高分子材料成型加工考试重点复习内容
高分子材料成型加工复习(整理)
高分子材料成型加工复习(整理)1.高分子材料中加入添加剂的目的是什么?添加剂可分为哪些主要类型目的:满足成型加工上的要求满足制品性能上的要求满足制品功能上的要求满足制品经济上的要求主要类型:工艺性添加剂功能性添加剂2.哪些热稳定剂可以用作食品和医药包装材料有机锡类稳定剂有机锑类稳定剂无机稳定剂稀土类稳定剂3.哪一类热塑性聚合物在成型加工中需使用热稳定剂?为什么?热稳定性差的热塑性聚合物。
加入热稳定剂才能实现在高温下加工成型,制得性能优良的制品。
4.增塑剂的促进作用机理添加到高分子材料中,使体系的可塑性增加,改进柔软性、延伸性和加工性。
降低玻璃化温度tg第四章1.在高分子材料制品设计中,成型加工方法选择的依据是什么①制品形状②产品尺寸③材料特征④公差精度⑤加工成本第五章1.聚合物熔体在成型加工中有哪些流动类型①层流和湍流②平衡流动与不能平衡流动③等温流动和非等温流动④弯曲流动和剪切流动2.聚合物流体有哪些奇异流变现象,简述产生的原因①高粘度与剪切变稀行为②weissenb erg效应③barus效应④不平衡流动与熔体断裂⑤无管虹吸与无管侧吸⑥次级流动⑦触变性和震凝性⑧湍流减阻与渗流增阻3.聚合物熔体剪切黏度的影响因素①剪切速率②温度③压力④分子结构⑤添加剂第六章1.物料的混合有哪三种基本运动形式?聚合物成型时熔融物料的混合以哪一种运动形式为主?运动方式:①分子蔓延②涡旋蔓延③体积蔓延体积蔓延2.温度对生胶塑炼油何影响?为什么天然橡胶在110℃时塑炼效果最差?温度对橡胶的塑炼效果有很大影响,而且在不同温度范围内的影响也不同。
磷酸氢二钠温度高:①物料粘度低,剪切促进作用小,机械促进作用效果小②水解反应速度高,化学作用效果大塑炼温度高:①物料粘度低,剪切作用小,机械作用效果小②氧化反应速度高,化学作用效果大3.什么叫做塑料的混合和塑化,其主要区别在哪里塑料的混合:物料的初混合,在低于流动温度和较为缓和的剪切速率下进行,混合后,物料各组分的物理性质和化学性质无变化,只增加各组分颗粒的无规则排列程度,不改变颗粒大小塑料的塑化:再混合,在低于流动温度和较猛烈的剪切速率下展开,混合后,物料各组分物化性质有所发生改变4.塑料的塑化与橡胶的塑炼二者的目的和原理有何异同塑化:目的就是并使物料在一定温度和剪切力下熔融,剪除其中的水分和挥发物,并使各组分更趋光滑,获得具备一定可塑性的光滑物料橡胶的塑炼:目的是使生胶由强韧的弹性转变为柔软的便于加工的塑性状态的过程,使之适合于混炼,压延,压出,成型工艺操作,增加可塑性以便得到质量均匀的胶料。
高分子材料成型加工考试重点及部分习题答案
高分子材料成型加工考试重点内容及部分习题答案第二章高分子材料学1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。
受热不熔融,达到一定温度分解破坏,不能反复加工。
在溶剂中不溶。
化学结构是由线型分子变为体型结构。
举例:PF、UF、MF2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。
再次受热,仍可软化、熔融,反复多次加工。
在溶剂中可溶。
化学结构是线型高分子。
举例:PE聚乙烯,PP聚丙烯,PVC 聚氯乙烯。
3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。
4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。
举例:PA聚酰胺类、ABS、PET、PC5、缓冷:Tc=Tmax,结晶度提高,球晶大。
透明度不好,强度较大。
6、骤冷(淬火):Tc<Tg,大分子来不及重排,结晶少,易产生应力。
结晶度小,透明度好,韧性好。
定义:是指熔融状态或半熔融状态的结晶性聚合物,在该温度下保持一段时间后,快速冷却使其来不及结晶,以改善制品的冲击性能。
7、中速冷:Tc>=Tg,有利晶核生成和晶体长大,性能好。
透明度一般,结晶度一般,强度一般。
8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程。
9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。
第三章添加剂1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂)2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。
针对热、氧、光三个引起高分子材料老化的主要因素,可将稳定剂分为热稳定剂、抗氧剂(防老剂)、光稳定剂。
热稳定剂是一类能防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂。
高分子材料成型加工(考试重点及部分习题答案)
高分子材料成型加工考试重点内容及部分习题答案第二章高分子材料学1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。
受热不熔融,达到一定温度分解破坏,不能反复加工。
在溶剂中不溶。
化学结构是由线型分子变为体型结构。
举例:PF、UF、MF2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。
再次受热,仍可软化、熔融,反复多次加工。
在溶剂中可溶。
化学结构是线型高分子。
举例:PE聚乙烯,PP聚丙烯,PVC聚氯乙烯。
3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。
4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。
举例:PA聚酰胺类、ABS、PET、PC5、缓冷:Tc=Tmax,结晶度提高,球晶大。
透明度不好,强度较大。
6、骤冷(淬火):Tc<Tg,大分子来不及重排,结晶少,易产生应力。
结晶度小,透明度好,韧性好。
