风电机组整机基础知识

合集下载

风力发电机的基础知识

风力发电机的基础知识

风力发电机的基础知识一、风的认知从某一个角度讲,风是太阳能的一种表现形式。

1.风的成因:①地球的自转②温差: 地球表面的不同状态对太阳的吸热系数以及放热系数不同从而造成空气之间温度的差异,而导致风的形成。

(如水面比地面的吸热慢,放热也慢)。

2.风的运动轨迹风在遇到障碍物后,都会形成湍流。

二、风力发电机风力发电机是一种将风能转换为电能的一种发电装置,实现风能转换成机械能,再由发电机把机械能转换成电能的过程。

1.风力发电机的技术原理三相三相不控桥整流蓄电池(1)发电机为三相(即三根线),输出三相应该是相互导通的,两根引出线的电阻是相同的,任意两根线一打是会出现火花。

(2)12V蓄电池充满电之后,电压会上升,一般蓄电认为电池充满在13.8V~14.5V之间。

用风力充电,蓄电池电压都会高,1.1V~1.3V为额定电压,多种蓄电池工作状态选择是不一样的。

10.2V切入逆变器。

发电机频率的监控,控制器增加监控点,电压信号选择保护。

2.风力发电机实际上是一个由风机叶片、发电机及尾舵组成的机组。

(1)最理想的叶片叶片扫风面积越大,接受风能则越大。

叶片侧面叶型的不同设计,可提高转速,减小阻力。

叶片理论极限值CP(max)=0.593P∝SρO3 *cp(目前,大风机叶片实际做出来最理想的CP值为0.48,小风机为0.48~0.36,而HY系列的叶片CP值可做到0.42。

)(2)高效能的发电机发电机效率:大型发电机0.95小型发电机0.6~0.5整机转化效率:整机转化效率= 气动效率(CP值) * 发电机效率三、风力发电机的特点风是一种随机能源,我们要利用风能发电,便要捕捉风能。

而风能可以无限大,在这种特性下,如果不作限速,即使再优良的风机也会被损坏。

现在风机一般利用于发电的,都是在3M/S~60M/S输出空间。

一般采用以下几种限速装置:(1)变浆距(离心变浆距)这是目前较先进的叶片控制方式,当大风来时,调型叶片,形成阻力,使风能大部分消耗在叶尖,限制能量输出。

风力发电机知识

风力发电机知识
工作原理
当风吹向风轮时,风轮受到风力的作用而旋转,将风能转换为机械能。随后, 风轮通过传动装置带动发电机转子旋转,将机械能转换为电能,最终输出到电 网中。
发展历程及现状
发展历程
风力发电技术经历了漫长的发展过程,从最初的小型风力发 电机发展到如今的大型风力发电机组,技术不断成熟和完善 。
现状
目前,风力发电已成为全球范围内广泛应用的清洁能源之一 ,许多国家都在积极推广和发展风力发电技术,以降低对化 石能源的依赖并减少环境污染。
应用领域与市场前景
应用领域
风力发电机广泛应用于电力、能源、交通等领域,特别是在偏远地区、海岛等缺 乏常规能源的场合,风力发电具有重要的应用价值。
市场前景
随着全球能源结构的转型和清洁能源的快速发展,风力发电市场前景广阔。未来 ,风力发电技术将继续创新和完善,成本将进一步降低,市场竞争力将不断提升 。
优点
无需对风,适应性强,低风速 下也能发电。
缺点
效率相对较低,启动风速较高 。
应用场景
适用于城市、山区等复杂地形 及分散式风电系统。
其他类型风力发电机
01
02
03
悬浮式风力发电机
利用磁悬浮技术使风轮悬 浮在空中,减少摩擦损耗, 提高效率。
风筝式风力发电机
将风筝与发电机相结合, 通过控制风筝的飞行轨迹 来驱动发电机发电。
叶片故障
发电机故障
控制系统是风力发电机的“大脑”,常见故障包括传 感器故障、执行机构故障等。诊断方法包括检查传感
器和执行机构的输出信号、检查控制逻辑等。
控制系统故 障
发电机是风力发电机的另一核心部件,常见故障包括 轴承损坏、定子绕组短路等。诊断方法包括电气测试、 绝缘测试等。

风力发电基础知识

风力发电基础知识

第一章风力发电机组结构1.8 控制系统控制系统利用微处理器、逻辑程序控制器或单片机通过对运行过程中输入信号的采集传输、分析,来控制风电机组的转速和功率;如发生故障或其他异常情况能自动地检测平分析确定原因,自动调整排除故障或进入保护状态。

