ,1)上是增函数D .偶函数,且在(O ,1)上是减函数11.(D ,湖北, 分)已知 f ( x ) 是定义在 R 上的奇函数,当 x ≥ 0 时, f ( x ) = x 2 - 3x, 则函数 g ( x ) = f ( x ) -x + 3 的零点的集合为()A.{1,3}B.{-3,-1,1,3} c.{2 - 7 ,1,3} D.{-2 - 7 ,1,3}12. (E ,山东,5 分)若函数 f ( x ) = 2 x + 1 2 x - a是奇函数,则使 f ( x ) > 3 成立的 x 的取值范围为( )A.(-∞,-1)B.(-1,0)C.(0,1)D.(1,+∞)13. (C ,天津,5 分)已知函数 f ( x ) 是定义在 R 上的偶函数,且在区间[0,+∞) 上单调递增.若实数 n 满足 f (log a) + f (log - La) ≤ 2 f (1), 则 a 的取值范围是()2211A.[1,2]B.(0, )C.[ ,2]D.(0,2]2214.(D ,全国新课标,5 分)偶函数 y = f ( x) 的图象关于直线 x = 2 对称, f (3) = 3, 则 f (-1) = (15.(D ,安徽,5 分)若函数 f ( x )( x ∈ R) 是周期为 4 的奇函数,且在[O ,2]上的解析式为 f ( x ) =)⎧ x (1- x),0 ≤ x ≤ 1, 29 41⎨则 f ( ) + f ( ) = ⎩sin π x,1 < x ≤ 2,4 16___________⎧ | x 2 - 4 |, x ≤ 0,16.(D ,天津,5 分)已知函数 f ( x ) = ⎨ 若函数 y = f ( x ) - a | x | 恰有 4 个零点,则实数 a⎩2 | x - 2 |, x > 0.的取值范围为__________17. (D ,湖南,5 分)若 f ( x) = ln(e 3x + 1) + ax 是偶函数,则 a = ________18.(E ,福建,4 分)若函数 f ( x ) = 2|x -a| (a ∈ R) 满足 f (1 + x) = f (1 - x), 且 f ( x ) 在 [m ,+∞ ) 上单调递增,则实数 m 的最小值等于__________( x + 1) 2 + sin x19.(B ,全国新课标,5 分)设函数 f ( x ) =的最大值为 M ,最小值为 m ,则 M+m =____x 2 + 120.(B ,安徽,5 分)若函数 f ( x) =| 2 x + a | 的单调递增区间是[3,+∞ ), 则 a = _________21.(B ,上海,4 分)已知 y = f ( x) 是奇函数.若 g ( x) = f ( x) + 2 且 g (1) = 1, 则 g (-1) = _________22.(D ,上海,14 分)设常数 a ≥ 0, 函数 f ( x ) =2 x + a 2 x - a⋅(I)若 a = 4, 求函数 y = f ( x ) 的反函数 y = f-1( x );24.(E ,福建,14 分)已知函数 f ( x ) = ln x - ⋅(Ⅱ)根据 a 的不同取值,讨论函数 y = f ( x ) 的奇偶性,并说明理由.23.(B,上海,14 分)已知 f ( x ) = lg( x + 1).(I)若 0 < f (1 - 2 x ) - f ( x ) < 1, 求 x 的取值范围;(Ⅱ)若 g ( x ) 是以 2 为周期的偶函数,且当 0 ≤ x ≤ 时,有 g ( x ) = f ( x ), 求函数 y = g ( x )( x ∈ [1,2])的反函数.( x - 1) 22(I)求函数 f ( x ) 的单调递增区间;(Ⅱ)证明:当 x > 1时, f ( x ) < x - 1;(Ⅲ)确定实数 k 的所有可能取值,使得存在 x > l ,当 x ∈ (1, x ) 时,恒有 f ( x ) > k ( x - 1).0 0答案(I)当 b = + 1时,求函数 f ( x ) 在[-1,1]上的最小值 g (a) 的表达式;考点 7 二次函数1.(C ,浙江,5 分)已知 a, b , c ∈ R, 函数 f ( x ) = ax 2 + bx + ⋅c. 若 f (0) = f (4) > f (1), 则()A.a > 0,4a + b = 0B.a < 0,4a + b = 0C.a > 0,2a + b = 0D.a x 0,2a + b = 0⎧ x 2 + 2x + 2, x ≤ 0,2.(D ,浙江,4 分)设函数 f ( x) = ⎨ 若 f ( f (a)) = 2, 则 a = ________⎩ - x 2 ,x > 0.3.(E ,广东,5 分)不等式 - x 2 - 3x + 4 > 0 的解集为________(用区间表示).4.(D ,江苏,5 分)已知函数 f ( x ) = x 2 + mx - 1, 若对于任意 x ∈ [m , m + 1], 都有 f ( x ) < 0 成立,则实数m 的取值范围是________5.(E ,浙江,15 分)设函数 ⋅ f ( x ) = x 2 + ax + b (a , b ∈ R).a 24(Ⅱ)已知函数 f ( x ) 在[-1,1]上存在零点, 0 ≤ b - 2a ≤ 1. 