定义:是指熔融状态或半熔融状态的结晶性聚合物,在该温度下保持一段时间后,快速冷却使其来不及结晶,以改善制品的冲击性能。
7、中速冷:Tc>=Tg,有利晶核生成和晶体长大,性能好。
透明度一般,结晶度一般,强度一般。
8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程。
9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。
第三章添加剂1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂)2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。
针对热、氧、光三个引起高分子材料老化的主要因素,可将稳定剂分为热稳定剂、抗氧剂(防老剂)、光稳定剂。
热稳定剂是一类能防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂。
成型加工复习要点
题型:填充题 20 分、选择题 20 分、简述题 42 分、计算题 8 分、回答题(与读书报告有关)10 分。
1. 高分子材料成型加工的定义和实质高分子材料成型加工是将聚合物(有时还加入各种添加剂、助剂或改性材料等)转变成实用材料或制品的一种工程技术。
大多数情况下,聚合物加工通常包括两个过程:首先使原材料产生变形或流动,并取得所需要的形状,然后设法保持取得的形状(即硬化),流动-硬化是聚合物加工过程的基本程序。
高分子材料加工的本质就是一个定构的过程,也就是使聚合物结构确定,并获得一定性能的过程。
2. 影响高分子材料性能的化学因素构成的元素种类及其连接方式;立体规整性;共聚物组成;交联;端基;结构缺陷;支链3. 影响高分子材料性能的物理因素相对分子质量及其分布;结晶性;粒径与粒度分布;成型过程中的取向;熔体黏度与成型性4. 假塑性流体是非牛顿流体的一种,无屈服应力,具有粘度随剪切速率增加而减小的流动特性的流体。
5. 离模膨胀聚合物熔体挤出后截面积比口模截面积大。
此种现象称之为巴拉斯效应,也成为离模膨胀效应。
6. 开炼机混炼工艺过程阶段开炼机混炼经历包辊、吃粉、翻捣三个阶段7. 密炼机混炼工艺过程阶段混炼过程主要分为湿润、分散、捏炼三个过程8. 混合设备的分类根据操作模式分类:间歇式和连续式根据混合过程特征:分布式和分散式根据混合物强度大小:高强度、中强度、低强度混合设备9. 塑炼的分类及常见设备机械塑炼(常见设备有开炼机、密炼机、螺杆塑炼机)、化学塑炼、物理塑炼。
10. 热固性塑料的成型收缩率热固性塑料在高温下模压成型后脱模冷却至室温,其各向尺寸将会发生收缩,此成型收缩率L S 定义为:在常温常压下,模具型腔的单向尺寸0L 和制品相应的单向尺寸L 之差与模具型腔的单向尺寸0L 之比为:00×100%L L L S L -= 11. 正硫化正硫化:橡胶的交联反应达到一定的程度,此时的各向物理机械性能均达到或接近最佳值,其综合性能最佳。
高分子材料成型加工原理-期末复习重点(升华提升版).docx
1聚合物主要有哪几种聚集态形式?玻璃态(结品态)、高弹态和粘流态2线性无定形聚合物当加工温度T处于Tb < T <Tg, Tg<T<Tf, Tf <T <Td时,分别适合进行何种形式的加工?聚合物加工的最低温度?T<Tg玻璃态一一适应机械加工;聚合物使用的最低(卜-限)温度为脆化温度TbTg <T <Tf高弹态,非晶聚合物Tg <T <Tf温度区间,靠近Tf 一侧,粘性大,可进行真空、压力、压延和弯曲成型等;高弹形变有时间依赖性,加工屮有可逆形变, 加工的关键的是将制品温度迅速冷却到匹以下;结晶或部分结晶聚合物在Tg〜Tm,施加外力〉材料的屈服强度,可进行薄膜或纤维拉伸;聚合物加工的最低温度:玻璃化温发TgT > Tf (Tm)粘流态(熔体,液态)比Tf略高的温度,为类橡胶流动行为,可进行压延、挤出和吹塑成型。
可进行熔融纺丝、注射、挤出、吹塑和贴合等加工3熔融指数?说明熔融指数与聚合物粘度、分子量和加工流动性的关系,挤出和注塑成型对材料的熔融指数要求有何不同?熔融指数(Melt Flow Index)一定温度(T>Tf或Tm)和压力(通常为2.160kg )下,10分钟内从出料孑L (0=2.095mm )挤出的聚合物重量(g/ 10 min)。
a评价热塑性聚合物的挤压性;b评价熔体的流动度(流度4)= 间接反映聚合物的分子量大小;c购买原料的重要参数。
分子量高的聚合物,易缠结,分子间作用力大,分子体积大,流动阻力较大,熔体粘度大,流动度小,熔融指数低;加工性能较差。
分子量高的聚合物的力学强度和硬度等较高。
分子量较低的聚合物,流动度小,熔体粘度低,熔融指数大,加工流动性好。
分了量较低的聚合物的力学强度和硬度等较低4解释:应变软化;应力硬化;塑性形变及其实质。
几是塑料使用的下限温度;应变软化:材料在拉伸吋发热,温度升高,以致形变明显加速,并出现形变的细颈现象。
材料成型加工复习资料
第一章绪论1.“高分子材料”的定义。
高分子材料是以高分子化合物为主要组分的材料,是从应用的角度对高分子进行形的归类如,塑料、橡胶、纤维、涂料、黏合剂等。
2.高分子材料成型加工的定义。
高分子材料(由高分子化合物和添加剂组成)是通过成型加工工艺得到具有实用性的材料或制品过程的工程技术。
从高分子材料成型加工的工艺过程方面考虑,高分子材料的成型加工进一步定义为,要求通过共混、反应及分子组装等聚合物加工方法获得新的性能及功能,要求利用外场、温度、时间等组合控制材料非平衡态结构以获得特殊性能及功能。
3.高分子材料工程特征的含义。
一方面,高分子材料结构上的特殊性,使得其性能是可变的,因此高分子材料成型加工方法具有多样性。
即同样的高分子材料,通过不同的成型加工过程(包括加工工艺条件),制得高分子材料制品的性能是不一样的。
另一方面,高分子材料的制品的性能决定于材料本身及成型过程中产生的附加性质,这些附加性质有些要加以利用,有些要进行限制。
因此,高分子材料的成型加工方法具有多样性。