控控制系统的主要任务就是自动控制风机组运行,依照其特性自动检测故障并根据情况采取相应的措施。

控制系统包括控制和检测两部分。

控制部分又设置了手动和自动两种模式,运行维护人员可在现场根据需要进行手动控制,而自动控制应在无人值班的条件下预先设置控制策略,保证机组正常安全运行。

检测部分将各传感器采集到的数据送到控制器,经过处理作为控制参数或作为原始记录储存起来,在机组控制器的显示屏上可以查询。

现场数据可通过网络或电信系统送到风电场中央控制室的电脑系统,还能传输到业主所在城市的总部办公室。

安全系统要保证机组在发生非常情况时立即停机,预防或减轻故障损失。

例如定桨距风电机组的叶尖制动片在运行时利用液压系统的高压油保持与叶片外形组合成一个整体,同时保持机械制动器的制动钳处于松开状态,一旦发生液压系统失灵或电网停电,叶尖制动片和制动钳将在弹簧作用下立即使叶尖制动片旋转约90°,制动钳变为夹紧状态,风轮被制动停止旋转。

根据风电机组的结构和载荷状态、风况、变桨变速特点及其他外部条件,将风电机组的运行情况主要分为以下几类:待机状态、发电状态、大风停机方式、故障停机方式、人工停机方式和紧急停机方式。

(1)待机状态风轮自由转动,机组不发电(风速为0~3m/s),刹车释放。

(2)发电状态发电状态Ⅰ:启动后,到额定风速前,刹车释放。

发电状态Ⅱ:额定风速到切出风速(风速12~25m/s),刹车释放。

(3)故障停机方式:故障停机方式分为:可自启动故障和不可自启动故障。

停机方式为正常刹车程序:即先叶片顺桨,党当发动机转速降至设定值后,启动机械刹车。

(4)人工停机方式:这一方式下的刹车为正常刹车,即先叶片顺桨,当发电机转速降至设定值后启动机械刹车。

风力发电机组基础理论

风力发电机组基础理论
——震惊世界的史上第一次“石油危机”全面爆发。
西方国家意识到对化石能源的依赖性太强,各国政府开始重视其他替代能 源特别是可再生能源(环保压力)。
1、风力发电机组的入门知识
1.2 风机的发展历程
蓬勃发展
能源危机后, 美国、丹麦、 瑞典、德国 下大决心开 发风能。
1、风力发电机组的入门知识
1.2 风机的发展历程
1、风力发电机组的入门知识
1.2 风机的发展历程
风车
辗磨谷物、灌溉

风力发电机
发电
1、风力发电机组的入门知识
1.2 风机的发展历程 第一次尝试
丹麦:1891年,Poul La Cour。
一战导致的石油价格的上涨, 推动了风机技术的迅速发展, 到1918年共有120台风力发电机 投入运行(功率10~35kW、风 轮直径最大达20m)。
1.3 风机的类型 3)变桨定速型(主动失速)
停机时刀尖朝前。
1、风力发电机组的入门知识
1.4 风力机的发展趋势 越来越庞大
但并不是越大越好,还要考虑当地风况和机组成本等因素
1、风力发电机组的入门知识
1.4 风力机的发展趋势 陆上——海上
要用较高的塔架以获取更好的风况 一般不大于3MW
风况较好,一般适用于3MW以上 风机,以节约基础成本
6
1、风力发电机组的入门知识
1.2 风机的发展历程
它是利用风能旋转的、最简单的捕风装置
1、风力发电机组的入门知识
1.2 风机的发展历程
1)历史记载的最早的风车出现在公元644年,在现在 的阿富汗一带,为垂直轴,用于辗磨谷物。
1、风力发电机组的入门知识
1.2 风机的发展历程
2)中国也很早开始利用风能,主要使用垂直轴风车。

