浙教版七年级数学下册:2.3解二元一次方程组 作业设计
《2.4二元一次方程组的应用》作业设计方案-初中数学浙教版12七年级下册
《二元一次方程组的应用》作业设计方案(第一课时)一、作业目标本次作业的目的是为了加深学生对二元一次方程组应用题目的理解和应用,能独立构建、分析和解决与日常生活密切相关的实际问题。
通过本次作业,期望学生能掌握二元一次方程组的构建方法,并能正确运用方程组解决简单的实际问题。
二、作业内容1. 练习题:设计一系列不同难度的二元一次方程组应用题,包括购物问题、行程问题、工程问题等,让学生通过解答这些问题,熟悉方程组的构建和求解过程。
2. 探究题:设计一个与现实生活相关的实际问题,如“水电费计算问题”,要求学生通过调查和收集数据,建立二元一次方程组,并求解。
此部分旨在培养学生的观察能力和实际问题解决能力。
3. 合作题:选取一些具有一定挑战性的题目,让学生分小组进行讨论和解决。
题目可包括二元一次方程组的建立与解答,及后续的实际应用解释。
旨在提高学生的团队合作能力和沟通能力。
三、作业要求1. 练习题:学生需独立完成,并确保答案的准确性和完整性。
2. 探究题:学生需进行实地调查和收集数据,并确保数据的真实性和可靠性。
在建立方程组时,需明确每个未知数的含义和代表的实际意义。
3. 合作题:学生需分组进行讨论和解答,并在小组内进行汇报和交流。
每个小组需选出一名代表,将小组的解答过程和结果进行汇报。
4. 所有题目均需学生写出详细的解题步骤和思路,尤其是探究题和合作题,以利于教师了解学生的思考过程和解题方法。
四、作业评价1. 教师将根据学生的答案准确性、解题步骤的完整性以及解题思路的清晰度进行评价。
2. 对于探究题和合作题的解答过程和结果,教师将重点关注学生的实地调查、数据收集、问题分析和团队合作能力。
3. 对于表现优秀的学生和小组,教师将给予适当的表扬和鼓励,并作为学习榜样进行展示。
五、作业反馈1. 教师将对学生的作业进行详细批改,指出错误并给出修改建议。
2. 对于学生在解题过程中出现的共性问题,教师将在课堂上进行讲解和指导。
《2.2二元一次方程组》作业设计方案-初中数学浙教版12七年级下册
《二元一次方程组》作业设计方案(第一课时)一、作业目标通过本课时作业的练习,使学生掌握二元一次方程组的基本概念,理解方程组的解法及运用,并能通过实际问题抽象出二元一次方程组,提高学生的数学思维能力和解决问题的能力。
二、作业内容1. 基础练习(1)二元一次方程组的基本概念及表示方法。
(2)二元一次方程组的解法步骤,包括代入法和加减法。
(3)简单的二元一次方程组求解,包括实际问题的抽象与建模。
2. 拓展应用(1)通过实际问题,抽象出二元一次方程组,并求解。
(2)比较不同问题中二元一次方程组解的异同,深化理解。
(3)探索二元一次方程组在实际生活中的应用,如行程问题、工程问题等。
3. 创意挑战设计一个实际问题场景,通过构建二元一次方程组,解决实际生活中的问题。
要求问题具有实际意义,设计合理,解法具有创新性。
三、作业要求1. 基础练习部分要求学生对二元一次方程组的基本概念和基本解法有清晰的认识,并能熟练运用。
2. 拓展应用部分要求学生能将实际问题抽象为二元一次方程组,并运用所学知识进行求解,培养学生的数学应用能力。
3. 创意挑战部分要求学生发挥创新思维,设计出具有实际意义的问题,并构建出相应的二元一次方程组进行求解。
要求问题设计合理,解法具有创新性。
4. 作业要求学生在规定时间内完成,字迹工整,答案准确。
如有需要,可查阅相关资料或请教老师、同学。
四、作业评价1. 基础练习部分评价学生对方程组基本概念和基本解法的掌握情况。
2. 拓展应用部分评价学生将实际问题抽象为数学模型的能力以及运用所学知识解决问题的能力。
3. 创意挑战部分评价学生的创新思维和实际问题解决能力。
4. 作业评价采用教师评价和学生互评相结合的方式,注重过程与结果的结合,鼓励学生积极参与评价活动。
五、作业反馈1. 教师根据学生作业情况,及时给予反馈和指导,帮助学生发现问题并加以改正。
2. 学生根据教师和他人的评价意见,及时调整学习方法和策略,提高学习效果。
《2.2二元一次方程组》作业设计方案-初中数学浙教版12七年级下册
《二元一次方程组》作业设计方案(第一课时)一、作业目标本课时作业的主要目标是通过巩固基础知识点和技能练习,让学生能正确理解和运用二元一次方程组的概念、建立与解法。
学生通过自主探索与合作,增强解决问题的实践能力。
二、作业内容作业内容围绕《二元一次方程组》第一课时,主要包括以下几个方面:1. 概念回顾:学生需复习二元一次方程的定义及特点,如含有两个未知数且次数为一次的等式。
2. 方程组的建立:通过实际问题情境,学生需学会如何将实际问题抽象为二元一次方程组。
例如,物品的价格与数量关系等。
3. 基础练习:完成一系列关于二元一次方程组的简单练习题,包括方程组的建立和求解等。
4. 拓展应用:通过不同难度的题目,让学生学会将所学知识应用于实际问题中,如行程问题、工程问题等。
5. 思考题:设置一些具有挑战性的题目,供学有余力的学生自主探索,如含有多个方程的复杂方程组。
三、作业要求1. 学生在完成作业时,应注重理解题意,准确建立方程组。
2. 在求解过程中,要保证每一步的运算准确无误,结果合理。
3. 鼓励学生通过小组合作,共同探讨问题,互相帮助解决疑惑。
4. 作业应按时完成,字迹工整,步骤清晰。
5. 在解题过程中,应注重反思与总结,掌握解题方法与技巧。
四、作业评价教师根据学生完成的作业情况进行评价,评价内容包括:题目理解、方程组建立是否正确、解题步骤是否完整、计算是否准确等。
对优秀的学生给予表扬和鼓励,对出现问题的学生给予指导和帮助。
五、作业反馈1. 教师对学生的作业进行批改后,及时将批改结果反馈给学生。
2. 对于学生在作业中出现的错误,教师应进行详细讲解和指导,帮助学生找出错误原因并改正。
3. 对于学生的疑问和困惑,教师应及时给予解答和指导。
4. 针对学生在作业中表现出的优点和不足,教师应给予肯定和鼓励,帮助学生更好地掌握知识。
5. 作业反馈的结果应作为课堂讲解和复习的重要依据,帮助教师更好地调整教学策略和内容。
2.3.2 加减消元法 浙教版七年级数学下册同步练习(含解析)
2.3 解二元一次方程组第2课时 加减消元法基础过关全练知识点 加减消元法1.(2022浙江杭州余杭期中)观察下列二元一次方程组,最适合采用加减消元法求解的是 ( )A.{3x −2y =11y =16−2x B.{2x +3y =−15x −3y =15C.{x =−32y2x +y =2D.{2x −5=y 3x −2y =42.(2020浙江嘉兴中考)用加减消元法解二元一次方程组{x +3y =4①,2x −y =1②时,下列方法中无法消元的是 ( )A.①×2-②B.②×3+①C.①-②×3D.①×(-2)+②3.【一题多解】(2021天津中考)方程组{x +y =2,3x +y =4的解是( ) A.{x =0y =2 B.{x =1y =1 C.{x =2y =−2 D.{x =3y =−3 4.二元一次方程组{x +2y =2,x −4y =−16的解是 .5.(2022湖北随州中考)已知二元一次方程组{x +2y =4,2x +y =5,则x-y 的值为 .6.(2022浙江台州中考)解方程组:{x +2y =4,x +3y =5.7.【教材变式·P43T2变式】解方程组:(1){4a +b =15,3b −4a =13; (2){6(x +y)−4(2x −y)=16,2(x−y)3−x+y 4=−1.能力提升全练8.(2022浙江丽水青田二中月考,6,)用加减消元法解方程组{x +3y =5,2x −y =4时,要使方程组中同一个未知数的系数相等或互为相反数,必须适当变形.以下四种变形中正确的是 ( )(1){2x +6y =5,2x −y =4;(2){2x +6y =10,2x −y =4;(3){x +3y =5,6x −3y =4;(4){x +3y =5,6x −3y =12.A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)9.(2022浙江嘉兴期中,9,)解关于x,y 的方程组{(a +2)x +(3b +2)y =3①,(5b −1)x −(4a −b)y =7②,可以用①×3-②,消去未知数x,也可以用①+②×4消去未知数y,则a,b 的值分别为( )A.1,-2B.-1,-2C.1,2D.-1,2 10.(2022浙江宁波鄞州期中,8,)若|x+2y-3|+|x-y+3|=0,则x y 的值是( )A.-1B.1C.12 D.211.【一题多变】已知关于a,b 的方程组{a −2b =6,3a −b =m 中,a,b 互为相反数,则m 的值是 .[变式] (2022浙江衢州龙游月考,15,)定义运算“*”,规定x*y=ax 2+by,其中a,b 为常数,且3*2=6,4*1=7,则5*3= . 12.【新独家原创】已知关于m,n 的二元一次方程组{2 024m +2 023n =19,506m +505n =7,则n 2= . 13.【新独家原创】已知关于x,y 的二元一次方程组{3(x +2 023)−2(y −⊕)=1,3(x +2 023)+2(y −⊕)=5,则x= . 14.(2019山东枣庄中考,21,)对于实数a 、b,定义关于“⊗”的一种运算:a ⊗b=2a+b,例如3⊗4=2×3+4=10. (1)求4⊗(-3)的值;(2)若x ⊗(-y)=2,(2y)⊗x=-1,求x+y 的值.15.已知关于x 、y 的二元一次方程组{3x −5y =2a,2x +7y =a −18.(1)若x,y 的值互为相反数,求a 的值; (2)若2x+y+35=0,解这个方程组.素养探究全练16.【运算能力】(2022浙江金华兰溪二中月考)阅读下列解方程组的方法,然后回答问题.解方程组:{19x +18y =17,①17x +16y =15.②解:①-②,得2x+2y=2,∴x+y=1.③ ③×16,得16x+16y=16.④②-④,得x=-1,将x=-1代入③,得-1+y=1,解得y=2. ∴原方程组的解是{x =−1,y =2.