第二章高分子材料学1.分别区分“通用塑料”和“工程塑料”,“热塑性塑料”和“热固性塑料”,并请各举2~3例。
通用塑料:一般指产量大、用途广、成型性好、价廉的塑料。
通用塑料有:PE,PP,PVC,PS等;工程塑料:是指拉伸强度大于50MPa,冲击强度大于6kJ/m2 ,长期耐热温度超过100℃的,刚性好、蠕变小、自润滑、电绝缘、耐腐蚀等,可代替金属用作结构件的塑料。
工程塑料有:PA,PET,PBT,POM等;工程塑料是指被用做工业零件或外壳材料的工业用塑料,是强度、耐冲击性、耐热性、硬度及抗老化性均优的塑料。
日本业界将它定义为“可以做为构造用及机械零件用的高性能塑料,耐热性在100℃以上,主要运用在工业上”。
热塑性塑料:加热时变软以至流动,冷却变硬,这种过程是可逆的,可以反复进行。
聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛、聚砜、聚苯醚,氯化聚醚等都是热塑性塑料。
高分子材料成型加工原理考点
高分子材料成型加工原理1.层流:是流体的一种流动状态,它作层状的流动。
流体在管内低速流动时呈现为层流,其质点沿着与管轴平行的方向作平滑直线运动。
流体的流速在管中心处最大,其近壁处最小。
管内流体的平均流速与最大流速之比等于0.5。
2.湍流:当流速增加到很大时,流线不再清楚可辨,流场中有许多小漩涡,层流被破坏,相邻流层间不但有滑动,还有混合,形成湍流3.稳态流动:稳态流动是指岩石蠕变中当应力保持不变,而应变速率保持恒定的状态,即岩石变形进入稳态蠕变的状态。
4.非稳态流动:非稳态流动,是指流体的流动状况随时间的变化而变化的流动。
5.剪切流动:剪切流动是指在剪切力作用下流体的流动,分为稳态剪切流动和非稳态剪切流动。
6.牛顿流体:任一点上的剪应力都同剪切变形速率呈线性函数关系的流体称为牛顿流体。
7.非牛顿流体:非牛顿流体,是指不满足牛顿黏性实验定律的流体,即其剪应力与剪切应变率之间不是线性关系的流体。
8.粘度:粘度是物质的一种物理化学性质,定义为一对平行板,面积为A,相距dr,板间充以某液体;今对上板施加一推力F,使其产生一速度变化度所需的力。
9.表观粘度:表观黏度是一个物理概念,是指在一定速度梯度下,用相应的剪切应力除以剪切速率所得的商,所以表观黏度一般小于真正黏度。
10.宾汉流体:当切应力超过某值才开始发生剪切变形,且切应力随剪切变形速率呈线性变化的液体,又译为宾厄姆流体。
11.入口效应:又称巴勒斯效应,指熔融聚合物通过管道变化的截面发生取向且弹性储能的现象。
12.膨胀性流体:在一定温度下,随剪切速率增大,黏度增加的非牛顿流体,其n>1(切力增稠流体)13.剪切速率:流体的流动速度相对圆流道半径的变化速率14.表观剪切黏度:非牛顿流动中给定剪切速率下剪切应力与剪切速率之比值。
15.端末效应:适当增加长径比聚醋熔体在进入喷丝孔喇叭口时,由于空间变小,熔体流速增大所损失的能量以弹性能贮存于体系之中,这种特征称为“入口效应”也称"端末效应"。
高分子材料成型加工原理复习
可延性表示无定型或半结晶聚合物在一个或 两个方向上受到压延或拉伸时变形的能力。 ❖发生地点:压延或拉伸工艺 ❖聚合物力学状态:高弹态或玻璃态 ❖表征方法:拉伸试验
2021/4/4
12
第一节 聚合物材料的加工性质
可延性源于: ①大分子结构
非晶高聚物单个分子空间形态:无规线团; 结晶高聚物:折叠链状; 细而长的长链结构和巨大的长径比;
2021/4/4
10
第一节 聚合物材料的加工性质
1.1.3 聚合物的可纺性
❖什么是可纺性?
可纺性是指聚合物材料通过加工形成连续的 固态纤维的能力。 ❖发生地点:主要有熔融纺丝 ❖聚合物力学状态:粘流态 ❖表征方法:纺丝实验
2021/4/4
11
第一节 聚合物材料的加工性质
1.1.4 聚合物的可延性
2021/4/4
9
第一节 聚合物材料的加工性质
1.1.2 聚合物的可模塑性
1.什么是可模塑性?
可模塑性指材料在温度和压力作用下形变和 在模具中模制成型的能力。(熔体的充模能力)
❖发生地点:主要有挤出机、注塑机、模具中等
❖聚合物力学状态:高弹态、粘流态
❖表征方法:螺旋流动试验
在成型加工过程中,聚合物的可模塑性常用在一定温 度、压力下熔体的流动长度来表示。
2. 比较塑性形变和粘性形变的异同点。 3.什么是聚合物的力学三态,各自的特点是什么?
各适用于什么加工方法?
2021/4/4
18
4.聚合物具有一些特有的加工性质,如有良好的( ), ( ),( )和( )。
5.()是评价聚合物材料的可挤压性 这一加工性质的 一种简单而又实用的方法,而( )是评价聚合物 材料的可模塑性这一加工性质的一种简单而又实 用的方法。
高分子材料成型加工考试重点及部分习题答案
高分子材料成型加工考试重点及部分习题答案 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】高分子材料成型加工考试重点内容及部分习题答案第二章高分子材料学1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。
受热不熔融,达到一定温度分解破坏,不能反复加工。
在溶剂中不溶。
化学结构是由线型分子变为体型结构。
举例:PF、UF、MF2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。
再次受热,仍可软化、熔融,反复多次加工。
在溶剂中可溶。
化学结构是线型高分子。
举例:PE聚乙烯,PP聚丙烯,PVC聚氯乙烯。
3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。
4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。
举例:PA聚酰胺类、ABS、PET、PC5、缓冷:Tc=Tmax,结晶度提高,球晶大。
透明度不好,强度较大。
6、骤冷(淬火):Tc<Tg,大分子来不及重排,结晶少,易产生应力。
结晶度小,透明度好,韧性好。