风电基础知识

风电基础知识
式。
全球风电市场发展趋势
全球风电装机容 量持续增长市场 规模不断扩大
海上风电成为新 的发展热点各国 加快布局
风电技术不断创新 成本不断降低竞争 力不断提升
政策支持力度加 大风电发展前景 广阔
中国风电市场现状及前景预测
风电装机容量:截至XXXX年底全国风电装机容量达到XX万千瓦同比增 长XX%。
风电机组维护与 检修
风电机组维护保养
定期检查:对风电机组进行定期检查确保机组正常运行 维护保养:按照制造商的推荐进行维护保养包括润滑、清洁等 预防性维护:采取预防性维护措施如定期更换磨损部件以降低故障风险 应急处理:建立应急处理程序以便在发生故障时迅速响应
风电机组检修流程
准备工作:检查工具、备件和 安全装备确保齐全
电网条件:评估 风电场接入电网 的条件包括电压 等级、输电线路 和变压器等设施。
社会经济因素: 考虑风电场建设 对当地经济和社 会的影响如投资 规模、就业机会、 税收和环保等方 面。
风电场规划与设计
风能资源评估:确定风电场建设的可行性
场址选择:考虑风能资源、地理位置、地形等因素
风电机组选型与布置:根据风能资源特点和场址条件选择合适的风电机组并进行合理 布置
风电基础知识
汇报人:
目录
添加目录标题
风电场建设
01
04
风电概述
风电机组维护与检修
02
05
风电原理
风电并网与输电
03
06
添加章节标题
风电概述
风电定义
风电是指利用风能发电的一种可再生能源 风电技术经过多年发展已成为一种成熟、可靠、环保的能源利用方式 风电场的建设和运营涉及到多个领域包括气象、地理、材料、电气等 风电产业的发展对于推动能源结构优化、减少环境污染、应对气候变化等方面具有重要意义

风力发电机的基础知识介绍

风力发电机的基础知识介绍

风力发电机基础知识介绍一、风力发电的现状我国民能资源比较丰富,是风能利用的大国之一,风力提水和风帆运输曾有过辉煌历史。

但风力发电在我国起步较晚,前些年主要是建设小型风力发电机(10KW以下)。

目前50~200W微型风力发电机组已定型投入批量生产,年生产能力达一万台以上;l~20KW容量的中、小型风力发电机组已达到小批量生产阶段。

近几年来正在研制50~200KW大、中型风方发电机组。

据1992年末的统计,已推广使用微型风力发电机组约12万台,总装机容量约16·8MW在国际合作和引进国外机组的条件下,已在新疆、内蒙古等区建立了14个风力发电试验场,安装大、中型风力发电机组多台。

仅新疆达圾城风电场装机容量已突破10MW,其经济效益越来越明显。

据估计,10米高的平均风速高于 5.1m/s的面积约为全世界面积的1/4 (3*10 K㎡)如果按每平方公里的风力发电装机容量为0.33MW计算,则这些面积每年的发电量可达2000TW·h,相当于目前全球总耗电量的2倍。

到1990年为止,全世界风机总装容量约为200MW,大部分是欧洲国和美国。

目前,风机正朝大型化方向发展,我国现已有250~500MW级的成熟风机二、风力发电的特点风能的特点是半连续性的,风能受地形和天气的影响很大,并且还有季节性变化和逐日逐时变化,大部分位于海边,及平原地区也有较丰富的风能资源。

风力发电一般由多个机组组成,利用风力,使转子(由叶片、毂和转轴组成)快速转动;经齿轮带动发电机发电(即是把风能转化为机械能,再由机械能转化为电能)。

但风力、风向、风速都是不稳定的,所以把多个机组产生的电能集中后经过充电控制器,储存到蓄电池,提供给各种负载。

三、风力发电能量的来源通常所说的风能是空气流动所具有的动能。

风力发电就是将空气流动的动能转变为电能。

大风包含着很大的能量。

(风速为9~10m/S的五级风吹到物体表面上的力,每平方米面积上约10kg,风速为20m/S的九级风吹到每平米面积上的力约为50kg,风速为50~60m/s的台风这个力可达200kg。