(1)请你仿照上面的解法解方程组{2 021x +2 020y =2 019,①2 019x +2 018y =2 017;②(2)请大胆猜想关于x,y 的方程组{(a +2)x +(a +1)y =a,(b +2)x +(b +1)y =b (a≠b)的解,并验证你的猜想.答案全解全析基础过关全练1.B 选项B 的两个方程中y 的系数互为相反数,故最适合用加减消元法求解,故选B.2.C ①×2-②,得7y=7,能消元;②×3+①,得7x=7,能消元;①-②×3,得-5x+6y=1,不能消元;①×(-2)+②,得-7y=-7,能消元.故选C.3.B 解法一:{x +y =2①,3x +y =4②,②-①,得2x=2,解得x=1,把x=1代入①,得1+y=2,解得y=1,所以原方程组的解为{x =1,y =1.故选B.解法二:{x +y =2①,3x +y =4②,把4个选项分别代入方程①,知A 、B 均符合,排除C 、D,再把A 、B 代入方程②,知B 符合,故选B. 4.答案 {x =−4y =3解析 {x +2y =2①,x −4y =−16②,①-②,得6y=18,解得y=3,把y=3代入①,得x+6=2,解得x=-4,则原方程组的解是{x =−4,y =3.5.答案 1解析 {x +2y =4①,2x +y =5②,由②-①可得x-y=1.6.解析 {x +2y =4,①x +3y =5,②②-①得y=1,把y=1代入①得x+2=4,解得x=2, 则原方程组的解为{x =2,y =1.7.解析 (1){4a +b =15,①3b −4a =13,②①+②得4b=28,解得b=7, 把b=7代入①得4a+7=15, 解得a=2.所以方程组的解是{a =2,b =7.(2)方程组整理得{−x +5y =8,①5x −11y =−12,②①×5+②得14y=28,解得y=2, 把y=2代入①得-x+10=8,解得x=2. 所以方程组的解是{x =2,y =2.能力提升全练8.D {x +3y =5①,2x −y =4②,①×2,得2x+6y=10,∴{2x +6y =10,2x −y =4,故(2)正确;②×3,得6x-3y=12, ∴{x +3y =5,6x −3y =12,故(4)正确,故选D. 9.C 由①×3-②,消去未知数x,可知3(a+2)-(5b-1)=0;由①+②×4消去未知数y,可知3b+2-4(4a-b)=0.∴{3(a +2)−(5b −1)=0,3b +2−4(4a −b)=0,化简得{3a −5b =−7,16a −7b =2,解得{a =1,b =2,故选C.10.B ∵|x+2y-3|+|x-y+3|=0,∴x+2y-3=0且x-y+3=0,即{x +2y =3,①x −y =−3,②①-②,得3y=6,解得y=2,把y=2代入②,得x-2=-3,解得x=-1, ∴这个方程组的解为{x =−1,y =2.∴x y =(-1)2=1,故选B. 11.答案 8解析 因为a,b 互为相反数, 所以a+b=0,即b=-a,将b=-a 代入方程组得{3a =6,4a =m,解得{a =2,m =8.[变式] 答案 13解析 ∵x*y=ax 2+by,∴5*3=25a+3b, ∵3*2=6,4*1=7,∴{9a +2b =6,①16a +b =7,②①+②得25a+3b=13,∴5*3=25a+3b=13. 12.答案 9解析 {2 024m +2 023n =19,①506m +505n =7,②①-②×4得3n=-9,解得n=-3,∴n 2=(-3)2=9. 13.答案 -2 022解析 {3(x +2 023)−2(y −⊕)=1,①3(x +2 023)+2(y −⊕)=5,②①+②,得6(x+2 023)=6,解得x=-2 022.14.解析 (1)根据题意得4 (-3)=2×4+(-3)=8-3=5. (2)根据题意得{2x −y =2①,4y +x =−1②,①+②,得3x+3y=1,∴x+y=13.15.解析 (1){3x −5y =2a①,2x +7y =a −18②,②×2得4x+14y=2a-36③,③-①得x+19y=-36④,∵x,y 的值互为相反数,∴x=-y,将x=-y 代入④,得-y+19y=-36,解得y=-2,∴x=2,将{x =2,y =−2代入①,得3×2-5×(-2)=2a,解得a=8.(2){3x −5y =2a①,2x +7y =a −18②,②×2-①得x+19y=-36③,将2x+y+35=0与③联立得{x +19y =−36,2x +y +35=0,解得{x =−17,y =−1.素养探究全练16.解析 (1)①-②,得2x+2y=2, ∴x+y=1③, ①-③×2 020,得x=-1.把x=-1代入③,得-1+y=1,解得y=2. ∴原方程组的解为{x =−1,y =2.(2)猜想:方程组{(a +2)x +(a +1)y =a,(b +2)x +(b +1)y =b (a≠b)的解为{x =−1,y =2.验证:当x=-1,y=2时,(a+2)x+(a+1)y=-(a+2)+2(a+1)=a, (b+2)x+(b+1)y=-(b+2)+2(b+1)=b,∴{x =−1,y =2是方程组的解.。
[K12学习]2019年春七年级数学下册第2章二元一次方程2.3第1课时代入消元法练习新版浙教版
2.3 解二元一次方程组第1课时 代入消元法知识点1 代入消元法将方程组一个方程中的某个未知数用含有另一个未知数的代数式表示,并代入另一个方程,从而消去一个未知数,把解二元一次方程组转化为解一元一次方程.这种解方程组的方法称为代入消元法,简称代入法.1.用代入法解二元一次方程组⎩⎪⎨⎪⎧x =2y ,①2x +y =10,②可将①代入②,得一元一次方程:____________.知识点2 代入法解二元一次方程组用代入法解二元一次方程组的一般步骤:(1)从方程组中选取一个未知数系数比较简单的方程;(2)将选取的方程变形,变成用一个未知数表示另一个未知数的形式; (3)用这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未知数的值;(4)把这个未知数的值代入变形后的方程,求得另一个未知数的值; (5)写出方程组的解.2.用代入法解下列方程组:⎩⎪⎨⎪⎧2x +3y =16,x +4y =13.一 代入消元法解二元一次方程组教材例2变式题解方程组: ⎩⎪⎨⎪⎧x 2-y 3=7,2x +y =14.[归纳总结] (1)解二元一次方程组的基本思路是“消元”,也就是把二元一次方程组化为一元一次方程;(2)二元一次方程组的解是一对数值,需用大括号将这对数值上下排列;(3)当方程组中某一个未知数的系数的绝对值等于1时,用代入法解方程组比较简单;(4)不能把变形后方程代入变形前的原方程中,否则只能得到一个恒等式,应将变形后的方程代入另一个方程中求解.二 利用整体思想解二元一次方程组教材补充题 解方程组:⎩⎪⎨⎪⎧x +13=2y ,2(x +1)-y =11.[归纳总结] 有时用传统的代入法可能比较烦琐,此时可以考虑用整体代入法.运用整体代入法时,重点是观察,对比系数间的关系.三 方程组的解的综合应用教材补充题若关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =3,x -y =1与方程组⎩⎪⎨⎪⎧mx +ny =8,mx -ny =4的解相同,求m ,n 的值.[归纳总结] 综合性应用题的解题重点为转化思想,根据题意把题目转化成二元一次方程组.[反思] 解方程组:⎩⎪⎨⎪⎧2x -7y =8,①3x -8y =10.②解:由①,得x =8+7y2,③将③代入①,得8=8,所以原方程组无解. 这种解法是否正确?若不正确,请改正.一、选择题1.已知3x -11y =5,用含x 的代数式表示y ,下列正确的是( )A .y =5-3x 11B .y =3x -511 C .x =11y +53 D .x =-11y +532.用代入法解方程组⎩⎪⎨⎪⎧y =2x -3,①3x -2y =8②时,将方程①代入方程②中,所得的方程是( )A .3x +4x -3=0B .3x -4x -6=8C .3x -4x +6=8D .3x +2x -6=83.用代入法解方程组⎩⎪⎨⎪⎧3x +4y =2,①2x -y =5②时,使得代入后化简比较简单的变形是( )A .由①,得x =2-4y 3B .由①,得y =2-3x 4C .由②,得x =y +52D .由②,得y =2x -5 4.二元一次方程组⎩⎪⎨⎪⎧x +y =2,2x -y =1的解是( )A .⎩⎪⎨⎪⎧x =0,y =2B .⎩⎪⎨⎪⎧x =1,y =1 C .⎩⎪⎨⎪⎧x =-1,y =-1 D .⎩⎪⎨⎪⎧x =2,y =0 5.已知关于x ,y 的二元一次方程y =mx +n ,当x =2时,y =-1;当x =-1时,y =5,则( )A .m =2,n =3B .m =-2,n =3C .m =2,n =-3D .m =-2,n =-36.若⎩⎪⎨⎪⎧x =1,y =1是关于x ,y 的方程组⎩⎪⎨⎪⎧ax +by =1,bx -ay =-7的解,则(a +b)(a -b)的值为( ) A .-16 B .-7 C .7 D .167.解二元一次方程组⎩⎪⎨⎪⎧2017x +4y =11,2017x =19-2y ,得y =( )A .-4B .-43C .53D .5二、填空题8.用代入法解方程组⎩⎪⎨⎪⎧3x -y =8,2x +3y =5,选择消去未知数________比较方便.9.已知方程组⎩⎪⎨⎪⎧x =3y -5,y =2x +3,用代入法消去x ,可得方程______________(不用化简).10.若⎩⎪⎨⎪⎧x =2,y =1是关于x ,y 的方程组⎩⎪⎨⎪⎧kx -my =1,mx +ky =8的解,则k =________,m =________.11.若⎩⎪⎨⎪⎧x =1,y =-1和⎩⎪⎨⎪⎧x =2,y =3是关于x ,y 的方程y =kx +b 的两个解,则k =________,b =________. 三、解答题12.用代入法解下列方程组:(1)⎩⎪⎨⎪⎧x =y +1,2x +y =8;(2)2016·无锡⎩⎪⎨⎪⎧2x =3-y ,3x +2y =2.13.