定义:是指熔融状态或半熔融状态的结晶性聚合物,在该温度下保持一段时间后,快速冷却使其来不及结晶,以改善制品的冲击性能。
7、中速冷:Tc>=Tg,有利晶核生成和晶体长大,性能好。
透明度一般,结晶度一般,强度一般。
8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程。
9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。
第三章添加剂1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂)2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。
高分子材料成型加工基础复习提纲 高分子材料成型加工基础复习
高分子材料成型加工基础复习提纲绪论及第一章:混合与混炼1、聚合物加工:高聚物的成型加工,通常是在一定的温度下使弹性固体、固体粉状或粒状、糊状或溶液状态的高分子化合物变性或熔融,经过模具或口型流道的压塑,形成所需的形状,在形状形成的过程中有的材料会发生化学变化(如交联,最终得到能保持所取得形状的制品的工艺过程。
P52、聚合物的加工工艺过程一般可以分为混炼、成型、后加工等三大部分。
P53、混合混炼的目的:为获得综合性能优异的聚合物材料,除继续研制合成新型聚合物外,通过混合、混炼方法对聚合物的共混改性已成为发展聚合物材料的一种卓有成效的途径。
P74、共混的方法:a 机械共混法 b 液体共混法 c 共聚—共混法 d 互穿网络聚合物IPN 制备技术P75、共聚物的均匀性是指被分散的物在共混体中浓度分布的均一性,或者说分散相浓度分布的变化大小。
6、共聚物的分散程度是指被分散的物质(如橡胶中掺混部分塑料)破碎程度如何,或者说分散相在共混体中的破碎程度。
P117、常见的共混体系有:a固体 / 固体混合、b液体 / 液体混合、c固体 / 液体混合。
P208、混炼三要素及其作用:a压缩;物料在承受剪切前先经受压缩,使物料的密度增加,这样剪切时,剪切力作用大,可提高剪切效率,同时当物料被压缩时,物料内部会发生流动,产生由于压缩引起的流动剪切 b剪切剪切的作用是把高粘度分散相的粒子或凝聚体分散于其它的分散介质中 c分配置换分布由置换来完成。
P229、混合与混炼设备根据操作方式分为间歇式和连续式两大类。
P2510、常见初混合设备概念及类型:初混合设备是指物料在非熔融状态下(粉料、粒料、液体添加剂)进行混合所用的设备。
常用的典型初混合设备有 a 转鼓式混合机 b 螺带混合机 c Z 型捏合机 d 高速混合机p25-2811、混炼和塑化的概念及它们的区别:将各种配合剂混入并均匀分散在橡胶中的过程叫混炼;将各种配合剂混入并均匀分散在塑料熔体中的过程叫塑化。
高分子材料成型工艺学期末考试复习
高分子材料成型工艺学期末考试复习1、降解:聚合物在成型、贮存或使用过程中,因外界因素如物理的(热、力、光、电、超声波、核辐射等),化学的(氧、水、酸、碱、胺等)及生物的(霉菌、昆虫等)等作用下所发生的聚合度减少的过程。
2、比热容单位质量材料升高1度时所需的热量,单位KJ/Kg、K3、表观密度指料粒在无外压力下包含空隙时的密度4、解取向:在热的作用下取向的大分子链趋向紊乱无序的自发过程称为解取向。
5、拉伸取向:大分子链、链段等结构单元在拉伸应力作用下沿受力方向的取向。
6、偶联剂:增强塑料中,能提高树脂和增强材料界面结合力的化学物质、偶联剂分子是一类多官能团物质,它的一端可与无机物表面的化学基团反应,形成牢固的化学键合,另一端则有亲有机物的性质,可与有机物分子反应或物理缠绕,从而把两种性质不同的材料牢固结合起来。
7、抗静电剂:是一类能够降低塑料表面电阻率,增大漏电速率,使静电不能在塑料表面积累的化合物、8、注射速率:指注射机单位时间内的最大注射量,是螺杆的横截面积与其前进速度的乘积、9、挤出胀大:亦称出口膨胀,是指塑料熔体被强迫挤出口模时,挤出物尺寸大于口模尺寸,截面形状也发生变化的现象。
10压延效应:是将接近粘流温度的物料通过一系列相向旋转着的平行辊筒的间隙,使其受到挤压或延展作用,成为具有一定厚度和宽度的薄片状制品。
1、熔点Tm是指结晶性聚合物中大分子链从有序状态转变到无序粘流态所需要的温度。
2结晶度不完全结晶的高聚物中晶相所占的质量分数或体积分数。
3、取向高聚物分子和某些纤维状填料,在成型过程中由于受到剪切流动(剪切应力)或受力拉伸时而沿受力方向作平行排列的现象。
4、等规度聚合物中等规异构体所占比例称为等规指数,又称等规度。
5固化速率:是热固性塑料成型时特有的也是最重要的工艺性能、它衡量热固性塑料成型时化学反应的速度等规指数:聚合物中等规异构体所占的比例。
比热容:单位质量材料升高1℃时所需要的热量,单位为KJ/Kg•K。
高分子材料成型加工原理复习题及答案
高分子材料加工成型原理考试复习资料考试题型1.填空题(25*1)2.选择题(10*2)3.名词解释(5*3)4.解答题(5*6)5.论述题(1*10)可挤压性就是指聚合物通过挤压作用就是获得形状与保持形状的能力。
可挤压性主要取决于熔体的剪切粘度与拉伸粘度。
熔融指数就是评价热塑性聚合物特别就是聚烯烃的挤压性的一种简单而实用的方法,它就是在熔融指数仪中测定的。
可模塑性就是指材料在温度与压力作用下形变与在模具中模制成型的能力。
可模塑性主要取决于材料的流变性,热性质与其它物理力学性质。
聚合物的可延性取决于材料产生塑性形变的能力与应变硬化能力作用。
由于松弛过程的存在,材料的形变必然落后于应力的变化,聚合物对外力响应的这种滞后现象称为滞后效应或弹性滞后。
聚合物熔体的流变行为按作用力可分为剪切流动、拉伸流动。
均相成核又称散现成核,就是纯净的聚合物中由于热起伏而自发的生成晶核的过程,过程中晶核的密度能连续上升。
异相成核又称瞬时成核就是不纯净的聚合物中某些物质起晶核作用成为结晶中心,引起晶体生长过程,过程中晶核密度不发生变化。