风电基础知识

风电基础知识

风电基础知识引言:随着对可再生能源的需求不断增长,风电作为一种无污染、可持续的能源形式,越来越受到关注。

无论是面对日趋紧张的能源供应,还是追求绿色环保的发展,风能都成为了各国政府和企业的关注焦点。

本文将介绍风电的基础知识,包括风能的转化原理、组成结构以及风电发电技术的发展趋势等。

一、风能的转化原理风能是一种动能,可以通过风力发电机将其转化为电能。

风力发电机是利用风能使转子旋转,通过转子与发电机的直接耦合或通过齿轮箱连接,使发电机产生电力。

风力发电机的核心部分是转子,其外形类似于大风车。

当风力吹向转子时,转子的叶片受到推动,并开始旋转。

转子上设置的发电机可以将旋转转子的运动转化为电力。

二、风电的组成结构1.风力发电机组风力发电机组是风电站的核心设备。

它由塔筒、轮毂、叶片、发电机和变频器等组成。

塔筒是风力发电机组的支撑结构,通常采用钢铁或混凝土制成。

轮毂是连接塔筒和叶片的部分,其主要作用是使叶片能够转动。

叶片是风力发电机组的动力装置,一般由纤维复合材料制成,具有轻质、高强度的特点。

发电机是将机械能转化为电能的核心部件,通常采用异步发电机或同步发电机。

变频器是将风力发电机组产生的交流电转化为稳定的直流电的装置。

2.电网连接装置电网连接装置包括变电站和输电线路。

变电站将风力发电机组产生的电能转换为适于输送的电气能,并将其接入电力系统中。

输电线路用于将发电站产生的电能输送到用户端。

三、风电发电技术的发展趋势1.提高风能利用率目前风能的利用率还有很大的提升空间。

为了提高风能利用率,风力发电机组的设计和运行需要更加科学合理。

同时,需要对风力资源进行更加准确的评估,选择更加适合的风力发电机组。

2.增强风电系统的稳定性由于风力发电的波动性较大,风电系统的稳定性一直是亟待解决的问题。

在未来的发展中,需要进一步完善风电并网技术,提高系统的稳定性和可靠性。

3.发展离岸风电相比于陆地风电,离岸风电具有风能资源丰富、风速稳定等优势。

风电基础知识培训风机发电机组成

风电基础知识培训风机发电机组成

风电基础知识培训风机发电机组成风电是一种清洁、可再生的能源形式,其基础知识对于了解和推广风能利用至关重要。

本文将介绍风电基础知识,特别是风机发电机组成,以帮助读者更好地理解和利用该技术。

一、风能利用的基础知识1.1 风能的来源与特点风能是地球上大气运动转化为机械能的产物。

风的形成与太阳照射地球表面不均匀有关,气温、地形等因素也会影响风能的分布和强度。

风能具有免费、可再生、广泛分布等特点。

1.2 风能的利用方式风能的主要利用方式是风力发电。

通过将风能转化为机械能驱动发电机,进而产生电能。

此外,风能还可以用于提供动力、水泵和空调等领域。

二、风机发电机组成2.1 风机的基本结构风电系统主要由风机、塔架和输电系统组成。

风机是核心部件,通常由叶片、轮毂、发电机、控制系统等组成。

2.2 风机的叶片风机叶片是将风能转化为机械能的关键部件。

叶片通常采用轻质、强度高的材料制造,具有空气动力学设计和结构加强等特点。

2.3 风机的轮毂轮毂是连接叶片和发电机的部件,负责传递叶片的旋转运动。

轮毂通常由高强度合金材料制造,以确保叶片的稳定性和安全性。

2.4 风机的发电机风机发电机是将机械能转化为电能的装置。

它通常由转子、定子和控制系统组成。

转子由风机转动产生的机械能驱动,定子则产生电能。

2.5 风机的控制系统风机的控制系统负责监测和控制风机的运行状态。

它可以根据风速、风向等参数调节叶片角度,以优化风机的发电效率。

2.6 风机与塔架风机通过塔架固定在地面或海上,以获得最佳的风能利用效果。

塔架的高度、材料和结构设计等均会影响风机的稳定性和性能。

三、预防和解决风机故障3.1 风机故障的类型风机故障主要包括叶片断裂、轮毂断裂、发电机故障等。