求 b 的取值范围.6.(B ,福建,12 分)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销, 得到如下数据:单价x (元) 8 8.2 8.4 8.6 8.89I 销量y (件) 9084 83 80 7568(工)求回归直线方程 y = bx + a, 其中 b = -20.a = y - bx;(Ⅱ)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是 4 元/件,为使工厂 获得最大利润,该产品的单价应定为多少元?(利润=销售收入一成本)答案, b = log 2 , c = log 112 π , c = π -2 , 则( )4B. 2C.2x - 1 的定义域是(A.( , b )B.(10a,1 - b )C.(102考点 8 根式、指数式、对数式与幂函数、指数函数、对数函数1.(D ,安徽,5 分)设 a = log 7, b = 21.1 , c = 0.83.1 , 则 ()3A.b < a < CB.c < a < bC.c < b < aD.a < c < b2.(D ,,辽宁,5 分)已知 a = 2- 1 313 23 , 则()A.a > b > cB.a > c > bC.c > b > aD.c > a > b3.(D ,天津,5 分)设 a = log 2π , b = log 1A.a > b > cB.b > a > cC.a > c > bD.c > b > a4.(B ,安徽,5 分) (log 9) ⋅ (log 4) =23( )A. 11D.45.(C ,广东,5 分)函数 f ( x ) = lg( x + 1))A.(-1,+∞ )B.[-1,+∞ )C.(-1,1) (1,+∞)D.[-1,1) (1,+∞)6.(A ,安徽,5 分)若点(a ,b )在 y = lg x 图象上, a =/ 1, 则下列点也在此图象上的是()1 a a , b + 1)D.(a 2 ,2b )7.(C ,陕西,5 分)设 a ,b ,c 均为不等于 1 的正实数,则下列等式中恒成立的是()A.log b ⋅ log b = log aB.log b ⋅ log a = log ba ccaccC.log (bc ) = log b ⋅ log cD.log (b + c) = log b + log caa aaxa8.(E ,山东,5 分)设 a = 0.6 0.6 , b = 0.61.5 , c = 1.50.6 , 则 a ,b ,c 的大小关系是( )A.a < b < cB.a < c < bC.b < a < cD.b < c < a 19.(B ,天津,5 分)已知 a = 21.2 , b = ( ) -α8 , c = 2 log 2, 则 a ,b ,c 的大小关系为5 A.c < b < a 13.c < a < b C.b < a < c D.b < c < a1lO .(C ,辽宁,5 分)已知函数 f ( x ) = ln( 1 + 9 x 2 - 3x) + 1, 则 f (lg 2) + f (lg ) = ()2A. - 1B.0C.1D.211.(A ,天津,5 分)已知 a = log 3.6, b = log 3.2, c = log 3.6, 则244A.a > b > cB.a > c > bC.b > a > cD.c > a > b12.(C ,全国新课标,5 分)设 a = log 2, b = log 2, c = log 3, 则352A.a > c > bB.b > c > aC.c > b > aD.c > a > b⎧ 18. (A ,湖北,5 分)里氏震级 M 的计算公式为: M = lg A - lg A其中 A 是测震仪记录的地震曲线的最大13.(B ,浙江,5 分)设 a > 0, b > 0, e 是自然对数的底数()A 若 e a + 2a = e b + 3b , 则 a > bB.若 e a + 2a = e b + 3b , 则 a < bC.若 e a - 2a = e b - 3b , 则 a > bD .若 e a - 2a = e b - 3b , 则 a < b14.(E ,安徽,5 分) lg 5 1+ 2 lg 2 - ( ) -1 = 2 2___________15.(E ,浙江,6 分)计算: log2 2 2 =_________2log 23+log 43 = ________⎧ x 2 - 2, x ≤ 0,16.(D ,福建,4 分)函数 f ( x ) = ⎨ 的零点个数是________⎩2x - 6 + ln x, x > 017.(A ,陕西,5 分)设 f ( x ) = ⎨lg x, x > 0,⎩10 x , x ≤ 0,则 f ( f (-2)) =________0,振幅,是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是 1000,此时标准地震的振幅为 0.001,则此次地震的震级为____级;9 级地震的最大振幅是 5 级地震最大振幅的____倍.