在Tg~Tm温度范围内,常对制品进行热处理以加速聚合物的二次结晶或后结晶的过程,热处理为一松弛过程,通过适当的加热能促使分子链段加速重排以提高结晶度与使晶体结构趋于完善。
通常热处理的温度控制在聚合物最大结晶速度的温度Tmax。
塑料成型加工一般包括原料的配制与准备、成型及制品后加工等几个过程。
混合过程一般就是靠扩散、对流、剪切三种作用来完成。
衡量其混合效果需从物料的分散程度与组成的均匀程度两方面来考虑。
最常见的螺杆直径为45~150毫米。
长径比L/D一般为18~25。
压缩比就是螺杆加料段最初一个螺槽容积于均化段最后一个螺槽容积之比,表示塑料通过螺杆全长范围时被压缩的倍数,压缩比愈大塑料受到的挤压作用愈大。
根据物料的变化特征可将螺杆分为加料段、压缩段与均化段。
锁模机构在启闭模具的各阶段的速度都不一样的,闭合时应先快后慢,开启时则应先慢后快再转慢。
高分子材料加工成型重点
1、在Tg以下的某一温度,材料受力容易发生断裂破坏,这一温度称为脆化温度。
2、可挤压性是指聚合物通过挤压作用形变时获得形状和保持形状的能力。
3、用定温下10分钟内聚合物从料孔挤出重量来表示,其数值就称为熔体流动指数。
4、可模塑性是指材料在温度和压力作用下形变和在模具中模制成型的能力。
5、可纺性是指聚合物材料通过加工形成连续的固态纤维的能力。
6、均相成核是纯净的聚合物中由于热起伏而自发地生成晶核的过程,过程中晶核密度能连续地上升。
7、异相成核是不纯净的聚合物中某些物质起晶核作用成为结晶中心,引起晶体生长过程,过程中晶核密度不发生变化。
8、因此通常将洁净度达到50%的时间t1/2的倒数作为各种聚合物结晶速度的比较标准,称为结晶速度常数K。
9、二次结晶是在一次结晶完了后再一些残留的非晶区域和晶体不完整部分即晶体间的缺陷或不完整区域,继续进行结晶和进一步完整化过程。
10、后结晶现象,这是聚合物加工过程中一部分来不及结晶的区域在加工后发生的继续结晶的过程。
11、加工成型过程中影响结晶的因素1.冷却速度的影响2.熔融温度和熔融时间的影响3.应力作用的影响4.低分子物:固体杂志和链结构的影响12、在一定温度下材料在屈服应力作用下被拉伸的倍数称为自然拉伸比∧。
13、通常称分子量降低的作用为降解或裂解。
14、加工过程中聚合物降解的机理?1游离基链式降解(特点是反应速度快,降解反应一开始就以高速进行,中间产物不能分离,根据降解程度不同,降解产物为分子量不同的大小分子,降解速率与分子量无关)2逐步降解(无规降解反应的特点是:断链的部位是无规的、任意的,反应逐步进行,每一步反应都具有独立性,中间产物稳定,断链的机会随分子量增大而增加,故随降解反应逐步进行,聚合物分子量的分散性逐渐减小)15、加工过程中各种因素对降解的影响?1.聚合物结构的影响2.温度的影响3.氧的影响4.应力的影响5.水分的影响16、加工过程对降解作用的利用与避免1.严格控制原材料技术指标2.使用前对聚合物进行严格干燥3.确定合理的加工工艺和加工条件4.加工设备和模具应有良好的结构。
12高分子成型加工复习要点
复习要点本课程重点在工艺过程及其控制题型:判断题10分、填充题20分、选择题20分、简述题30分、计算题10分、回答题(与读书报告有关)10分。
基本概念,如:常见塑料、橡胶和纤维的全名、俗名和英文缩写高分子材料成型加工的定义和实质;影响高分子材料性能的化学因素:聚合物分子构成、端基(PVC、POM)、交联;影响高分子材料性能的物理因素:分子量及其分布(门尼黏度、MFR)、取向、结晶假塑性流体、离模膨胀开炼工艺、混炼工艺过程阶段;混合设备的分类;塑炼的分类及常见设备;热固性塑料的成型收缩率正硫化、SMC、BMC、GMT挤出机、挤出系统的组成;挤出机螺杆的结构参数;螺杆的作用;挤出机的固体输送率;熔体输送理论;挤出机最佳工作点和特性曲线;长径比、压缩比的定义及其意义;挤出吹塑中的冷凝线及双向取向的含义;双螺杆挤出机的分类;注塑机的注射系统、注塑机的合模系统的组成及分类;注射模具的浇注系统;注射成型时需克服的阻力;注射充模流动的各阶段、注射成型的工艺条件的控制及其对制品的影响;流涎及凝封现象的定义压延成型工艺条件的控制;压延成型挠度的产生原因及解决方法平挤逐次双向拉伸薄膜的工艺流程;中空吹塑流程;中空吹塑的分类四大一次成型方法、二次成型方法的适用对象、制品特点、能简述工艺流程(模压成型、挤出成型、注射成型)、注射、挤出成型设备的标称简述题:如主要与课后习题及作业有关。
如高分子材料成型加工的定义和实质晶态与非晶态聚合物的熔融加工温度范围,讨论两者的耐热性聚合物的结晶温度范围结晶对物性(如拉伸强度、透明性等影响)橡胶的塑炼、混炼和塑料的混合、塑化基本概念、特点及四者间的对比;橡胶的混炼的定义,用开炼机和密炼机进行混炼时各应控制的工艺条件橡胶的硫化历程各阶段的实质、意义;热固性塑料模压成型中温度、压力之间的关系挤出螺杆的分段及其作用;螺杆主要的结构参数及对挤出压力的影响;非结晶型塑料和结晶型塑料挤出螺杆设计特点,即如何设计螺杆各参数;塑料挤出机的螺杆与移动螺杆式注射机的螺杆的比较;注射成型中重要工艺条件如(温度、注射压力和速度)如何控制注射成型时温度控制及其对性能的影响保压在注射成型过程中的作用;凝封的定义压延成型时工艺条件的控制;压延挠度产生的原因、补偿方法,并作比较;压延效应产生的原因及减小的方法;压延成型中分离力的定义及其影响因素用平挤逐次双向拉伸法成型结晶性聚合物薄膜时,挤出的厚片急冷目的、冷却后的厚片在拉伸前又要预热的目的热成型的原理及方法。
高分子成型加工复习资料完整版
第一章作业1、分析讨论聚集态与成型加工的关系T< Tg ,玻璃态,链段冻结,自由体积小,内聚力较强,力学强度较大,为坚硬固体;外力作用下,大分子链的键角或键长发生变形,形变小,为可逆普弹形变,弹性模量高;适于机械加工,如车削,锉削,制孔,切螺纹等;Tg <T < Tf 高弹态,高分子链段运动能力增大,形变增大,模量减少,可进行较大变形的成型, 如压延,中空吹塑,热成型,薄膜或纤维拉伸等。
但此形变是可恢复的;加工的关键的是将制品温度迅速冷却到Tg以下;T > Tf 粘流态,整个大分子运动, 滑移和解缠,外力作用下,主要为不可逆的粘性形变,产生宏观流动,可进行变形大,形状复杂的成型。