解方程组:⎩⎪⎨⎪⎧x -y =3,2y +3(x -y )=11.14.已知二元一次方程:①y=4-x ,②2x -y =2,③x -2y =1.请你从这三个方程中选择你喜欢的两个方程组成一个方程组,并求出这个方程组的解.15.已知关于x ,y 的方程组⎩⎪⎨⎪⎧4x -3y =2,kx +(k -1)y =6 的解中x 与y 的值相等,则k 的值为多少?16.已知方程组⎩⎪⎨⎪⎧2x +3y =7,5x -y =9的解是关于x ,y 的方程3x +my =8的一个解,求m 的值.17.已知(2a -b -4)2+|a +b +1|=0,求a ,b 的值.[创新题] 甲、乙两人同求方程ax -by =7的整数解,甲求出一组解为⎩⎪⎨⎪⎧x =3,y =4;而乙把ax-by =7中的7错看成1,求得一组解为⎩⎪⎨⎪⎧x =1,y =2,试求a ,b 的值.详解详析【预习效果检测】 1.[答案] 4y +y =10[解析] 将②式中的x 用2y 代替,可得2×2y +y =10,即为4y +y =10.2.[解析] 把方程组⎩⎪⎨⎪⎧2x +3y =16,①x +4y =13②的两个方程进行比较,发现把方程②变成用含y的代数式表示x 比较容易.解:⎩⎪⎨⎪⎧2x +3y =16,①x +4y =13,②由②,得x =13-4y ,③把③代入①,得2(13-4y)+3y =16, 即-5y =-10,所以y =2.把y =2代入③,得x =13-4×2=5.故原方程组的解为⎩⎪⎨⎪⎧x =5,y =2.【重难互动探究】例1 解:原方程组可整理为⎩⎪⎨⎪⎧3x -2y =42,①2x +y =14,②由②,得y =14-2x ,③把③代入①,得3x -2(14-2x)=42, 即7x =70,所以x =10.把x =10代入③,得y =-6.故原方程组的解为⎩⎪⎨⎪⎧x =10,y =-6.例2 [解析] 本题可用整体代入法求解.解:⎩⎪⎨⎪⎧x +13=2y ,①2(x +1)-y =11,②由①,得x +1=6y ,③ 把③整体代入②,得 12y -y =11,y =1.把y =1代入③,得x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =1.例3 [解析] 把方程组的解代入含m ,n 的方程组中即可求出m ,n 的值.解:方程组⎩⎪⎨⎪⎧x +y =3,x -y =1的解为⎩⎪⎨⎪⎧x =2,y =1. 把⎩⎪⎨⎪⎧x =2,y =1代入含m ,n 的方程组中, 得⎩⎪⎨⎪⎧2m +n =8,2m -n =4, 解得⎩⎪⎨⎪⎧m =3,n =2.【课堂总结反思】[反思] 这种解法不正确,改正如下:⎩⎪⎨⎪⎧2x -7y =8,①3x -8y =10,② 由①,得x =8+7y 2,③把③代入②,得3×8+7y 2-8y =10,解得y =-45.把y =-45代入③,得x =65.所以原方程组的解是⎩⎪⎨⎪⎧x =65,y =-45.【作业高效训练】[课堂达标]1.[解析] B 移项得11y =3x -5,两边同除以11,得y =3x -511.故选B .2.C 3.D 4.B5.[解析] B 由题意可得方程组⎩⎪⎨⎪⎧2m +n =-1,-m +n =5,解得⎩⎪⎨⎪⎧m =-2,n =3.6.[解析] C 因为⎩⎪⎨⎪⎧x =1,y =1是方程组⎩⎪⎨⎪⎧ax +by =1,bx -ay =-7的解,所以把⎩⎪⎨⎪⎧x =1,y =1代入方程组⎩⎪⎨⎪⎧ax +by =1,bx -ay =-7,得⎩⎪⎨⎪⎧a +b =1,b -a =-7.以下有两种解法:解法一:解方程组⎩⎪⎨⎪⎧a +b =1,b -a =-7,得⎩⎪⎨⎪⎧a =4,b =-3,则(a +b)(a -b)=(4-3)×(4+3)=7.解法二:方程组⎩⎪⎨⎪⎧a +b =1,b -a =-7可变形为⎩⎪⎨⎪⎧a +b =1,a -b =7,所以(a +b)(a -b)=1×7=7.7.[解析] A 将2017x =19-2y 整体代入2017x +4y =11,得19-2y +4y =11,解得y =-4.故选A .8.[答案] y[解析] 因为方程3x -y =8化为用含x 的代数式表示y 较为简捷,故应选择消去未知数y.9.[答案] y =2(3y -5)+3 10.[答案] 2 3[解析] 把⎩⎪⎨⎪⎧x =2,y =1代入方程组⎩⎪⎨⎪⎧kx -my =1,mx +ky =8中,得⎩⎪⎨⎪⎧2k -m =1,2m +k =8,解得⎩⎪⎨⎪⎧k =2,m =3.11.[答案] 4 -5[解析] 把⎩⎪⎨⎪⎧x =1,y =-1和⎩⎪⎨⎪⎧x =2,y =3分别代入y =kx +b 中,用代入法求解. 把两组值代入后的方程组是⎩⎪⎨⎪⎧-1=k +b ,①3=2k +b ,②由①,得b =-1-k ,③把③代入②,得3=2k -1-k. 所以k =4,b =-5.12.解:(1)⎩⎪⎨⎪⎧x =y +1,①2x +y =8,②把①代入②,得2(y +1)+y =8,解得y =2,把y =2代入①,得x =3.所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =2.(2)⎩⎪⎨⎪⎧2x =3-y ,①3x +2y =2,② 由①,得y =3-2x ,③把③代入②,得3x +2(3-2x)=2, 解得x =4,把x =4代入③,得y =-5.所以原方程组的解是⎩⎪⎨⎪⎧x =4,y =-5.13.[解析] 本题的两个方程中都含有x -y ,所以可采用整体代入法.解:⎩⎪⎨⎪⎧x -y =3,①2y +3(x -y )=11,②将①代入②,得2y +3×3=11,解得y =1, 将y =1代入①,得x =4.所以原方程的解为⎩⎪⎨⎪⎧x =4,y =1.14.[解析] 此题的答案不唯一,只要从三个方程中选两个方程组成二元一次方程组求解即可.解:若取方程①和②,可得⎩⎪⎨⎪⎧y =4-x ,2x -y =2,解得⎩⎪⎨⎪⎧x =2,y =2;同理,若取方程①和③,可得⎩⎪⎨⎪⎧y =4-x ,x -2y =1,解得⎩⎪⎨⎪⎧x =3,y =1;若取方程②和③,可得⎩⎪⎨⎪⎧2x -y =2,x -2y =1,解得⎩⎪⎨⎪⎧x =1,y =0.15.解:由x 与y 的值相等,得4x -3x =2,即x =y =2,所以2k +2(k -1)=6,解得k =2.16.[解析] 把方程组⎩⎪⎨⎪⎧2x +3y =7,5x -y =9的解代入方程3x +my =8,即可求得m 的值.解:解方程组⎩⎪⎨⎪⎧2x +3y =7,5x -y =9,得⎩⎪⎨⎪⎧x =2,y =1.把⎩⎪⎨⎪⎧x =2,y =1代入方程3x +my =8, 解得m =2.17.解:因为(2a -b -4)2是一个非负数,|a +b +1|也是一个非负数,两个非负数之和等于0,则每一个非负数都等于0,即⎩⎪⎨⎪⎧2a -b -4=0,a +b +1=0,解得⎩⎪⎨⎪⎧a =1,b =-2.[数学活动][解析] 由方程组的定义可知甲求得的解⎩⎪⎨⎪⎧x =3,y =4满足原方程,代入后,可得a ,b 之间的关系式3a -4b =7;乙求出的解不满足原方程,而满足方程ax -by =1,代入后可得a ,b 的另一个关系式a -2b =1,从而可求出a ,b 的值.解:把x =3,y =4代入ax -by =7中,得3a -4b =7,① 把x =1,y =2代入ax -by =1中, 得a -2b =1,② 由①②组成方程组⎩⎪⎨⎪⎧3a -4b =7,a -2b =1,解得⎩⎪⎨⎪⎧a =5,b =2.。
浙教版数学七年级下册课件2.3解二元一次方程组(2)
7.解下列方程组: x+2y=8,
(1)3x-2y=4. 解:x3+ x-2y2=y=8, 4.②① ①+②,得 4x=12,解得 x=3. 把 x=3 代入①,得 3+2y=8,解得 y=52.
x=3, ∴原方程组的解为y=52.
3x+12y=8, (2)2x-12y=2. 解:3x+12y=8,①
5.方程组x3- x+y=y=17,的解为__xy_==__12_,___.
【解析】
x-y=1,① 3x+y=7.②
①+②,得 4x=8,解得 x=2.
把 x=2 代入①,得 y=1.
∴原方程组的解为xy==12.,
6.已知 x,y 满足方程组x2+x+3yy==3-,1,则 x+y 的值为_____1____. 【解析】 解方程组x2+x+3yy==3-.②1,① ①×2-②,得 5y=-5,解得 y=-1. 把 y=-1 代入①,得 x+3×(-1)=-1,解得 x=2. ∴x+y=2-1=1.
11.解下列方程组: 3(x-1)=y+5,
(1)5(y-1)=3(x+5).
解:原方程组可化为35xy--3y=x=8,20.①② ①+②,得 4y=28,解得 y=7. 把 y=7 代入①,得 3x-7=8,解得 x=5. ∴原方程组的解为xy==75.,
23u+34v=12, (2)45u+56v=175.
∴原方程组的解为xy==21,,
2.用加减消元法解二元一次方程组x2+x-3yy==41,②①时,下列方法中,无法消元 的是( D ) A.①×2-② B.②×(-3)-① C.①×(-2)+② D.①-②×3
3.已知二元一次方程组23xx+ -57yy= =1-3, 7,①②用加减消元法解方程组,正确的是 (C )
浙教版七年级数学下册第二章《解二元一次方程组(第1课时)》优质课课件
①将方程组中一个方程变形,使得一个未知数能 用含有另一个未知数的代数式表示;
②用这个代数式代替另一个方程中相应的未知数, 得到一个一元一次方程,求得一个未知数的值;
③把这个未知数的值代入代数式(回代) ,求得另一 个未知数的值;
x y 35 2x 4y 94
这节课你有什么收获呢?
1.消元实质
消元
二元一次方程组
一元一次方程
代入法
2.代入法的一般步骤
即: 变形 代替 回代 写解
3.学会检验,能灵活运用适当方法解二元 一次方程组.
课题检测
• 一、选择题: 1.下列方程中,是二元一次 方程的是( ) A.3x- 2y=4z B.6xy+9=0 C.1x+4y=6 D .4x=24y
2x+10=200
①为什么可以代入?
x=95
②怎样代入?