答案考点9函数的图象1.(D,浙江,5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log x的图象可能是()a2.(D,北京,5分)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系P=at2+bt+c(a,b,c是常数),下图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟3.(D,福建,5分)若函数y=log x(a>0,且a=/1)的图象如下图所示,则下列函数图象正确的是()a4.(C,湖南,5分)函数f(x)=ln x的图象与函数g(x)=x2-4x+4的图象的交点个数为()A.0B.1C.2D.315.(A,陕西,5分)函数y=x3的图象是()6.(A,安徽,5分)函数f(x)=ax n(1-x)2在区间[O,1]上的图象如图所示,则n可能是()7.(E,浙江,5分)函数f(x)=(x-)cos x(-π≤x≤πqiex=/0)的图象可能为.A.y=1A.1B.2C.3D.41x8.(C,湖北,5分)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶,与以上事件吻合得最好的图象是()9.(D,江西,5分)在同一直角坐标系中,函数y=ax2-x+象不可能的是()a2与y=a2x3-2ax2+x+a(a∈R)的图10.(D,陕西,5分)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切)已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()111111 x3-x2-x B.y=x3+x2-3x c⋅y=x3-x D⋅y=x3+x2-2x222244211.(C,福建,5分)函数f(x)=ln(x2+1)的图象大致是()12.(C,浙江,5分)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f(x)的图象如图所示,则该函数的图象是()⎧13.(B ,山东,5 分)函数 y =∝2 x - 2 - x的图象大致为( )14.(E,安徽,5 分)函数 f ( x ) = ax 3 + bx 2 + cx + d 的图象如图所示,则下列结论成立的是( )A.a > 0, b < 0, c > 0, d > 0B.a > 0, b < 0, c < 0.d > 0C.a < 0, b < 0, c > 0, d > 0D.a > 0, b > 0, c > 0, d < 015. (B ,湖北,5 分)已知定义在区间[O ,2]上的函数, y = f ( x ) 的图象如下右图所示,则 y = - f (2 - x)的图象为 ()16.(E ,全国新课标,5 分)如图,长方形 ABCD 的边 AB = 2, BC = 1, O 是 AB 的中点,点 P 沿着边 BC ,CD与 DA 运动,记∠BOP = x. 将动点 P 到 A ,B 两点距离之和表示为 x 的函数 f ( x ), 则 y = f ( x ) 的图象大致为 ()17.(A ,天津,5 分)对实数 a 和 b ,定义运算 ⊗,: a ⊗ b = ⎨a, a - b ≤ 1, ⎩b , a - b > 1.设函数 f ( x ) = ( x 2 - 2) ⊗ ( x - 1),x ∈ R. 若函数 y = f ( x ) - c 的图象与 x 轴恰有两个公共点,则实数 c 的取值范围是( )A.(1,1](2,)B.(2,1](1,2]C.(,2)(1,2]D.[2,1]18.(A,江西,5分)如图,一个“凸轮”放置于直角坐标系X轴上方,其“底端”落在原点0处,一顶点及中心M在y轴的正半轴上,它的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.今使“凸轮”沿X轴正向滚动前进,在滚动过程中,“凸轮”每时每刻都有一个“最高点”,其中心也在不断移动位置,则在“凸轮”滚动一周的过程中,将其“最高点”和“中心点”所形成的图形按上、下放置,应大致为()19.(C,江西,5分)如图,已知l1l,圆心在l上、半径为1m的圆0在t=O时与l相切于点A,圆0 212沿l以l m/s的速度匀速向上移动,圆被直线l所截上方圆弧长记为x,令y co.x,则y与时间t(0K 12l,单位:s)的函数y f(t)的图象大致为()20.(B,陕西,5分)下图是抛物线形拱桥,当水面在L时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽____米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
㈛ 时, y'
4
(2016-2018)三年高考数学文科真题分类专题 5【函数图像与方程】解析卷
2017 年高考全景展示 1.【2017 课标 1,文 8】函数 y
sin2 x 的部分图像大致为 1 cosx
A.
B.
C.
D.