如熔融纺丝、注射、挤出等。
冷却后形变永久保存。
2 写出线型聚合物的总形变γ公式,画出聚合物在外力作用下的形变-时间曲线, 分析各部分的性质特点, 并分析讨论加工条件对粘弹形变的影响;(1)t1时,受外力作用聚合物产生普弹形变(ab线段),γE很小,t2解除外力时,普弹形变立刻恢复 (cd线段)。
普弹形变:外力使聚合物大分子键长和键角或晶体中平衡状态的粒子间发生形变和位移,形变值小。
外力解除时,普弹形变立刻恢复。
(2) t内(t1—t2),产生高弹形变和粘性形变(bc段)。
推迟高弹形变:外力较长时间作用下,大分子链段形变和位移(构象改变),形变值大,具有可逆性。
粘性形变:在外力作用下,沿受力方向大分子链之间的解缠和相对滑移,宏观流动,形变值大,不可逆性。
t2解除外力后,一定时间后,γH完全恢复(de段),γV作为永久形变存留于聚合物中。
T > Tf (Tm)时, T 升高,η2和η3降低,γH和γV增加,γV增大更多,以粘性形变为主。
外力作用下,产生不可逆粘性形变,制品获得形状和尺寸稳定性。
粘性流动中也存在弹性效应,,出现离模膨胀或破裂,使制品形状尺寸改变,并产生内应力。
T 在Tg~Tf (Tm)时, 呈高弹态,弹性成分大,粘性成分小,有效形变减少。
高分子材料加工原理考试复习重点
名词解释5道 15分判断10道 10分选择10道 20分问答4道 40分论述题1题 15分第一章绪论通用高分子的主要种类和概念纤维:一种细长形状(长径比>10)、截面积较小(<0.05mm2)的物体塑料:以合成(或天然)的高分子化合物为基本成份、在加工中通过塑化流动或原位聚合而成型的柔韧性或刚性固体高分子材料橡胶:以合成(或天然)的高分子化合物为基本成份的高弹性的高分子材料涂料:应用于物体表面并能结成坚韧保护膜的物质的总称胶粘剂:能把各种材料粘合在一起的物质材料是用来制造各种产品的物质,是具有满足指定工作条件下使用要求的形态和物理性状的物质。
第二章聚合物流体的制备聚合物流体的制备包括熔体的制备和溶液的制备第二节中的1,2,3小节·熔体的话是通过加热,不同加热的方法,加热,熔体转移,熔体移轴,剪切,理解热传导,熔融方法上的要求聚合物的熔融:即完成聚合物由固体转变为熔体的过程。
一.熔融的方法(了解蓝色字体的方法和区别)1. 无熔体移走的传导熔融2. 有熔体强制移走的传导熔融: 熔融的一部分热量由接触表面的传导提供,一部分热量通过熔膜中的粘性耗散将机械能转变为热能来提供。
·力学耗散:力学的能量损耗,即机械能转化为热能的现象.在外力作用下,大分子链的各运动单元可能沿力的方向做从优取向的运动,就要克服内部摩擦,所以要消耗能量,这些能量转化为热能.随着螺杆的转动,筒壁上的熔膜被强制刮下来移走,而使熔融层受到剪切作用,使部分机械能转变为热能.哪种热能占主导地位,取决于聚合物本身的物理性质、加工条件和设备的结构参数。
当机筒温度较低、螺杆转数较高时,由剪切产生的剪切热占主要地位。
当螺杆转数较低,机筒温度较高时,机筒的传导热占主要地位。
3.压缩熔融: 熔融热量由将机械能转变为热能来提供。
4.耗散混合熔融: 熔融热量由在整个体积内将机械能转变为热能来提供的。
例:双辊塑炼(开炼)5.利用电、化学或其它能源的耗散熔融方法:熔融的热量通过电、化学或其它能源转变为热能来提供。
高分子材料成型加工原理期末复习重点
1聚合物主要有哪几种聚集态形式?玻璃态〔结晶态〕、高弹态和粘流态2线性无定形聚合物当加工温度T处于Tb < T <Tg,Tg<T<Tf,Tf <T <Td时,分别适合进展何种形式的加工?聚合物加工的最低温度?T < Tg 玻璃态——适应机械加工;聚合物使用的最低 (下限) 温度为脆化温度Tb Tg <T <Tf 高弹态,非晶聚合物 Tg <T <Tf 温度区间,靠近Tf一侧,粘性大,可进展真空、压力、压延和弯曲成型等;高弹形变有时间依赖性,加工中有可逆形变,加工的关键的是将制品温度迅速冷却到Tg以下;结晶或局部结晶聚合物在Tg~Tm, 施加外力 > 材料的屈服强度,可进展薄膜或纤维拉伸;聚合物加工的最低温度: 玻璃化温度 TgT > Tf (Tm) 粘流态〔熔体,液态〕比Tf略高的温度,为类橡胶流动行为,可进展压延、挤出和吹塑成型。
可进展熔融纺丝、注射、挤出、吹塑和贴合等加工3熔融指数?说明熔融指数与聚合物粘度、分子量和加工流动性的关系, 挤出和注塑成型对材料的熔融指数要求有何不同?熔融指数〔Melt Flow Index〕一定温度〔T >Tf 或Tm〕和压力〔通常为2.160kg 〕下,10分钟内从出料孔(Ø = 2.095mm ) 挤出的聚合物重量〔g∕10 min〕。
a评价热塑性聚合物的挤压性;b评价熔体的流动度(流度φ= 1/η), 间接反映聚合物的分子量大小;c购置原料的重要参数。
分子量高的聚合物,易缠结,分子间作用力大,分子体积大,流动阻力较大,熔体粘度大,流动度小,熔融指数低;加工性能较差。
分子量高的聚合物的力学强度和硬度等较高。
分子量较低的聚合物,流动度小,熔体粘度低,熔融指数大,加工流动性好。
分子量较低的聚合物的力学强度和硬度等较低4成纤聚合物的一般特性,纤维成型过程,纺丝液体的制备,工业生产主要纺丝成形方法。
高分子材料成型加工重点下册适合武汉工程大学本科高材专业使用
高分子材料成型加工一、名词解释(1)螺杆长径比L /Ds :螺杆工作部分旳有效长度L与直径Ds之比。
(2)压缩比A:螺杆加料段第一种螺槽旳容积与均化段最后一种螺槽旳容积之比,表达塑料通过螺杆旳全过程被压缩旳限度。
(3)机头压缩比表达粘流态塑料被压缩旳限度,是分流器支架出口处流道环形面积与口模及管芯之间旳环形截面积之比。
(4)吹胀比α(塑料):管坯被吹胀后旳膜管直径D2 与挤出机环形口膜直径D1 之比:α= D2 /D1(5)牵伸比β:膜管通过夹辊时旳速度V 2 与口模挤出管坯旳速度V1 之比。
β= V2 / V1(6)冷凝线距离(冷却线距离):膜管在机头上方开始变得浑浊旳距离。
(7)入口效应:聚合物熔体在挤出时通过一种狭窄旳口模,虽然口模很短,也会有很大旳压力降。