∴y=x+10 =95+10
这1个苹果的质量 x加上10g的砝码恰好
=105
与这1个梨的质量y相
即 : 苹 果 和 梨 的 质 量 等,即x+10与y的大小
分别为95g和105g. 相等(等量代换).
代入消元法,简称代入法.
例1
解方程组
2
x
ax
b
x
by ay
11 2
的一组解是
x y
2
1
,
求a、b的值.
{ { x=2
x=1
3. 已知
和
是方程
y=5
y=10
ax+by=15的两个解,求a,b的值.
试一试
4、已知(2x+3y-4)2+∣x+3y-7∣=0, 则x= -3 ,y= — 130 .
2024年浙教版七年级数学下册全册教案
2024年浙教版七年级数学下册全册教案一、教学内容1. 第五章:数的乘方与开方1.1 平方与立方1.2 实数1.3 二次根式2. 第六章:一元一次方程2.1 方程的基本概念2.2 一元一次方程的解法2.3 方程的解与方程组的解3. 第七章:二元一次方程组3.1 二元一次方程组的基本概念3.2 解二元一次方程组3.3 二元一次方程组的应用二、教学目标1. 理解数的乘方与开方的概念,掌握实数的性质和二次根式的运算。
2. 学会解一元一次方程,理解方程的解与方程组的解的概念。
3. 掌握二元一次方程组的解法,并能解决实际问题。
三、教学难点与重点1. 教学难点:实数的性质,二元一次方程组的解法。
2. 教学重点:数的乘方与开方的运算,一元一次方程的解法,二元一次方程组的应用。
四、教具与学具准备1. 教具:多媒体教学设备,投影仪,黑板,粉笔。
2. 学具:数学教材,练习本,计算器。
五、教学过程1. 引入实践情景:通过生活中的实例,如面积、体积计算,引入数的乘方与开方的概念。
2. 新课讲解:介绍平方与立方的定义,进行例题讲解。
讲解实数的性质,进行例题讲解和随堂练习。
介绍二次根式,讲解其运算规则,进行例题讲解和随堂练习。
3. 一元一次方程:介绍方程的基本概念,讲解一元一次方程的解法,进行例题讲解和随堂练习。
讲解方程的解与方程组的解的概念,进行例题讲解。
4. 二元一次方程组:介绍二元一次方程组的基本概念,讲解解法,进行例题讲解和随堂练习。
通过实际问题,让学生运用所学知识解决,展示解题过程。
六、板书设计1. 数的乘方与开方:平方、立方、实数、二次根式。
2. 一元一次方程:方程基本概念、解法、方程的解与方程组的解。
3. 二元一次方程组:基本概念、解法、应用。
七、作业设计1. 作业题目:计算题:平方、立方、二次根式的运算。
解题题:一元一次方程和二元一次方程组的求解。
八、课后反思及拓展延伸1. 反思:关注学生对数的乘方与开方、一元一次方程、二元一次方程组知识点的掌握情况,及时进行教学调整。
《2.3解二元一次方程组》作业设计方案-初中数学浙教版12七年级下册
《解二元一次方程组》作业设计方案(第一课时)一、作业目标本作业旨在巩固学生对二元一次方程组基本概念的理解,掌握解二元一次方程组的基本方法,并能够通过实践运用解决实际问题。
通过作业的完成,提高学生的逻辑思维能力和数学运算能力。
二、作业内容1. 基础练习:学生需完成一组关于二元一次方程组的练习题,包括方程组的建立、消元法解方程等基本题型。
题目难度适中,旨在巩固学生基础知识和基本技能。
2. 实际应用:设置几道实际问题的解决题目,如商品价格与数量的计算、路程与时间的关系等,要求学生在理解题意的基础上,建立二元一次方程组并求解。
3. 探索与思考:布置一道有一定难度的探索性题目,引导学生自主探索解二元一次方程组的其他方法,并鼓励学生在完成后进行自我评价和反思。
三、作业要求1. 认真审题:学生在完成作业前,应认真阅读题目,理解题意,确保准确无误地建立二元一次方程组。
2. 规范解题:学生在解题过程中,应遵循数学运算的规范,步骤清晰,计算准确。
3. 独立思考:鼓励学生独立思考,自主解决问题。
在遇到困难时,可适当查阅资料或请教老师、同学,但不得直接抄袭答案。
4. 按时完成:学生需在规定时间内完成作业,保证作业的时效性。
四、作业评价1. 老师将对每份作业进行认真批改,对错误的地方进行标记并给出相应提示。
2. 评价标准包括解题的正确性、规范性、创新性以及独立思考的能力等方面。
对于表现优秀的学生,给予表扬和鼓励。
3. 对于普遍存在的问题,老师将在课堂上进行讲解和指导,帮助学生查漏补缺。
五、作业反馈1. 学生需根据老师的批改意见,认真订正错误部分,并重新提交作业。
2. 对于未能及时解决的问题,学生可向老师或同学请教,确保问题得到解决。
3. 老师将根据学生的作业情况,调整教学计划和教学方法,以提高教学效果。
4. 定期组织小组讨论或课堂展示活动,让学生分享解题经验和心得,提高学生的合作能力和表达能力。
通过以上作业设计方案,旨在通过多元化的作业内容和要求,全面提高学生的数学能力和解题能力。
《2.2二元一次方程组》作业设计方案-初中数学浙教版12七年级下册
《二元一次方程组》作业设计方案(第一课时)一、作业目标本课时作业的主要目标是让学生能够:1. 理解二元一次方程组的基本概念;2. 掌握建立和识别二元一次方程组的方法;3. 能够利用加减消元法或代入法解简单的二元一次方程组。
二、作业内容作业内容主要包括以下几个方面:1. 基础练习:要求学生自行编写或收集10道简单的二元一次方程组,并给出其解。
这一部分旨在巩固学生对二元一次方程组概念的理解和掌握其解法。
2. 实际应用:设计两到三个与实际生活相关的应用题,如商品价格问题、行程问题等,要求学生将实际问题转化为二元一次方程组并求解。
此部分旨在培养学生的应用意识和问题解决能力。
3. 拓展提高:设计几道难度稍大的二元一次方程组题目,要求学生使用加减消元法或代入法进行求解。
此部分旨在提高学生的解题技巧和思维能力。
三、作业要求作业要求如下:1. 按时完成:学生需在规定时间内完成作业,不得拖延。
2. 准确无误:答案需准确无误,计算过程需清晰明了。
3. 独立思考:鼓励学生独立思考,尽量自己解决问题,如遇到困难可与同学讨论或请教老师。
4. 规范书写:作业书写需规范,步骤要清晰,答案要准确。
四、作业评价作业评价将从以下几个方面进行:1. 正确性:答案是否准确无误。
2. 解题思路:解题思路是否清晰,是否符合题目要求。
3. 计算过程:计算过程是否规范,步骤是否清晰。
4. 独立性:是否独立完成作业,是否有抄袭现象。
评价结果将作为学生平时成绩的一部分,及时反馈给学生,以便学生了解自己的学习情况并及时调整学习策略。
五、作业反馈作业反馈将采取以下措施:1. 教师批改:教师将对每一份作业进行批改,指出学生的优点和不足。
2. 课堂讲解:挑选典型题目进行课堂讲解,帮助学生理解解题思路和方法。
3. 小组讨论:组织学生进行小组讨论,互相交流解题经验和技巧。
4. 个别辅导:对学习困难的学生进行个别辅导,帮助他们解决学习中的问题。
通过以上措施,及时反馈学生的学习情况,帮助学生更好地掌握《二元一次方程组》的知识点,提高他们的学习效果。
[K12学习]2019年春七年级数学下册第2章二元一次方程2.3第2课时加减消元法练习新版浙教版
2.3 解二元一次方程组第2课时 加减消元法知识点 加减消元法解二元一次方程组对于二元一次方程组,当两个方程的同一个未知数的系数是互为相反数或相同时,可以通过把两个方程的两边相加或相减来消元,转化为一元一次方程求解.这种解二元一次方程组的方法叫做加减消元法,简称加减法.用加减法解二元一次方程组的一般步骤:(1)将其中一个未知数的系数化成相同(或互为相反数);(2)通过相减(或相加)消去这个未知数,得到一个一元一次方程(注意:一般在消去一个字母时,考虑用另一个字母系数大的式子减系数小的式子);(3)解这个一元一次方程,得到一个未知数的值;(4)将求得的未知数的值代入原方程组中的任一个方程,求得另一个未知数的值. (5)写出方程组的解.解方程组:⎩⎪⎨⎪⎧3x +2y =21,3x -4y =3.一 加减消元法解二元一次方程组教材例2变式题用加减法解方程组:⎩⎪⎨⎪⎧2x +3y =12,3x +4y =17.[归纳总结] 运用加减消元法解方程组时,首先要观察两个方程中同一个未知数的系数,若系数相等,则将这两个方程相减;若系数互为相反数,则将这两个方程相加,就可以消去该未知数.若系数既不相等也不互为相反数,我们应该设法使用等式的性质,将同一个未知数的系数化为相等或互为相反数.注意:(1)把某个方程乘一个数时,方程两边的每一项都要和这个数相乘;(2)把两个方程相加减时,一定要把两个方程两边分别相加减.二 灵活选择适当的方法解二元一次方程组教材补充题用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧6s +3t =13,3s -t =5;(2)⎩⎪⎨⎪⎧5x -6y =17,4x +3y =28.[归纳总结] 二元一次方程组解法的选取主要取决于未知数的系数,当方程组中某未知数的系数较简单,如系数为1或-1时,常选用代入消元法;当方程组中某未知数的系数相等或互为相反数或成倍数关系时,常选用加减消元法.[反思] 请观察下面解方程组⎩⎪⎨⎪⎧4x +3y =6,2x -y =4的过程,并判断该过程是否正确,若不正确,请写出正确的解法.解:⎩⎪⎨⎪⎧4x +3y =6,①2x -y =4,②②×2,得4x -2y =8.③ ①-③,得y =-2.把y =-2代入②,得2x -(-2)=4,x =1.∴原方程组的解是⎩⎪⎨⎪⎧x =1,y =-2.一、选择题1.将方程-12x +y =1中含x 的项的系数化为3,则以下结果中,正确的是( )A .3x +y =1B .3x +6y =1C .3x -6y =1D .3x -6y =-62.方程组⎩⎪⎨⎪⎧x +y =5,①2x +y =10,②由②-①得到的正确的方程是( )A .3x =10B .x =5C .3x =-5D .x =-53.用加减法解方程组⎩⎪⎨⎪⎧2x +3y =3,3x -2y =11时,有下列四种变形,其中正确的是( )A .⎩⎪⎨⎪⎧4x +6y =3,9x -6y =11 B .⎩⎪⎨⎪⎧6x +3y =9,6x -2y =22C .⎩⎪⎨⎪⎧4x +6y =6,9x -6y =33D .⎩⎪⎨⎪⎧6x +9y =3,6x -4y =11 4.方程组⎩⎪⎨⎪⎧8x -3y =9,8x +4y =-5消去x 后,得到的方程是( )A .y =4B .-7y =14C .7y =14D .y =145.2015·河北利用消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6,②下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×26.方程组⎩⎪⎨⎪⎧x +y =1,2x -y =5的解为( )A .⎩⎪⎨⎪⎧x =-1,y =2B .⎩⎪⎨⎪⎧x =-2,y =3 C .⎩⎪⎨⎪⎧x =2,y =1 D .⎩⎪⎨⎪⎧x =2,y =-17.已知方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .38.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k 的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B .34 C .43D .-43二、填空题9.用加减法解二元一次方程组⎩⎪⎨⎪⎧11x -3y =4,①13x -6y =-5,②将方程①两边乘________,再把得到的方程与方程②相__________,可以消去未知数________.10.2016·温州方程组⎩⎪⎨⎪⎧x +2y =5,3x -2y =7的解是________.11.已知二元一次方程组⎩⎪⎨⎪⎧3x +4y =28,①4x +3y =7,②不解方程组,直接求x +y 与x -y 的值,则x+y =________,x -y =________.12.2015·咸宁如果实数x ,y 满足方程组⎩⎪⎨⎪⎧x -y =-12,2x +2y =5,那么x 2-y 2的值为________. 13.