【答案】C 【解析】
【考点】函数图象 【名师点睛】函数图像问题首先关注定义域,从图象的对称性,分析函数的奇偶性,根据函数的奇偶 性排除部分选择支,从图象的最高点、最低点,分析函数的最值、极值利用特值检验,较难的需要研 究单调性、极值等,从图象的走向趋势,分析函数的单调性、周期性等确定图象. 2.【2017 课标 3,文 7】函数 y 1 x
由图所示,要 f x b 有三个不同的根,需要红色部分图像在深蓝色图像的下方,即
m m2 2m m 4m, m2 3m 0 ,解得 m 3
考点:1.函数的图象与性质;2.函数与方程;3.分段函数 【名师点睛】本题主要考查二次函数函数的图象与性质、函数与方程、分段函数的概念.解答本题,关 键在于能利用数形结合思想,通过对函数图象的分析,转化得到代数不等式.本题能较好的考查考生数 形结合思想、转化与化归思想、基本运算求解能力等. 5.【2016 高考浙江文数】 设函数 f(x)=x3+3x2+1. 已知 a≠0, 且 f(x)–f(a)=(x–b)(x–a)2, x∈R, 则实数 a=_____, b=______. 【答案】-2;1.
sin x 的部分图像大致为( x2
)
5
(2016-2018)三年高考数学文科真题分类专题 5【函数图像与方程】解析卷
A
B
D.
C 【答案】D
D
【考点】函数图像 【名师点睛】(1)运用函数性质研究函数图像时,先要正确理解和把握函数相关性质本身的含义及其应 用方向.(2)在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条 件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小
x a 的零点是 x 2a 0 ,零点左边 2
1 x 1 ,不会和函数 f x 有交点,满足不等式恒成立,零点右边 g x a ,函数 2 2
x 1 a 2, , 根据图象分析, 当 x 0 时, 即 0 a 2 成立, 同理, 若a 0 , 函数 g x a 2 2 x x a f x 恒成立,零点左边 g x a ,根据图象分 2 2
11
的零点是 x 2a 0 ,零点右边 g x
析当 x 0 时,a 2 a 2 ,即 2 a 0 ,当 a 0 时, f x g x 恒成立,所以 2 a 2 , 故选 A.
【考点】1.分段函数;2.函数图形的应用;3.不等式恒成立. 【名师点睛】一般不等式恒成立求参数 1.可以选择参变分离的方法,转化为求函数最值的问题; 2. 也可以画出两边的函数图象,根据临界值求参数取值范围;3.也可转化为 F x 0 的问题,转化讨论 求函数的最值求参数的取值范围. 2016 年高考全景展示 1. 【2016 高考新课标 1 文数】函数 y 2 x 2 e 在 2, 2 的图像大致为(
t
的图像大致为
A. A
B. B
C. C
D. D
【答案】D 【解析】分析:由特殊值排除即可 详解: 当x퍈 ,排除 C 故正确答案选 D. 点睛:本题考查函数的图像,考查了特殊值排除法,导数与函数图像的关系,属于中档题。
y퍈 时,
, 排除 A,B.y' 퍈㈛ t
t 퍈㈛ tí t ㈛퍈㈛ ,当 x 鈭
,即 2
x
时, ymax 1 ,排除 B 选项,故选 D. 2
考点:三角函数图象. 【方法点睛】给定函数的解析式识别图象,一般从五个方面排除、筛选错误或正确的选项:(1)从函 数的定义域,判断图象左右的位置,从函数的值域,判断图象的上下位置;(2)从函数的单调性,判 断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断函数的 循环往复;(5)从特殊点出发,排除不符合要求的选项.
点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位 置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由 函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018 年全国卷Ⅲ文】函数
퍈 ㈛t
x
)
7
(2016-2018)三年高考数学文科真题分类专题 5【函数图像与方程】解析卷
(A)
(B)
(C)
(D)
【答案】D 【解析】 试题分析:函数 f(x)=2x2–e|x|在[–2,2]上是偶函数,其图象关于 y 轴对称,因为 f (2) 8 e 2 , 0 8 e 2 1 , 所以排除 A, B 选项;当 x 0, 2 时, y 4 x e x 有一零点,设为 x 0 ,当 x (0, x0 ) 时, f ( x ) 为减函数,当
Ⅱ
选择题
★★★
1
(2016-2018)三年高考数学文科真题分类专题 5【函数图像与方程】解析卷
2.判断一元二次方程根的存在性与 根的个数 3.根据具体函数的图象,能够用二分 法求相应方程的近似解 分析解读 函数与方程思想是中学数学最重要的思想方法之一,由于函数图象与 x 轴的交点的横坐标就是函数 的零点,所以可以结合常见的二次函数、 对数函数、 三角函数等内容进行研究.本节内容在高考中分值为 5 分左右,属于难度较大题.在备考时,注意以下几个问题: 1.结合函数与方程的关系,求函数的零点; 2.结合零点存在性定理或函数的图象,对函数是否存在零点进行判断; 3.利用零点(方程实根)的存在性求有关参数的取值或范围是高考中的热点问题.