(8)离模膨胀:聚合物熔体挤出后截面积比口模截面积大。
这种现象也称之为巴拉斯效应(Barus Effect)。
(9)熔体破裂:当挤出速率逐渐增长时,挤出物表面将浮现不规则现象( 橘皮纹、鲨鱼皮、熔体破裂),甚至使其内在质量受到破坏,此类现象统称为熔体破裂(Melt Fracture )(10)熔化长度:从融化开始到固体床旳宽度降到零为止旳总长度。
(11)高分子合金:由两种或两种以上高分子材料构成旳复合体系,是由两种或两种以上不同种类旳树脂,或者树脂与少量橡胶,或者树脂与少量热塑性弹性体,在熔融状态下,通过共混,由于机械剪切力作用,使部分高聚物断链,再接枝或嵌段,亦或基团与链段互换,从而形成聚合物与聚合物之间旳复合新材料。
(12)反映性挤出:指聚合性单体或低聚物熔体在螺杆挤出机内发生物理变化旳同步发生化学反映,从而挤出直接获得高聚物或制品旳一种新旳工具性工艺措施。
(13) 合成纤维纺丝是将聚合物制成具有纤维基本构造及其综合性能旳纺织纤维旳过程。
(14)熔融纺丝: 将高聚物加热熔融制成熔体,通过纺丝泵打入喷丝头,并由喷丝头喷成细流,再经冷凝而成纤维。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章高分子材料学1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。
受热不熔融,达到一定温度分解破坏,不能反复加工。
在溶剂中不溶。
化学结构是由线型分子变为体型结构。
举例:PF、UF、MF2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。
再次受热,仍可软化、熔融,反复多次加工。
在溶剂中可溶。
化学结构是线型高分子。
举例:PE聚乙烯,PP聚丙烯,PVC聚氯乙烯。
3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。
4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。
举例:PA聚酰胺类、ABS、PET、PC5、缓冷:Tc=Tmax,结晶度提高,球晶大。
透明度不好,强度较大。
6、骤冷(淬火):Tc<Tg,大分子来不及重排,结晶少,易产生应力。
结晶度小,透明度好,韧性好。
定义:是指熔融状态或半熔融状态的结晶性聚合物,在该温度下保持一段时间后,快速冷却使其来不及结晶,以改善制品的冲击性能。
7、中速冷:Tc>=Tg,有利晶核生成和晶体长大,性能好。
透明度一般,结晶度一般,强度一般。
8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域,继续结晶并逐步完善的过程。
9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。
第三章添加剂1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂)2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。
针对热、氧、光三个引起高分子材料老化的主要因素,可将稳定剂分为热稳定剂、抗氧剂(防老剂)、光稳定剂。
热稳定剂是一类能防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂。
主要用于热敏性聚合物(如PVC聚氯乙烯树脂),是生产PVC塑料最重要的添加剂。
抗氧剂是可抑制或延缓高分子材料自动氧化速度,延长其使用寿命的物质。
光稳定剂是指可有效抑制光致降解物理和化学过程的一类添加剂。
3、热稳定剂分为A、铅盐类稳定剂(包括三盐基硫酸铅、二盐基亚磷酸铅、二盐基硬脂酸铅),具有优良的热稳定性、电绝缘性、润滑性,毒性大,透明性差。
B、金属皂类稳定剂,包括硬脂酸、油酸等的金属盐。
加工性能好,润滑性。
C、有机锡类稳定剂,包括硫醇盐类、马来酸盐型。
优良的稳定性、透明性。
D、有机锑类稳定剂,包括硫醇锑类。
E、有机辅助稳定剂,包括环氧化物、亚磷酸酯、多元醇类。
F、复合稳定剂,由金属皂类稳定剂与有机辅助稳定剂以及润滑剂复配而成。
G、稀土类稳定剂,属于镧系稀土元素的有机复合物。
4、增塑剂:是指添加到高分子材料中能使体系的可塑性增加,改进其柔软性、延伸性和加工性的物质。
增塑剂按作用方式,有外增塑作用和增塑作用。
起外增塑作用的增塑剂大多是有机低分子化合物或聚合物,通常为高沸点的油类或低熔点的固体,有极性和非极性之分。
极性增塑剂的溶解度参数高,主要增塑极性聚合物,非极性增塑剂的溶解度参数低,多数用于非极性聚合物的增塑。
非极性增塑剂对非极性聚合物的增塑是溶剂化作用机理,即增塑剂进入聚合物的分子链段之间,加大了大分子之间的距离,降低了聚合物分子间的作用力,其增塑效果与增塑剂的体积成正比,故又称“体积效应”。
极性增塑剂对极性聚合物的增塑机理是“屏蔽效应”,即增塑剂分子中的极性基团与聚合物分子的极性基团互相吸引,取代了聚合物分子间的极性基团的相互作用,从而削弱了聚合物分子间的作用力,其增塑效果与增塑剂分子数有关,同时体积效应也起作用。
5、常用的增塑剂:塑料增塑剂和橡胶增塑剂。
塑料增塑剂,极性,酯类增塑剂(常用在PVC中)。
橡胶增塑剂,非极性,包括:物理增塑剂(又称软化剂)(包括石油系、煤焦油系、松油系、合成酯类、液体聚合类)和化学增塑剂(又称塑解剂)(包括含硫化合物、噻唑类和胍类)6、增塑和塑炼的区别:增塑是加小分子的增塑剂,使制品的塑性增加,改进其柔软性、延伸性和加工性。
塑炼:为了满足各种加工工艺的要求,必须使生胶由强韧的弹性状态变成柔软而具有可塑性的状态,这种使弹性生胶变成可塑状态的工艺过程称作塑炼。
区别:增塑是依靠增加小分子增塑剂,塑炼是依靠剪切或塑解剂来降低过高的橡胶分子量,提高橡胶塑性。
7、润滑剂:定义是降低熔体与加工机械或成型模具之间以及熔体部相互之间的摩擦和黏附,改善加工流动性,提高生产能力和制品外观质量的一类添加剂。