已知方程3x2m +5n +9+4y4m -2n -7=2是关于x ,y 的二元一次方程,则m =________,n=________.三、解答题14.用加减法解方程组:(1)⎩⎪⎨⎪⎧3x -y =2,3x +2y =11;(2)⎩⎪⎨⎪⎧x 2-y +13=1,3x +2y =10.15.用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧x +2y =1,3x -2y =11; (2)⎩⎪⎨⎪⎧5x +3y =6,5x -2y =-4;(3)⎩⎪⎨⎪⎧4x -3y =39,7x +4y =-15; (4)⎩⎪⎨⎪⎧2(2x +5y )=3.6,5(3x +2y )=8.16.如果二元一次方程组⎩⎪⎨⎪⎧x +y =a ,x -y =5a 的解是二元一次方程3x -5y -38=0的一个解,请你求出a 的值.17.已知关于x ,y 的方程组⎩⎪⎨⎪⎧2x +5y =-6,3x -5y =16和方程组⎩⎪⎨⎪⎧ax -by =-4,bx +ay =-8的解相同,求代数式3a +7b 的值.1.[技巧性题目] 在解关于x ,y 的方程组⎩⎪⎨⎪⎧ax +by =2,cx -7y =8时,一位同学把c 看错而得到⎩⎪⎨⎪⎧x =-2,y =2,正确的解应是⎩⎪⎨⎪⎧x =3,y =-2,求a ,b ,c 的值.2.[技巧性题目] 如果关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -ay =16,2x +by =15的解是⎩⎪⎨⎪⎧x =7,y =1,那么关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3(x +y )-a (x -y )=16,2(x +y )+b (x -y )=15的解是什么?详解详析【预习效果检测】[解析] 解方程组⎩⎪⎨⎪⎧3x +2y =21,①3x -4y =3,②两个方程中x 的系数相等,因此,可直接由①-②消去未知数x .解:⎩⎪⎨⎪⎧3x +2y =21,①3x -4y =3,②①-②,得6y =18,解得y =3. 把y =3代入方程②,得 3x -4×3=3,解得x =5.所以原方程组的解是⎩⎪⎨⎪⎧x =5,y =3.【重难互动探究】例1 [解析] 方程组中两个方程的同一未知数的系数均不成倍数关系,则需选定一个系数相对简单的未知数,将两个方程通过变形使其绝对值相等,再进行消元.解:⎩⎪⎨⎪⎧2x +3y =12,①3x +4y =17,②①×3,得6x +9y =36,③ ②×2,得6x +8y =34,④③-④,得y =2,把y =2代入①,得x =3.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =2.例2 [解析] 用适当的方法解方程组要求同学们能认真观察方程组中各项系数的特征,根据代入消元法和加减消元法的解题思路选择简捷的方法求解.故(1)可选择代入法求解,(2)可选择加减法求解.解:(1)⎩⎪⎨⎪⎧6s +3t =13,①3s -t =5,②由②,得t =3s -5,③把③代入①,得6s +3(3s -5)=13, 解得s =2815.把s =2815代入③,得t =35.所以原方程组的解为⎩⎪⎨⎪⎧s =2815,t =35.(2)⎩⎪⎨⎪⎧5x -6y =17,①4x +3y =28,② ②×2,得8x +6y =56,③ ①+③,得13x =73,所以x =7313.把x =7313代入②,得4×7313+3y =28,所以y =2413. 所以原方程组的解为⎩⎪⎨⎪⎧x =7313,y =2413.【课堂总结反思】[反思] 该过程不正确.正确的解法如下:⎩⎪⎨⎪⎧4x +3y =6,①2x -y =4,②②×2,得4x -2y =8.③ ①-③,得5y =-2,y =-25.把y =-25代入②,得2x -⎝ ⎛⎭⎪⎫-25=4,x =95. ∴原方程组的解是⎩⎪⎨⎪⎧x =95,y =-25.【作业高效训练】[课堂达标] 1.D 2.B3.[解析] C 根据等式的基本性质进行检验,发现正确答案为C . 4.B 5.D 6.D7.[解析] D 两式相加,可得3x +3y =9,故x +y =3.8.[解析] B 解方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k ,得⎩⎪⎨⎪⎧x =7k ,y =-2k. 把x ,y 的值代入二元一次方程2x +3y =6,得2×7k +3×(-2k)=6,解得k =34.9.[答案] 2 减 y[解析] ①×2,得22x -6y =8,③ ③-②可消去y.10.[答案] ⎩⎪⎨⎪⎧x =3,y =111.[答案] 5 -21[解析] ①+②,得7x +7y =35,即x +y =5.②-①,得x -y =-21. 12.[答案] -5413.[答案] 1 -2[解析] 根据二元一次方程的定义可知,x ,y 的次数都是1,所以得方程组:⎩⎪⎨⎪⎧2m +5n +9=1,4m -2n -7=1, 解方程组,得⎩⎪⎨⎪⎧m =1,n =-2.14.[解析] 方程组(2)较复杂,可先通过化简,将其变形为二元一次方程组的一般形式后再消元.解:(1)⎩⎪⎨⎪⎧3x -y =2,①3x +2y =11,②②-①,得3y =9,解得y =3.把y =3代入①,得3x -3=2,解得x =53.所以原方程组的解是⎩⎪⎨⎪⎧x =53,y =3.(2)原方程组可化简为⎩⎪⎨⎪⎧3x -2y =8,①3x +2y =10,②①+②,得6x =18,解得x =3.将x =3代入①,得 9-2y =8,解得y =12.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =12.15.[解析] 认真观察每个方程组,发现方程组(1)用加减法求解比较简便;(2)未知数x的系数相同,可通过相减消去“x”,用加减法比较简便;(3)是一个较复杂的方程组,用加减法求解较合适;(4)需先将此方程组化简,再确定求解方法.解:(1)⎩⎪⎨⎪⎧x +2y =1,①3x -2y =11,②①+②,得4x =12,解得x =3.把x =3代入①,得3+2y =1, 解得y =-1.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-1.(2)⎩⎪⎨⎪⎧5x +3y =6,①5x -2y =-4,② ①-②,得5y =10,解得y =2. 把y =2代入①,得5x +3×2=6, 解得x =0.所以原方程组的解是⎩⎪⎨⎪⎧x =0,y =2.(3)⎩⎪⎨⎪⎧4x -3y =39,①7x +4y =-15,② ①×4,得16x -12y =156,③ ②×3,得21x +12y =-45,④ ③+④,得37x =111, 解得x =3.把x =3代入①,得4×3-3y =39, 解得y =-9.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-9.(4)将原方程组化简为⎩⎪⎨⎪⎧4x +10y =3.6,①15x +10y =8,②②-①,得11x =4.4,解得x =0.4.把x =0.4代入①,得1.6+10y =3.6, 解得y =0.2.所以原方程组的解为⎩⎪⎨⎪⎧x =0.4,y =0.2.16.[解析] 用方程组中的a 分别表示x ,y ,再把x ,y 的值代入3x -5y -38=0,即可求得a 的值.解:解方程组⎩⎪⎨⎪⎧x +y =a ,x -y =5a ,得⎩⎪⎨⎪⎧x =3a ,y =-2a. 把⎩⎪⎨⎪⎧x =3a ,y =-2a代入方程3x -5y -38=0, 得3×3a-5×(-2a)-38=0, 解得a =2.17.解:⎩⎪⎨⎪⎧2x +5y =-6,①3x -5y =16,②①+②,得5x =10,x =2.把x =2代入①,得2×2+5y =-6,y =-2.将⎩⎪⎨⎪⎧x =2,y =-2代入方程组⎩⎪⎨⎪⎧ax -by =-4,bx +ay =-8,得 ⎩⎪⎨⎪⎧2a +2b =-4,2b -2a =-8, 解这个方程组,得⎩⎪⎨⎪⎧a =1,b =-3,所以3a +7b =3×1+7×(-3)=-18.[数学活动]小初高学习+K12小初高学习+K12 1.[解析] 根据题意,把⎩⎪⎨⎪⎧x =-2,y =2代入方程ax +by =2,得关于a ,b 的一个方程,再把⎩⎪⎨⎪⎧x =3,y =-2代入方程ax +by =2,得关于a ,b 的另一个方程,组成方程组,求得a ,b 的值.把⎩⎪⎨⎪⎧x =3,y =-2代入方程cx -7y =8,即可求得c 的值. 解:把⎩⎪⎨⎪⎧x =-2,y =2,⎩⎪⎨⎪⎧x =3,y =-2分别代入方程ax +by =2, 得⎩⎪⎨⎪⎧-2a +2b =2,3a -2b =2, 解得⎩⎪⎨⎪⎧a =4,b =5. 把⎩⎪⎨⎪⎧x =3,y =-2代入方程cx -7y =8, 得3c +14=8,解得c =-2.即a =4,b =5,c =-2.2.解:设x +y =m ,x -y =n ,所求方程组可变形为⎩⎪⎨⎪⎧3m -an =16,2m +bn =15.由题意,可得该方程组的解为⎩⎪⎨⎪⎧m =7,n =1,由此可得到关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =7,x -y =1,解得⎩⎪⎨⎪⎧x =4,y =3.故所求方程组的解是⎩⎪⎨⎪⎧x =4,y =3.。
初中数学二元一次方程教案(浙教版七年级)
第4 . 1节二元一次方程一、背景介绍及教学资料《二元一次方程》是浙教版义务教育课程标准实验教科书数学七年级下册第四章的第一节概念课。
本节课是在学生学习了一元一次方程及其应用后而学习的内容,它是学习二元一次方程组和其他方程组的基础。
并且是同学们进一步学习数学其他内容和科学等其他学科的必备基础。
二、教学设计1课时【教学内容分析】本节课提出了二元一次方程和二元一次方程的解的概念,学习把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,是一节起始课。
二元一次方程的解的不确定性和相关性比较抽象,是一个难点。
这节课是二元一次方程组及其解法的基础。
【教学目标】1、了解二元一次方程的概念,了解二元一次方程的解的含义。
2、会检验一对数是不是二元一次方程的解,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。
3、通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型。
同时培养学生探究、创新的精神和合作交流的意识。
【教学重点、难点】重点是二元一次方程的意义和二元一次方程的解的意义。
难点是二元一次方程的解的不确定性和相关性。
即二元一次方程的解有无数个,但不是任意的两个数是它的解。
【教学准备】几张漂亮的邮票,多媒体、实物投影仪等教学环节教师活动学生活动设计意图创设情境提出问题同学们喜欢邮票吗?邮票既是一种邮资凭证,有是一种很有价值的收藏品,方寸之间记录着祖国的历史足迹,展示美丽山河和多彩的风情,给人以丰富的知识和美的享受,陶冶人们的精神世界。
我们就来看看一个和邮票有关的问题合作学习(1)小红到邮局寄挂号信,需要邮资3元8角,小红有票额为6角和8角的邮票若干张,欣赏美丽的邮票合作探讨,产生认知上的冲突。
用美丽的邮票引出数学问题,吸引学生的注意力,进一步加强学生的兴趣。
同时问题(1)不能用一元一次方程解决使学生产生认知上的冲302510=⨯+⨯==左边右边,所以x=0,y=5就是方程3210x y +=的一个解,记做05x y =⎧⎨=⎩。
2.3解二元一次方程组 课件2(数学浙教版七年级下册)
(4)已知
2007x 2008y 2006 x 2007y 2009 2008
求(x-y)4-(x+y)2008的值。
zxxkw
2u 5v 12 4uபைடு நூலகம்3v 2
思考:在用加减消元法解二元一次方程组时, 如何根据系数特征选择相加或相减?