命题探究练扩展
2
(2016-2018)三年高考数学文科真题分类专题 5【函数图像与方程】解析卷
2018 年高考全景展示 1.【2018 年浙江卷】函数 y=
t
sin2x 的图象可能是
A. 【答案】D
B.
C.
D.
【解析】分析:先研究函数的奇偶性,再研究函数在
上的符号,即可判断选择.
3
(2016-2018)三年高考数学文科真题分类专题 5【函数图像与方程】解析卷
10
(2016-2018)三年高考数学文科真题分类专题 5【函数图像与方程】解析卷
【解析】
考点:函数解析式. 【思路点睛】 先计算 f x f a , 再将 x b x a 展开, 进而对照系数可得含有 a ,b 的方程组,
2
解方程组可得 a 和 b 的值.
x =(
i 1 i
m
)
(A)0 【答案】B 【解析】
(B)m
(C) 2m
(D) 4m
8
(2016-2018)三年高考数学文科真题分类专题 5【函数图像与方程】解析卷
考点: 函数的奇偶性,对称性. 【名师点睛】如果函数 f ( x) , x D ,满足 x D ,恒有 f (a x) f (b x) ,那么函数的图象有 对称轴 x
ab ;如果函数 f ( x) , x D ,满足 x D ,恒有 f (a x) f (b x) ,那么函数的 2
图象有对称中心. 3. 【2016 高考浙江文数】函数 y=sinx2 的图象是( )
【答案】D 【解析】 试题分析:因为 y sin x 2 为偶函数,所以它的图象关于 y 轴对称,排除 A、C 选项;当 x 2
上恒成立,则 a 的取值范围是 (A) [2, 2] (B) [ 2 3, 2] (C) [ 2, 2 3] (D) [ 2 3, 2 3] 【答案】 A
6
(2016-2018)三年高考数学文科真题分类专题 5【函数图像与方程】解析卷
【解析】 试题分析:首先画出函数 f x 的图象,当 a 0 时, g x 直线的斜率时 的斜率 k
x ( x0 , 2) 时, f ( x ) 为增函数.故选 D.
考点:函数图像与性质 【名师点睛】 函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵 活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排 除不符合条件的选项. 2.【2016 高考新课标 2 文数】已知函数 f(x)(x∈R)满足 f(x)=f(2-x),若函数 y=|x2-2x-3| 与 y=f(x) 图像 的交点为(x1,y1),(x2,y2),…,(xm,ym),则
“f ” 转化,单调性可实现去 ,即将函数值的大小转化自变量大小关系
| x | 2, x 1, x 3.【2017 天津,文 8】已知函数 f ( x ) 设 a R ,若关于 x 的不等式 f ( x ) | a | 在 R 2 2 x , x 1. x
(2016-2018)三年高考数学文科真题分类专题 5【函数图像与方程】解析卷
分类专题 5【函数图像与方程】解析卷
考纲解读明方向 考点 内容解读 在掌握基本初等函数图象的基础上, 1.函数图象的判断 利用函数变化的快慢、函数的定义 ★★★ 域、奇偶性、单调性、函数图象过定 点等特点对函数图象作出判断 Ⅲ 掌握函数图象的平移变换、对称变 2.函数图象的变换 换、 伸缩变换和翻折变换,熟悉各种变 换的过程和特点,并由此解决相关问 题 利用函数图象研究函数的性质,根据 3.函数图象的应用 性质解决相关问题以及利用函数图 象解决最值问题、判断方程解的个数 分析解读 1.高考主要考查由函数解析式画出函数的图象,两个函数图象的交点出现的情况.近几年考查了用 图象表示函数. 2.在数学中,由“形”到“数”比较明显,由“数”到“形”需要意识,而试题中主要是由“数”到“形”.在解答 题中,要注意推理论证的严密性,避免出现以图代证的现象,利用图象研究函数的性质,特别是在判断非常 规方程根的个数时,此法有时“妙不可言”,这是数形结合思想在“数”中的重要体现. 考点 函数零点与方程 的根 内容解读 1.结合二次函数的图象,了解函数的 零点与方程根的联系 要求 常考题型 预测热度 Ⅱ ★☆☆ 填空题 选择题、 ★★☆ 要求 常考题型 预测热度