这些故障可能导致风机停机、性能下降甚至损毁。

3.2 预防风机故障的措施预防风机故障的关键在于定期检查和维护风机设备。

定期检查叶片、轮毂和发电机等部件的状况,及时排查和修复隐患。

3.3 解决风机故障的方法一旦发生风机故障,应立即停机,并寻找原因。

风力发电基础基础知识

风力发电基础基础知识

第5部分 风力发电机组的类型
5.2 按照机组的运行方式可划分为: • 离网型风力发电机组 • 并网型风力发电机组
第5部分 风力发电机组的类型
5.3 按照机组风轮轴的状态可划分为: • 垂直轴风力发电机组 • 水平轴风力发电机组 • 近年来,水平轴风力发电机组的应用得到
了长足的发展,下面这些分类方法,基本 是根据水平轴风力发电机组的技术状况所 给出的。
第6部分 风力发电机组的基本结构
和风力发电机组一样,发电机也有很多 种分类方法。在电力行业,一般习惯于把发 电机分为直流发电机和交流发电机两大类。 而后者又可分为同步发电机和异步发电机两 种。
第6部分 风力发电机组的基本结构
现代发电站中最常用的是同步发电机。 这种发电机的特点是由直流励磁,既能提供 有功功率,也能提供无功功率,可满足各种 负载的需要。异步发电机由于没有独立的励 磁绕组,其结构简单,操作方便,但是不能 向负载提供无功功率,而且还需要从所接电 网中汲取滞后的磁化电流。因此异步发电机 运行时必须与其他同步发电机并联,或者并 接相当数量的电容器。这限制了异步发电机 的应用范围。
第6部分 风力发电机组的基本结构
电器控制柜
双馈异步发电 机
齿轮箱
主轴 主轴承 叶轮
变频器冷却器 高速轴刹车 底架
偏航系统 塔架
为风力发电机组的机械结构图
蓄能器 主冷却器
第6部分 风力发电机组的基本结构 1.25MW齿轮箱
第6部分 风力发电机组的基本结构 2MW传动链——齿轮箱
第6部分 风力发电机组的基本结构 6.1 发电机
第4部分 风能利用与风力发电的历史
中国利用风能发电,始于二十世纪七十 年代。当时以微小型风力发电机组为主,单 机容量在50~500W不等,主要用于满足内蒙、 青海等省区牧民的汲水、照明需求。直到二 十世纪八十年代,才开始研制“中、大型” 风力发电机组。

风力发电机基础知识及电气控制.ppt

风力发电机基础知识及电气控制.ppt
发电机变频器在NCC320
2021/9/15
48
10、基础
为钢筋混凝土结构,承载整个风力发电机组的重量。基础周围设置有预 防雷击的接地系统。
2021/9/15
49
11、机舱
风力发电机组的机舱承担容纳所有的机械部件,承受所有外力(包括静 负载及动负载)的作用。
2021/9/15
50
风力发电机组简图
转速范围 rpm
11.5-21.2
11-22
9.7-19
9.8-18.3
额定转速 2021/9/15
rpm
20.1
20.1
17.4
17.4 5
并网型风力发电机组由以下部分组成
1、 风轮(叶片和轮毂) 2、 传动系统 3、 偏航系统 4、 变浆系统 5、 液压系统 6、 制动系统 7、 发电机 8、 控制与安全系统 9、 塔筒 10、基础 11、机舱
26
制动系统
使风轮减速和停止运转的系统。 SL1500系列风力发电机所用的制动器是一个液压动作的盘式制动器,用 于锁住转子。例如,在风力发电装置紧急切断时,制动器制动,使系统 停机。它具有自动闸瓦调整功能,也就是说当闸瓦磨损时不需要手动调 整制动器.
2021/9/15
27
制动器在风力发电机组中的安装位置
例如:运行、停机、故障
查看即时的故障信息
例如:故障代码、简单描述
各个设备的即时参数
例如:温度、电压、角度
各个设备所处的状态
例如:启动、停止
信息的记录
例如:发电量、发电时间、 耗电量
2021/9/15
41
Control-控制面板
2021/9/15
42
Control-菜单内容