(1)
3 x 2 y 11 2 x 3 y 16
(2)
x y 1 3 7 2 x y 1 3 7 3
(3).已知2v+t=3v-2t=3,求v 、t的值。
2(1)已知方程组
,把两个方程的左右两边分别___________,
就可消去未知数_______,得一元一次方程:___________________________。
归纳:通过将方程组中的两个方程 ,消去其中的 ,转
化为一元一次方程,这种解二元一次方程组的方法叫做加减消元法(简称加减法)
(3)解方程组:
1.
1) x y 2.......( 观察方程组,它的系数有什么特点?你会用什么方法消元? 2) x y 5.......(
解:把方程(1),(2)的左右两边分别相加, 得___________,(依据:____________) 解得x=__________.把解得x的值代入(1),得____________ 解得y=_______________.所以原方程组的解是_________________. 思考:把上述过程中(1)+(2)改为(1)-(2)。 结果将如何?
浙教版数学七年级下册2.1《二元一次方程》(第1课时)教学设计
浙教版数学七年级下册2.1《二元一次方程》(第1课时)教学设计一. 教材分析《二元一次方程》是浙教版数学七年级下册第2.1节的内容,主要介绍二元一次方程的定义、性质及解法。
这部分内容是学生学习方程的重要组成部分,为后续学习更复杂的方程打下基础。
教材通过实例引入二元一次方程,使学生能够联系实际问题,理解方程的概念。
二. 学情分析七年级的学生已经学习了初一数学的基本知识,对一元一次方程有一定的理解。
但面对二元一次方程,他们可能会有困惑。
因此,在教学过程中,要关注学生的学习心理,引导学生逐步理解二元一次方程的概念和性质。
三. 教学目标1.理解二元一次方程的定义,掌握二元一次方程的解法。
2.能够将实际问题转化为二元一次方程,并求解。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.重难点:二元一次方程的概念和性质,二元一次方程的解法。
2.难点:将实际问题转化为二元一次方程,求解二元一次方程。
五. 教学方法1.情境教学法:通过实例引入二元一次方程,让学生在实际问题中感受方程的作用。
2.启发式教学法:引导学生主动思考,探索二元一次方程的解法。
3.合作学习法:分组讨论,培养学生的团队协作能力。
六. 教学准备1.教学PPT:制作精美的PPT,展示二元一次方程的定义、性质和解法。
2.实例:准备一些实际问题,用于引入和巩固二元一次方程。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示一个实际问题:某商店同时销售A、B两种商品,A 商品每件10元,B商品每件15元。
如果A、B商品的销售总额为240元,销售A商品的数量是B商品的2倍,请列出销售数量的方程。
让学生思考如何解决这个问题,引出二元一次方程的概念。
2.呈现(10分钟)讲解二元一次方程的定义,示例说明二元一次方程的形式。
同时,引导学生回顾一元一次方程的知识,对比二元一次方程的特点。
3.操练(10分钟)让学生分组讨论,尝试解一些简单的二元一次方程。
新浙教版2.3解二元一次方程组(1)
{
1 2 x y 2 3 2 x y 7
⑵
{
3 x 4( x y ) 2 2 x 3 y 1
畅所欲言
请你谈谈这节课有什么 收获?
大家都来比一比
1、已知3 a b 与 3a b 是同类项,则x=__ ,y=__ 2、已知
y 4
3 x 1
2 x 2 1 2 y
所以原方程组的解为
y=-6
解方程组的基本思想是“消元”,也就是 把
解二元一次方程组转化为解一元一次方程。上
面这种消元法是“代入“,这种解方程组的方 法 称为代入消元法,简称代入法。代入法是解二
注意:当代入的是“多项式”时, 元一次方程组常用的方法之一。
要添加小括号。
解方程组
2 x y 37 x y 1
用代入法解二元一次方程组的一般步骤: 1、将方程组中的一个方程变形,使得一个未 知数能用含有另一个未知数的代数式表示。 2、用这个代数式代替另一个方程中相应的未 知数,得到一个一元一次方程,求得一个未 知数的值。 3、把这个未知数的值代入代数式,求得另一 个未知数的值。 4、写出方程组的解。
我也来试一试
{
x 2 y 5
和
{
x 1 y 10
是方程ax+by=15的两个解,求a,b的值。
3、已知方程组
{
axby 4 bxay 6 与方程组
{
3 x y 5 4 x 7 y 1 的解相同,求a+b的值。
小结:
本节课学习了哪些知识? 如何用代入消元法解二元一次方程?
8 7y 2
① ②
解:由①,得 2x=8+7y 即 x= 把③代入②,得 8 7y 3×〔 2 〕-8y-10=0
春七年级数学下册 第2章 二元一次方程 2.3 第2课时 加减消元法练习 (新版)浙教版.doc
2.3 解二元一次方程组第2课时 加减消元法知识点 加减消元法解二元一次方程组对于二元一次方程组,当两个方程的同一个未知数的系数是互为相反数或相同时,可以通过把两个方程的两边相加或相减来消元,转化为一元一次方程求解.这种解二元一次方程组的方法叫做加减消元法,简称加减法.用加减法解二元一次方程组的一般步骤:(1)将其中一个未知数的系数化成相同(或互为相反数);(2)通过相减(或相加)消去这个未知数,得到一个一元一次方程(注意:一般在消去一个字母时,考虑用另一个字母系数大的式子减系数小的式子);(3)解这个一元一次方程,得到一个未知数的值;(4)将求得的未知数的值代入原方程组中的任一个方程,求得另一个未知数的值. (5)写出方程组的解.解方程组:⎩⎪⎨⎪⎧3x +2y =21,3x -4y =3.一 加减消元法解二元一次方程组教材例2变式题用加减法解方程组:⎩⎪⎨⎪⎧2x +3y =12,3x +4y =17.[归纳总结] 运用加减消元法解方程组时,首先要观察两个方程中同一个未知数的系数,若系数相等,则将这两个方程相减;若系数互为相反数,则将这两个方程相加,就可以消去该未知数.若系数既不相等也不互为相反数,我们应该设法使用等式的性质,将同一个未知数的系数化为相等或互为相反数.注意:(1)把某个方程乘一个数时,方程两边的每一项都要和这个数相乘;(2)把两个方程相加减时,一定要把两个方程两边分别相加减.二 灵活选择适当的方法解二元一次方程组教材补充题用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧6s +3t =13,3s -t =5;(2)⎩⎪⎨⎪⎧5x -6y =17,4x +3y =28.[归纳总结] 二元一次方程组解法的选取主要取决于未知数的系数,当方程组中某未知数的系数较简单,如系数为1或-1时,常选用代入消元法;当方程组中某未知数的系数相等或互为相反数或成倍数关系时,常选用加减消元法.[反思] 请观察下面解方程组⎩⎪⎨⎪⎧4x +3y =6,2x -y =4的过程,并判断该过程是否正确,若不正确,请写出正确的解法.解:⎩⎪⎨⎪⎧4x +3y =6,①2x -y =4,②②×2,得4x -2y =8.③ ①-③,得y =-2.把y =-2代入②,得2x -(-2)=4,x =1.∴原方程组的解是⎩⎪⎨⎪⎧x =1,y =-2.一、选择题1.将方程-12x +y =1中含x 的项的系数化为3,则以下结果中,正确的是( )A .3x +y =1B .3x +6y =1C .3x -6y =1D .3x -6y =-62.方程组⎩⎪⎨⎪⎧x +y =5,①2x +y =10,②由②-①得到的正确的方程是( )A .3x =10B .x =5C .3x =-5D .x =-53.用加减法解方程组⎩⎪⎨⎪⎧2x +3y =3,3x -2y =11时,有下列四种变形,其中正确的是( )A .⎩⎪⎨⎪⎧4x +6y =3,9x -6y =11 B .⎩⎪⎨⎪⎧6x +3y =9,6x -2y =22C .⎩⎪⎨⎪⎧4x +6y =6,9x -6y =33D .⎩⎪⎨⎪⎧6x +9y =3,6x -4y =11 4.方程组⎩⎪⎨⎪⎧8x -3y =9,8x +4y =-5消去x 后,得到的方程是( )A .y =4B .-7y =14C .7y =14D .y =145.2015·河北利用消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6,②下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×26.方程组⎩⎪⎨⎪⎧x +y =1,2x -y =5的解为( )A .⎩⎪⎨⎪⎧x =-1,y =2B .⎩⎪⎨⎪⎧x =-2,y =3C .⎩⎪⎨⎪⎧x =2,y =1D .⎩⎪⎨⎪⎧x =2,y =-17.已知方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .38.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k 的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B .34 C .43D .-43二、填空题9.用加减法解二元一次方程组⎩⎪⎨⎪⎧11x -3y =4,①13x -6y =-5,②将方程①两边乘________,再把得到的方程与方程②相__________,可以消去未知数________.10.2016·温州方程组⎩⎪⎨⎪⎧x +2y =5,3x -2y =7的解是________.11.