润滑剂是典型的工艺性添加剂,仅在加工时发挥作用。
分为润滑剂和外润滑剂。
润滑剂是降低物料之间的摩擦,外润滑剂是降低物料与设备之间的外摩擦。
8、交联剂:定义是凡能引起聚合物交联的物质就称为交联剂。
(橡胶的交联剂习惯上称为硫化剂)a硫磺,适用于不饱和橡胶、含少量双键的三元乙丙橡胶和丁基橡胶。
b含硫化合物,是分子中含有硫原子,能够在硫化温度下分解出活性硫使得橡胶硫化的物质。
常用于电线绝缘层。
c有机过氧化物,最常用的是过氧化二异丙苯和过氧化苯甲酰,适用于氟橡胶、硅橡胶、乙丙橡胶等饱和橡胶、部分不饱和橡胶以及聚烯烃的交联,不能用于丁基橡胶和氯磺化聚乙烯橡胶。
d金属氧化物,常用的有氧化锌、氧化镁,适用于含极性基团或活泼酸性基团的聚合物,如氯丁橡胶、氯化丁基橡胶的交联。
还可作为硫磺硫化体系中的硫化活性剂。
e胺类化合物,含有两个或以上的胺基,主要用于酚醛树脂、氨基树脂等热固性塑料以及氟橡胶的交联。
f双官能团化合物,可作为不饱和聚酯树脂的交联剂。
g合成树脂,主要为酚醛树脂,可作为不饱和丁基橡胶、乙丙橡胶的交联剂。
9、不同交联剂与聚合物的一一对应:不饱和橡胶选择硫磺、促进剂、活性剂组成的硫化体系。
饱和橡胶选择过氧化物作为硫化剂。
有极性基团的橡胶用金属氧化物交联。
大多数热固性塑料和丙烯酸酯类橡胶一般用胺类交联剂。
10、交联体系:包括交联剂、促进剂、活性剂。
促进剂:凡在胶料中能够提高硫化速度、缩短硫化时间、降低硫化温度、减少硫化剂用量,并能提高或改善硫化胶物理机械性能的物质称为硫化促进剂。
按与硫化氢反应的性质分为酸性、碱性、中性促进剂。
活性剂:凡能够提高胶料中硫化促进剂的活性、减少硫化促进剂的用量、缩短硫化时间的物质称为硫化活性剂,也叫“促进助剂”,一般分无机活性剂和有机活性剂。
无机活性剂主要是氧化锌、氧化镁、氧化钙等金属氧化物。
氧化锌是最重要的,还可作为含卤橡胶的硫化剂。
有机活性剂主要是硬脂酸(HSt)。
11、填充剂(也称“填料”):为了改善高分子材料的成型加工性能,赋予或提高制品某些特定的性能,或为了增加物料体积、降低制品成本而加入的一类物质。
一般为固体物质,分为增量填充剂和补强填充剂。
增量填充剂(又叫“增量剂”),用于橡胶时一般没有补强作用,仅为了增加胶料体积和降低制品成本,对材料的使用性能无影响或影响很小,但往往能够改善压出、压延等工艺性能。
用于塑料时虽不能提高制品的力学性能,但可改善成型加工性能或赋予制品某些新的性能。
补强填充剂(又叫“补强剂”)主要用于橡胶,不但能改善胶料的工艺性能,提高硫化胶的拉伸强度、定伸强度、弹性、耐磨性等力学性能,而且能增大胶料体积、降低制品成本。
最常用的填充剂是碳酸钙。
橡胶最常用的补强剂是炭黑。
12、哪一类热塑性聚合物在成型加工中需使用热稳定剂?为什么?对于加有较多增塑剂和不加增塑剂的两种塑料配方,应如何考虑热稳定剂的加入量?为什么?答:热敏性聚合物,如聚氯乙烯PVC树脂,由于PVC是一种极性高分子,分子间作用力很强,导致加工温度超过分解温度,只有加入热稳定剂才能实现在高温下的加工成型,制得性能优良的制品。
加有较多增塑剂的塑料不加或少加热稳定剂,不加增塑剂的塑料应多加热稳定剂。
假如增塑剂的塑料降低了聚合物分子间的作用力,制品的玻璃化温度和软化温度均降低,故可少加热稳定剂。
13、什么是增塑剂?根据塑化效率可分为哪些类型?其各自的特点如何?答:增塑剂是指添加到高分子材料中能使体系的可塑性增加,改进其柔软性、延伸性和加工性的物质。
根据塑化效率可分为三种类型:a主增塑剂,与聚合物的相容性好,凝胶化能力很强,可大量添加并单独使用。
b辅助增塑剂,与聚合的相容性有限,凝胶化能力较低,只能与主增塑剂并用,但往往起到功能性作用。
c增量剂,与聚合物的相容性很差,凝胶化能力极差,不可单独使用,只可限量使用,以减少主增塑剂用量。
14、橡胶硫化体系主要是由哪些添加剂组成的?各自作用是什么?答:a硫化促进剂,作用是能提高硫化速度、缩短硫化时间、降低硫化温度、减少硫化剂用量,并能提高、改善硫化胶物理机械性能。
b硫化活性剂,作用提高胶料中硫化促进剂的活性、减少硫化促进剂的用量、缩短硫化时间、可使交联键的数量增加、交联键中硫原子数减少、因而硫化胶的热稳定性能得到提高。
c防焦剂,作用是可防止或延迟胶料在加工和贮存时产生焦烧、提高胶料的操作安全性和贮存稳定性。
第四章制品设计和配方设计试分析下列配方,要求:(1)指出各成分在配方中的作用;(2)判断制品基本性能,并说出相第六章高分子材料混合与制备1、混合:定义是将两种组分相互分布在各自所占的空间中,即,使两种或多种组分所占空间的最初分布情况发生变化。
混合分为非分散混合和分散混合。
非分散混合:在混合中仅增加粒子在混合物中空间分布均匀性而不减小粒子初始尺寸的过程称为非分散混合或简单混合。
分散混合:是指在混合过程中发生粒子尺寸减小到极限值,同时增加相界面和提高混合物组分均匀性的混合过程。
分散混合主要靠剪切应力和拉伸应力作用实现的。
混合设备高速混合机:非分散混合。
挤出机、开炼机、密炼机:分散混合。
2、橡胶的塑炼目的、实质、机理、影响因素:目的:主要是为了降低生胶的弹性、增加可塑性、获得适当的流动性、使橡胶与配合剂在混炼过程中易于混合分散均匀,有利于胶料进行各种成型操作,使生胶分子量分布变窄,胶料质量均匀一致。
实质:是橡胶分子链断裂,相对分子质量降低,从而橡胶的弹性下降。
机理:塑炼方法分为机械塑炼法和化学塑炼法,机械塑炼法最广泛,机械塑炼分为低温塑炼和高温塑炼,低温塑炼以机械降解作用为主,氧起稳定游离基的作用,高温塑炼以自动氧化降解作用为主,机械作用强化橡胶与氧的接触。
机械塑炼机理:是典型的力化学反应过程,在机械塑炼过程中,机械力作用使大分子链断裂,氧对橡胶分子起化学降解作用,这两个作用同时存在。
低温机械塑炼机理:机械力作用,对橡胶塑炼的直接结果就是使橡胶分子断裂。
造成橡胶分子断裂的主要作用力,就是塑炼中的剪切力。
高温塑炼机理:温度提高,橡胶分子和氧均活泼,可直接进行氧化反应,使橡胶分子降解。
影响因素:机械塑炼有开炼机塑炼、密炼机塑炼、螺杆塑炼机塑炼。