风电机组电气基础知识

风电机组电气基础知识

风电机组电气基础知识风电机组是利用风能转换为电能的设备,具有清洁、可再生等特点,被广泛应用于发电领域。

在了解风电机组的电气基础知识之前,我们先简单介绍一下风电机组的工作原理。

风电机组的工作原理是利用风能驱动风轮旋转,通过风轮与发电机的联动转动,将机械能转化为电能。

风轮是由多个叶片组成的,当风力作用于叶片上时,风轮开始旋转。

旋转的风轮通过轴将机械能传递给发电机,发电机则将机械能转化为电能输出。

风电机组的电气基础知识主要包括以下几个方面:1. 发电机:风电机组中的发电机是将机械能转化为电能的关键设备。

发电机常见的类型有同步发电机和异步发电机。

同步发电机是最常见的类型,它的转速与电网频率同步,输出的交流电频率为50Hz或60Hz。

异步发电机则适用于小型风电机组,其转速可以根据风速的变化而调节。

2. 变频器:为了适应风速的变化,提高风能的利用效率,风电机组通常会配备变频器。

变频器可以调节发电机的转速,使其与电网频率保持同步。

当风速较低时,变频器可以提高发电机的转速,增加发电量;而当风速较高时,变频器则可以降低发电机的转速,保证发电机的安全运行。

3. 电网连接:风电机组通过电网连接实现电能的输送和分配。

在连接电网之前,需要经过变压器将输出的电能升压至电网的工作电压。

同时,为了确保风电机组与电网的稳定运行,还需要配备并网保护装置,并遵循相关的电网接入规范。

4. 控制系统:风电机组的控制系统起着监测、保护和调节的作用。

通过对风速、转速、电压等参数的实时监测,控制系统可以判断风电机组的运行状态,并在必要时采取保护措施,如停机、切除负荷等。

此外,控制系统还可以根据电网的需求,调节风电机组的输出功率。

5. 智能化技术:随着科技的不断进步,智能化技术在风电机组中得到了广泛应用。

智能化技术可以实现对风电机组的远程监控和管理,提高运行效率和可靠性。

通过传感器、数据通信等技术手段,可以实时获取风电机组的运行数据,并进行远程故障诊断和维护。

风力发电基础知识

风力发电基础知识

2国02测10诺-1德-28·技术部
• 控制系统结构图(WP4000)
2国03测10诺-1德-28·技术部
2国04测10诺-1德-28·技术部
2国05测10诺-1德-28·技术部
2国06测10诺-1德-28·技术部
• Cp值随着尖速比和桨距角的变化而变化
2国07测10诺-1德-28·技术部
23国02测10诺-1德-28·技术部
5
2 3
1
4
6
风力发电基础知识
2国0测10诺-1德-28·技术部
23国0测10诺-1德-28·技术部
2国40测10诺-1德-28·技术部
• 年平均风速(10分钟)分布曲线和风切变曲线
Webull分布曲线
风切变指数曲线
2国50测10诺-1德-28·技术部
• 按照叶轮放置方向 • 水平轴: 叶轮轴线呈水平方向布置 • 垂直轴: 叶轮轴线呈垂直方向布置 • 按照接入电网方式 • 根据风机正常运行时是否直接接入电网分为并网型和离网
2国0测10诺-1德-28·技术部
2国01测10诺-1德-28·技术部
– 控制系统主要部件 – 主控器(核心控制模块软硬件) – 变桨控制器(变桨控制模块、变桨电机伺服及电机, 蓄电池) – 变频器(双馈机型和同步机型) – 通讯模块(系统内部通讯、风场内通讯) – SCADA软件(用于远程监控) – 控制系统调试内容 – 静态检查(接线、参数整定) – 动态部件(变桨、主控逻辑、偏航等) – 联调(从切入到并并网)
型 • 离网型风机常与太阳能组成风光电互补动力源。 • 按叶轮布置位置 • 若叶轮布置在机舱前,称为上风向;否则称为下风向; • 传动链布置 • 根据有无齿轮箱分为非直驱和直驱机型 • 其他方式 • 如叶片数量、机型容量等级、安装地点(海上或陆上)

风力发电机组及变桨系统基础知识培训

风力发电机组及变桨系统基础知识培训

备注 F插
F插 DC200V
三、变桨系统常见部件-双馈
以LUST变桨系统为例(主要进行电气回路梳理): 轴控柜:
连接信号
轴控柜
部件
AC400V电源 A/B/C/N/PE
蓄电池供电
AC400V轴控柜供电 DC220V供电
1Q1—1T1—1A1 1Q2—1A1/2F5(电池刹车释放)
AC230V轴控 柜供电1/2/3
f2
np 60
n 30
2200 - 1500 30
23.33HZ
这个值就是我们超速模块上设定发电机超速频率设定值。
二、机组发电原理介绍-直驱
金风直驱永磁发电机组采 用水平轴、三叶片、上风 向、变速变桨调节、直接 驱动、外转子永磁同步发 电机。其中永磁体为钕铁 硼永磁(第三代稀土永磁)
变频恒频控制是在电机的定子电路中实现的(见上图),由于风速的不断变化,风 力机和发电机也随之变速旋转,产生频率变化的电功率。发电机发出的频率 变化的
XS1_A(1) XS1_A(2/3) XS1_A(4)
123X7(1) 123X7(2/3) 123X7(4)
XS6(B1) XS6(B2/B3)
XS6(B4)
三、变桨系统常见部件-直驱
以天成同创变桨系统为例(主要进行电气回路梳理): 变桨控制柜:
连接信号
变桨控制柜
部件
AC400V电源
过电压保护
F插
三、变桨系统常见部件-双馈
以LUST变桨系统为例(主要进行电气回路梳理): 中控柜:
连接信号
主控柜
部件
AC230VUPS 电源L/N
AC230V轴控柜供电1/2/3 AC230V2G1供电
2F1/2F2/2F3 2F4—2G1—2F6—L+B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档