已知二元一次方程组⎩⎪⎨⎪⎧3x +4y =28,①4x +3y =7,②不解方程组,直接求x +y 与x -y 的值,则x+y =________,x -y =________.12.2015·咸宁如果实数x ,y 满足方程组⎩⎪⎨⎪⎧x -y =-12,2x +2y =5,那么x 2-y 2的值为________. 13.已知方程3x2m +5n +9+4y4m -2n -7=2是关于x ,y 的二元一次方程,则m =________,n=________.三、解答题14.用加减法解方程组:(1)⎩⎪⎨⎪⎧3x -y =2,3x +2y =11;(2)⎩⎪⎨⎪⎧x 2-y +13=1,3x +2y =10.15.用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧x +2y =1,3x -2y =11; (2)⎩⎪⎨⎪⎧5x +3y =6,5x -2y =-4;(3)⎩⎪⎨⎪⎧4x -3y =39,7x +4y =-15; (4)⎩⎪⎨⎪⎧2(2x +5y )=3.6,5(3x +2y )=8.16.如果二元一次方程组⎩⎪⎨⎪⎧x +y =a ,x -y =5a 的解是二元一次方程3x -5y -38=0的一个解,请你求出a 的值.17.已知关于x ,y 的方程组⎩⎪⎨⎪⎧2x +5y =-6,3x -5y =16和方程组⎩⎪⎨⎪⎧ax -by =-4,bx +ay =-8的解相同,求代数式3a +7b 的值.1.[技巧性题目] 在解关于x ,y 的方程组⎩⎪⎨⎪⎧ax +by =2,cx -7y =8时,一位同学把c 看错而得到⎩⎪⎨⎪⎧x =-2,y =2,正确的解应是⎩⎪⎨⎪⎧x =3,y =-2,求a ,b ,c 的值.2.[技巧性题目] 如果关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -ay =16,2x +by =15的解是⎩⎪⎨⎪⎧x =7,y =1,那么关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3(x +y )-a (x -y )=16,2(x +y )+b (x -y )=15的解是什么?详解详析【预习效果检测】[解析] 解方程组⎩⎪⎨⎪⎧3x +2y =21,①3x -4y =3,②两个方程中x 的系数相等,因此,可直接由①-②消去未知数x .解:⎩⎪⎨⎪⎧3x +2y =21,①3x -4y =3,②①-②,得6y =18,解得y =3. 把y =3代入方程②,得 3x -4×3=3,解得x =5.所以原方程组的解是⎩⎪⎨⎪⎧x =5,y =3.【重难互动探究】例1 [解析] 方程组中两个方程的同一未知数的系数均不成倍数关系,则需选定一个系数相对简单的未知数,将两个方程通过变形使其绝对值相等,再进行消元.解:⎩⎪⎨⎪⎧2x +3y =12,①3x +4y =17,②①×3,得6x +9y =36,③ ②×2,得6x +8y =34,④③-④,得y =2,把y =2代入①,得x =3.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =2.例2 [解析] 用适当的方法解方程组要求同学们能认真观察方程组中各项系数的特征,根据代入消元法和加减消元法的解题思路选择简捷的方法求解.故(1)可选择代入法求解,(2)可选择加减法求解.解:(1)⎩⎪⎨⎪⎧6s +3t =13,①3s -t =5,②由②,得t =3s -5,③把③代入①,得6s +3(3s -5)=13, 解得s =2815.把s =2815代入③,得t =35.所以原方程组的解为⎩⎪⎨⎪⎧s =2815,t =35.(2)⎩⎪⎨⎪⎧5x -6y =17,①4x +3y =28,② ②×2,得8x +6y =56,③ ①+③,得13x =73,所以x =7313.把x =7313代入②,得4×7313+3y =28,所以y =2413. 所以原方程组的解为⎩⎪⎨⎪⎧x =7313,y =2413.【课堂总结反思】[反思] 该过程不正确.正确的解法如下:⎩⎪⎨⎪⎧4x +3y =6,①2x -y =4,② ②×2,得4x -2y =8.③ ①-③,得5y =-2,y =-25.把y =-25代入②,得2x -⎝ ⎛⎭⎪⎫-25=4,x =95. ∴原方程组的解是⎩⎪⎨⎪⎧x =95,y =-25.【作业高效训练】[课堂达标] 1.D 2.B3.[解析] C 根据等式的基本性质进行检验,发现正确答案为C . 4.B 5.D 6.D7.[解析] D 两式相加,可得3x +3y =9,故x +y =3.8.[解析] B 解方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k ,得⎩⎪⎨⎪⎧x =7k ,y =-2k.把x ,y 的值代入二元一次方程2x +3y =6,得2×7k +3×(-2k)=6,解得k =34.9.[答案] 2 减 y[解析] ①×2,得22x -6y =8,③ ③-②可消去y.10.[答案] ⎩⎪⎨⎪⎧x =3,y =111.[答案] 5 -21[解析] ①+②,得7x +7y =35,即x +y =5.②-①,得x -y =-21. 12.[答案] -5413.[答案] 1 -2[解析] 根据二元一次方程的定义可知,x ,y 的次数都是1,所以得方程组:⎩⎪⎨⎪⎧2m +5n +9=1,4m -2n -7=1, 解方程组,得⎩⎪⎨⎪⎧m =1,n =-2.14.[解析] 方程组(2)较复杂,可先通过化简,将其变形为二元一次方程组的一般形式后再消元.解:(1)⎩⎪⎨⎪⎧3x -y =2,①3x +2y =11,②②-①,得3y =9,解得y =3.把y =3代入①,得3x -3=2,解得x =53.所以原方程组的解是⎩⎪⎨⎪⎧x =53,y =3.(2)原方程组可化简为⎩⎪⎨⎪⎧3x -2y =8,①3x +2y =10,②①+②,得6x =18,解得x =3.将x =3代入①,得 9-2y =8,解得y =12.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =12.15.[解析] 认真观察每个方程组,发现方程组(1)用加减法求解比较简便;(2)未知数x的系数相同,可通过相减消去“x”,用加减法比较简便;(3)是一个较复杂的方程组,用加减法求解较合适;(4)需先将此方程组化简,再确定求解方法.解:(1)⎩⎪⎨⎪⎧x +2y =1,①3x -2y =11,②①+②,得4x =12,解得x =3.把x =3代入①,得3+2y =1, 解得y =-1.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-1.(2)⎩⎪⎨⎪⎧5x +3y =6,①5x -2y =-4,② ①-②,得5y =10,解得y =2. 把y =2代入①,得5x +3×2=6, 解得x =0.所以原方程组的解是⎩⎪⎨⎪⎧x =0,y =2.(3)⎩⎪⎨⎪⎧4x -3y =39,①7x +4y =-15,② ①×4,得16x -12y =156,③ ②×3,得21x +12y =-45,④ ③+④,得37x =111, 解得x =3.把x =3代入①,得4×3-3y =39, 解得y =-9.所以原方程组的解是⎩⎪⎨⎪⎧x =3,y =-9.(4)将原方程组化简为⎩⎪⎨⎪⎧4x +10y =3.6,①15x +10y =8,②②-①,得11x =4.4,解得x =0.4.把x =0.4代入①,得1.6+10y =3.6, 解得y =0.2.所以原方程组的解为⎩⎪⎨⎪⎧x =0.4,y =0.2.16.[解析] 用方程组中的a 分别表示x ,y ,再把x ,y 的值代入3x -5y -38=0,即可求得a 的值.解:解方程组⎩⎪⎨⎪⎧x +y =a ,x -y =5a ,得⎩⎪⎨⎪⎧x =3a ,y =-2a. 把⎩⎪⎨⎪⎧x =3a ,y =-2a 代入方程3x -5y -38=0, 得3×3a-5×(-2a)-38=0, 解得a =2.17.解:⎩⎪⎨⎪⎧2x +5y =-6,①3x -5y =16,②①+②,得5x =10,x =2.把x =2代入①,得2×2+5y =-6,y =-2.将⎩⎪⎨⎪⎧x =2,y =-2代入方程组⎩⎪⎨⎪⎧ax -by =-4,bx +ay =-8,得 ⎩⎪⎨⎪⎧2a +2b =-4,2b -2a =-8, 解这个方程组,得⎩⎪⎨⎪⎧a =1,b =-3,所以3a +7b =3×1+7×(-3)=-18.[数学活动]1.[解析] 根据题意,把⎩⎪⎨⎪⎧x =-2,y =2代入方程ax +by =2,得关于a ,b 的一个方程,再把⎩⎪⎨⎪⎧x =3,y =-2代入方程ax +by =2,得关于a ,b 的另一个方程,组成方程组,求得a ,b 的值.把⎩⎪⎨⎪⎧x =3,y =-2代入方程cx -7y =8,即可求得c 的值. 解:把⎩⎪⎨⎪⎧x =-2,y =2,⎩⎪⎨⎪⎧x =3,y =-2分别代入方程ax +by =2, 得⎩⎪⎨⎪⎧-2a +2b =2,3a -2b =2, 解得⎩⎪⎨⎪⎧a =4,b =5. 把⎩⎪⎨⎪⎧x =3,y =-2代入方程cx -7y =8, 得3c +14=8,解得c =-2.即a =4,b =5,c =-2.2.解:设x +y =m ,x -y =n ,所求方程组可变形为⎩⎪⎨⎪⎧3m -an =16,2m +bn =15.由题意,可得该方程组的解为⎩⎪⎨⎪⎧m =7,n =1,由此可得到关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =7,x -y =1,解得⎩⎪⎨⎪⎧x =4,y =3.故所求方程组的解是⎩⎪⎨⎪⎧x =4,y =3.。
《2.3解二元一次方程组》作业设计方案-初中数学浙教版12七年级下册
《解二元一次方程组》作业设计方案(第一课时)一、作业目标1. 掌握二元一次方程组的组成与概念。
2. 学会通过代入法或加减法解二元一次方程组。
3. 培养学生对数学问题的逻辑思维能力及解决实际问题的能力。
二、作业内容作业内容主要围绕《解二元一次方程组》第一课时的教学重点和难点进行设计,具体包括:1. 理论学习:学生需复习二元一次方程组的基本概念,理解其结构特点,掌握方程组的解法原理。
2. 基础练习:布置一系列基础题目,如通过代入法解二元一次方程组,让学生熟悉并巩固解法步骤。
3. 提升训练:设计一些稍具难度的题目,如通过加减消元法解稍复杂的二元一次方程组,提高学生灵活运用知识的能力。
4. 实际问题应用:设置几个与日常生活相关的实际问题,要求学生将二元一次方程组的知识应用于实际问题的解决中,如商品价格与数量的计算问题等。
5. 自我检测:设计一份自我检测题,包括选择题、填空题和解答题,以便学生自我评估学习效果。
三、作业要求1. 学生需独立完成作业,不得抄袭他人答案。
2. 解题过程需清晰明了,每一步骤都应有明确的解释或理由。
3. 实际应用题需有详细的解题思路和计算过程。
4. 自我检测题需按时完成,并反思自己的错误及原因。
四、作业评价1. 教师根据学生完成的作业情况进行评分,并给出详细的评语和建议。
2. 对学生的解题思路、计算过程及答案的准确性进行综合评价。
3. 对学生的进步和不足进行记录,以便后续教学时进行有针对性的辅导。
五、作业反馈1. 教师将作业中的共性问题进行汇总,并在课堂上进行讲解。
2. 对学生的个别问题,教师可通过面谈、微信、邮件等方式进行个别辅导。
3. 鼓励学生之间互相交流学习,分享解题经验和技巧。
4. 定期组织小组讨论或班级分享会,让学生展示自己的学习成果和心得体会。
通过以上作业设计方案,旨在通过系统性的作业内容,让学生在掌握二元一次方程组理论知识的同时,培养其解题的逻辑思维能力和解决实际问题的能力。
《2.3解二元一次方程组》作业设计方案-初中数学浙教版12七年级下册
《解二元一次方程组》作业设计方案(第一课时)一、作业目标本作业旨在巩固学生对二元一次方程组基本概念的理解,掌握基本的解法步骤,并通过实际练习提高学生的解题能力。
同时,培养学生运用所学知识解决实际问题的能力,提升数学学习兴趣。
二、作业内容1. 复习二元一次方程组的基本概念:要求学生回顾并掌握二元一次方程组中未知数、系数等基本概念。
2. 熟练掌握代入消元法:学生应能够根据实际情况,正确运用代入消元法,解出简单的二元一次方程组。
3. 探索列方程的实际问题:选择实际生活中的问题,列出相应的二元一次方程组,并解出问题。
4. 同步练习与提升:安排一定量的同步练习题目,涵盖代入消元法以及常见问题的解答,逐步提高学生的解题速度和准确性。
5. 反思与总结:要求学生完成练习后进行反思总结,明确自己在解题过程中的不足和需要改进的地方。
三、作业要求1. 按时完成:学生需在规定时间内完成作业,确保学习进度不受影响。
2. 独立完成:学生应独立完成作业,不得抄袭他人答案或寻求他人帮助。
3. 认真审题:在解题过程中,学生需认真审题,理解题意,避免因理解错误导致解题方向错误。
4. 规范书写:作业答案需规范书写,步骤清晰,过程完整。
5. 思考题可交流讨论:对于作业中的思考题,学生可与同学交流讨论,但需保留自己的思考过程和答案。
四、作业评价1. 正确性评价:根据学生答案的正确性进行评价,对错误的地方进行标注并要求学生改正。
2. 过程性评价:关注学生的解题过程,评价其思路是否清晰、步骤是否完整。
3. 进步性评价:比较学生本次作业与之前作业的进步程度,对学生的努力和进步给予肯定和鼓励。
4. 个性化评价:针对学生个人特点给予不同的指导和建议,如学习方法、思维习惯等。
五、作业反馈1. 及时反馈:教师需在规定时间内完成作业批改,并及时向学生反馈批改结果。
2. 错误纠正:针对学生出现的问题进行详细的错误纠正和指导。
3. 优秀作业展示:选取优秀作业进行展示和表扬,激发学生的积极性。
《2.3解二元一次方程组》作业设计方案-初中数学浙教版12七年级下册
《解二元一次方程组》作业设计方案(第一课时)一、作业目标1. 掌握二元一次方程组的基本概念和表示方法。
2. 学会通过代入法或加减法解二元一次方程组。
3. 培养学生对实际问题建立并解决二元一次方程组的能力。
4. 提高学生分析问题和解决问题的能力。
二、作业内容(一)基础知识练习1. 定义与概念:学生需掌握二元一次方程组的定义,并能够判断给定的方程组是否为二元一次方程组。
2. 方程的表示:学生需能够用代数符号表示二元一次方程组,并能够理解各个符号的意义。
(二)技能操作练习1. 代入法:学生需通过练习,掌握代入法解二元一次方程组的步骤和方法。
2. 加减法:学生需能够熟练运用加减法解二元一次方程组,包括寻找公共项和平衡等式的过程。
(三)应用问题解答针对日常生活中的实际问题,学生需将问题转化为二元一次方程组,并利用所学知识进行求解。
如,物品价格与数量之间的关系问题、资源分配问题等。
(四)自主探索与创新鼓励学生自行构造简单的二元一次方程组,并通过不同方法进行求解,记录并总结不同解法的优缺点。
三、作业要求1. 基础题必须独立完成,对答案的每一步都应有明确的解题思路。
2. 技能操作题需详细写出解题步骤,每一步都应清晰明了,体现解题逻辑。
3. 应用问题解答需有完整的解题过程和结果,并附上对实际问题的分析和解释。
4. 自主探索与创新部分应体现独立思考和创新精神,可以绘制简单的思维导图或总结表。
5. 按时完成作业,不抄袭他人答案,如遇不懂的问题可与同学或老师讨论。
四、作业评价1. 评价标准:基础知识的掌握程度、解题步骤的准确性和清晰度、实际问题的分析能力和创新能力等。
2. 互评与自评:同学间互相评价作业,提供建设性意见;学生自己评价解题过程中的优点与不足。
3. 教师评价:对作业进行细致的批改,给出评语和建议,对表现优秀的学生给予鼓励和表扬。
五、作业反馈1. 对学生的作业进行统计和分析,了解学生的学习情况和存在的问题。
2. 针对普遍存在的问题进行课堂讲解和答疑,帮助学生解决疑惑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3 解二元一次方程组
一.选择题(共9小题)
1.已知方程组的解满足x﹣y=m﹣1,则m的值为()
A.﹣1 B.﹣2 C.1 D.2
2.如果|x﹣2y+1|+|x+y﹣5|=0,那么xy=()
A.2 B.3 C.5 D.6
3.若x,y满足方程组,则x﹣y的值等于()
A.﹣1 B.1 C.2 D.3
4.已知关于x,y的方程组,甲看错a得到的解为,乙看错了b得到的解为,他们分别把a、b错看成的值为()
A.a=5,b=﹣1 B.a=5,b=C.a=﹣l,b=D.a=﹣1,b=﹣1 5.若关于x、y的二元一次方程组的解满足x+y=9,则k的值是(()A.1 B.2 C.3 D.4
6.若方程组的解x和y相等,则a的值为()
A.1 B.2 C.3 D.4
7.若5x2a+b y2与﹣4x3y3a﹣b是同类项,则a﹣b的值是()
A.0 B.1 C.2 D.3
8.已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1 B.﹣2 C.1 D.2
9.如果(x+y﹣5)2与|3x﹣2y+10|互为相反数,则x,y的值为()A.x=3,y=2 B.x=2,y=3 C.x=0,y=5 D.x=5,y=0 二.填空题(共3小题)
10.若实数x,y满足,则代数式2x+3y﹣2的值为.
11.已知方程组与有相同的解,则m= ,n= .12.如果方程组与方程组的解相同,则m= ,n= .三.解答题(共13小题)
13.已知方程组和有相同的解,求a2﹣2ab+b2的值.
14.解下列方程组:
(1)
(2)
15.解下列方程组:
(1)用代入法解方程组:
(2)用加减法解方程组:
16.下列解方程组:
(1)
(2)
17.解下列方程组:(1)
(2)
参考答案
一.1.D 2.D 3.A 4.A 5.B 6.C 7.A 8.A 9.C 二.10.4 11., 12 12.3, 2
三.13.解:解方程组得,
把代入第二个方程组得,解得,
则a2﹣2ab+b2=22﹣2×2×1+12=1.
14.解:(1),
①×2+②,得到5x=20,
∴x=4,
把x=4代入①得到y=﹣1,
∴.
(2),
①﹣②×2得到19y=﹣38,y=﹣2,
把y=﹣2代入②得到:x=3,
∴
15.解:(1)
由①得y=2x﹣5 ③,
把③代入②,得3x+4(2x﹣5)=2,
解得x=2,
把x=2代入③,得y=2×2﹣5=﹣1,
∴方程组的解为.
(2)
把①×3得9x+12y=48 ③,
把②×2得10x﹣12y=66 ④,
③+④得19x=114
解得x=6,
把x=6代入①得18+4y=16,
解得y=﹣,
∴方程组的解为.16.解:(1),
①×3﹣②×2,得11x=22,
解得x=2,
将x=2代入①,得10﹣2y=4,
解得y=3,
所以方程组的解为;
(2),
②代入①,得4x﹣3(7﹣5x)=17,解得x=2,
将x=2代入②,得y=﹣3,
所以方程组的解为.17.解:(1),
①×4+②,得11x=22,
解得x=2,
将x=2代入①,得4﹣y=5,
解得y=﹣1,
所以方程组的解为;(2),
①﹣②,得2y=﹣8,
解得y=﹣4,
将y=﹣4代入②,得x﹣4=2,解得x=12,
所以方程组的解为.。